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ABSTRACT 

Transition of flows past a pair of side-by-side circular cylinders are investigated by numerical simulations and the bi-
furcation analysis of the numerical results. Various flow patterns behind the cylinder-pair have been identified by the 
gap ratio (G) and Reynolds number (Re). This study focus on transition of in-phase and anti-phase vortex shedding 
synchronized forms. A nested Cartesian-grid formulation, in combination with an effective immersed boundary method 
and a two-step fractional-step procedure, has been adopted to simulate the flows. Numerical results reveal that the 
in-phase and anti-phase vortex shedding flows at Re = 100 can co-exist at 2.08 2.58G  . Hysteresis loop with in-
creasing/decreasing G at constant Reynolds number Re = 100 is reported. 
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1. Introduction 

Because of its fundamental importance and engineering 
significance, unstable flow interferences across bluff 
bodies have been investigated extensively. Flow inter-
ference with a pair of cylinders is complex in which both 
relative-gap between the cylinders and arrangements of 
relative position (in tandem, side-by-side, or in staggered) 
play crucial roles in the physical transition. Among flows 
around a pair of cylinders in various configurations, those 
behind circular cylinders in a side-by-side arrangement 
have been mostly extensively studied [1-11]. It is now 
well established that the flow patterns behind a pair of 
side-by-side cylinders can be classified [3,12] by the gap- 
ratio G (surface-to-surface distance divided by cylinder- 
diameter) and the Reynolds number (Reynolds number, 
Re, is defined as /

o
Re U D  , where o

U  is the free- 
stream velocity, D is the cylinder diameter, and   is the 
kinematic viscosity). At very small Gap ratios, the two 
cylinders may behave in a similar fashion to a single bluff- 
body [1]. At intermediate Gap ratios, the two side-by- 
side cylinders is known [2] to exhibit a deflected or bi-
ased flow patterns, which are bi-stable in nature. The 
deflected flow pattern is characterized by a gap flow bi-
ased towards one of the two cylinders. The gap flow in 
this regime switches spontaneously from one side to the 
other and thus corresponds to the flip-flopped regime [5]. 
For weak coupling (with relatively large G, 1 G  5) 
many of the past researchers report occurrences of both 
anti-phase and in-phase synchronized vortex shedding 

behind a pair of circular cylinders. Findings of William-
son [4] confirm that the shedding vortices (for 40  Re   
160) remain synchronized either in phase or in anti- 
phase. Anti-phase streets often preserve the phase-locked 
identity of the vortices even at a far downstream location. 
However, for strong coupling (with relatively lower G) 
only in-phase vortex shedding has been reported, and the 
associated physical process eventually leads to formation 
of a complex asymmetrically evolving Benard von Kar-
man streets. 

Although there are varieties of flow patterns behind a 
pair of side-by-side cylinders have been identified (which 
include semi-single and twin vortex street formations, 
symmetric and deflected flows, stationary, biased and 
flip-flopped-type vortex shedding, periodic, quasi-peri- 
odic, and weakly-chaotic flows, and in-phase and anti- 
phase vortex synchronizations), very restriction results 
have been reported on transition of those various flow 
patterns. Examples can be found in the studies of Mizu-
shima & Ino [13] and Peng et al. [14]. In [13], parameter 
space of the gap ratio and the critical Reynolds number 
of symmetry/deflected vortex shedding flows and in- 
phase/anti-phase vortex shedding flows behind a pair of 
circular cylinders at low Reynolds number have been 
reported by results of numerical simulations and linear 
stability analyses. While in the study [14], transition from 
semi-single symmetry vortex shedding flow to semi- 
single deflected vortex shedding flow as well as transi-
tion from twin symmetry vortex shedding to twin de-
flected vortex shedding and then transition to the flipped- 
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flopped vortex shedding regime behind a pair of elliptical 
cylinders at low Reynolds number are shown by results 
of direct numerical simulations. Although there are a lot 
of experimental and numerical studies on the side-by- 
side cylinders, the important transition phenomenon from 
in-phase to anti-phase vortex shedding synchronization 
and vs. are still unclear. Purpose of this study is then fo-
cus on transition of in-phase/anti-phase vortex shedding 
synchronized forms behind a pair of side-by-side circular 
cylinders. High resolution numerical methods based on a 
nested Cartesian grid formulation, in combination with 
an effective immersed boundary method and a two-step 
fractional-step procedure, have been adopted to simulate 
flows past a pair of side-by-side circular cylinders. Hys-
teresis loop with increasing/decreasing Re at constant gap 
ratio describing the hysteresis phenomenon of in-phase/ 
anti-phase vortex shedding synchronized forms are re-
ported. 

2. Numerical Methods and Validations 

In this study, transitions of in-phase and anti-phase vortex 
shedding flows behind a pair of circular cylinders in the 
side-by-side arrangement are numerically investigated. A 
nested Cartesian-grid formulation, in combination with 
an effective immersed boundary method and a two-step 
fractional-step procedure, has been adopted to simulate 
the flows. Extensive related details of the discretization 
schemes consisting of inside fine/coarse grid-areas and 
the associated immersed boundary method may be found 
in Peng et al. [14-15]. 

Here we briefly describe the implemented numerical 
method. Governing equations used are unsteady incom-
pressible Navier–Stokes equations in primitive variables. 
In integral forms, the dimensionless governing equations 
(with lengths normalized by the diameter D of cylinders, 
velocities normalized by the uniform inflow velocity U0, 
and time by D /U0) appear as the following.  

The mass conservation equation 

  d 0
CS

u n S 
 

,               (1) 

and the momentum conservation equation 

d ( )d

1
d d

CV CS

CS CS

u V u u n S
t

pn S u n S
Re


 



    

 

 

   

  

Ni

n inner fine-gri

       (2) 

CS and CV in Eqs. (1) and (2) denote the control-sur- 
face and control-volume, respectively, and  is a unit 
vector normal to the control-surface. While advancing in 
time, a second order accurate two-step fractional-step 
method is used. A second-order Adams-Bashforth scheme 
is employed for discretizing the convective terms, and 
diffusion terms are discretized using an implicit Crank 

n


colson scheme.  
In the iterations of the discretized equations, a local 

grid refinement technique is adopted through the intro-
duction of two nested blocks in the computational domain. 
The implemented nested-block finite-volume based Carte-
sian-grid method is noted to facilitate effective/accurate 
simulation of the presently investigated unsteady viscous 
incompressible flows past multiple immersed boundaries. 
The procedure adopted here allows systematic simulation 
of flows past the cylinder-pair, and preserves global sec-
ond-order accuracy [15]. A sketch for the computational 
domain with implemented boundary conditions and a 
side-by-side arrangement of cylinder-pair is provided in 
Figure 1. Various domain-lengths used for simulations 
under the present study are defined as: L1 = 5D, L2 = 50D, 
L3 = 12D, L4 = 4D, L5 = 8D, and L6 = 5.5D, facilitating 
generation of a physical domain of size 55D × 24D, con-
sisting a d (Grid 2) area 12D × 11D. Upon 
taking 0.1x y D  the outer Grid1 (the coarse 
grid), and 0.05

   for 
x y D     for the inner Grid 2, the 

total grid size became 168,000, with Grid 1 = 120,000, 
an

ted body force in the Na-
vier-Stokes equation, i.e., 

d Grid 2 = 48,000. 
The simple concept of immersed boundary (IB) method 

adopted here helps to simulate effectively the wake evo-
lutions past the cylinders. The virtual presence of the 
cylinders within the flow domain is facilitated by intro-
ducing a locally active distribu

1
( )

u
u u p u f ,


t Re
      



   
 

in which the distributed body force f


 is defined as 
(( ) 1/ )f u u p Re u      

   
, and ϕ represents the 

volume-fraction of the solid body within a computational 
cell. For a cell entirely occupied by the cylinders, ϕ = 1 
is used; and for a cell fully occupied by fluid, ϕ = 0 is 
taken. However, for an interface-cell, partially occupied 
by a cylinder and partially by fluid, 0 < ϕ < 1 is devoted. 
Thereafter, the governing equations are solved everywhere 
in the computational domain, including cells which are 

ccupied by the elliptic cylinders. 
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Figure 1. Schematic plot of the flow domain. 
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It is noted that an extensive validation of the underly-
ing method has been well-documented in [14-15]. In [14], 
computations of important critical Reynolds numbers 
(Recr,v) that correspond to onsets of vortex shedding for 
uniform flows past a circular cylinder, an elliptical cyl-
inder, and two side-by-side attached elliptical cylinders 
were performed. As listed on Table 1, for a circular cyl-
inder, our previous study observed this Recr,v to be 47.2, 
which compares quite well with the experimentally pre-
dicted values 46.9 - 47.9 [16-18], and the theoretical val-
ues 46.1 - 47.3, as obtained by those linear stability 
analysis [19-20] and the bifurcation analysis of Dusek et 
al. [21]. 

3.1. Overview of Flows behind a Pair of 

 are

3. Results 

Side-by-Side Circular Cylinders 

This study begins with the investigation of critical transi-
tion characteristics in the narrow gap range, and extracts 
the underlying bifurcation patterns. For this, first, flow 
properties past two side-by-side circular cylinders in the 
gap-ratio range 0.2 ≤ G ≤ 3.0 and 40 ≤ Re ≤ 100 are ex-
tensively simulated. The observed distinctive physical 
properties of these flows  sequentially characterized in 
Table 2, in which , 1.5C xV   denotes the t eraged 
transverse velocity at (x, y) = (1.5, 0.0), ,1 2LC

ime-av
  is the 

temporal combined lift-coefficient (subscrip e-  t 1 + 2 d

 

mu-
ted data, the readers may note that at all Reynolds. 

f vortex shed-
ding for flow pass a circular cylinder. 

Source 

notes upper plus lower cylinder effects, i.e., ,1 2 ,1 ,2L L L
C C C


  ), 

and T is the period of vortex shedding. “Flow types” (last 
column, Table 2) are classified based on the following 
three special characteristics. The first letter in the abbre-
viated flow-type, “S,” corresponds to the semi-single flow, 
and “T” corresponds to twin flow. For the second letter, 
“S” represents symmetric flow, and “D” denotes the de-
flected flow. In the third and fourth places, “SS” indicates 
steady-state flow, “VP” represents periodic vortex shed-
ding flow, “VQ” stands for quasi- periodic vortex shed-
ding flow, and “VC” denotes the chaotic vortex shedding. 
Various vortex shedding regimes, including flip-flopped, 
in-phase, and anti-phase vortex shedding flows are also 
denoted by superscripts in last column. From the si
la
 
Table 1. Critical Reynolds number of onset o

Recr,v Analytic Method 

Present 47.2 bif is urcation analys

Provansal et al. [16] 

7] 

47.4 5) 

0] li

47.0 experiments 

Williamson [1 47.9 experiments 

Norberg [18] ( ± 0. experiments 

Jackson [19] 46.2 linear stability analysis

Kumar & Mittal [2 47.3 near stability analysis

Dusek et al. [21] 46.1 bifurcation analysis 

Table 2. Simulated results of flows past two side-by-side 
circular cylinders at 40 ≤ Re ≤ 100 and 0.2 ≤ G ≤ 3.0. 

No. G Re , 1.5C xV  F,1 2LC 
 T low type

1 0.2 40 0.0 0.593
 

10.80 S,S,VP 
2 0.2 60 0.0 0.921 9.75 S,S,VP 
3 0.2 80 0.0 0.786 9.20 S,S,VP 
4 0.2 100 0.0 0.258 9.08 S,S,VP 
5 0.4 40 0.0 0.005 13.61 S,S,VP 
6 0.4 60 0   

NA S

T

NA T,

NA T,

NA T,

0  5.23 

0  5.19 

0  5.13 

0  5.15 

0  
5.00 T

0  
5.04 T

0  

5.10 T

0  

5.1 T

60 3.0 100 0.0 0.0 5.17 T,S,VP A 

.111 0.001 12.76 S,D,VP 
7 0.4 80 0.0 NA NA S,S,VQ F 
8 0.4 100 0.0 NA ,S,VC F 
9 0.6 40 0.0 0.0   T,S,SS 

10 0.6 60 0.0 0.0   T,S,SS 
11 0.6 80 0.0 NA   T,S,VC F 
12 0.6 100 0.0 NA   ,S,VC F 
13 0.8 40 0.0 0.0   T,S,SS 
14 0.8 60 0.0 NA NA T,S,VQ F 
15 0.8 80 0.0 NA NA T,S,VC F 
16 0.8 100 0.0 NA S,VC F 
17 1.0 40 0.0 0.0   T,S,SS 
18 1.0 60 0.0 NA NA T,S,VQ F 
19 1.0 80 0.0 NA NA T,S,VQ F 
20 1.0 100 0.0 NA S,VC F 
21 1.2 40 0.0 0.0   T,S,SS 
22 1.2 60 0.0 NA NA T,S,VQ F 
23 1.2 80 0.0 NA NA T,S,VQ F 
24 1.2 100 0.0 NA S,VQ F 
25 1.4 40 0.0 0.0   T,S,SS 
26 1.4 60 0.0 NA NA T,S,VQ F 
27 1.4 80 0.0 0.439 5.53 T,S,VP I 
28 1.4 100 0.0 .622 T,S,VP I 
29 1.6 40 0.0 0.0   T,S,SS 
30 1.6 60 0.0 NA NA T,S,VQ F 
31 1.6 80 0.0 0.415 5.50 T,S,VP I 
32 1.6 100 0.0 .588 T,S,VP I 
33 1.8 40 0.0 0.0   T,S,SS 
34 1.8 60 0.0 NA NA T,S,VQ F 
35 1.8 80 0.0 0.402 5.45 T,S,VP I 
36 1.8 100 0.0 .570 T,S,VP I 
37 2.0 40 0.0 0.0   T,S,SS 
38 2.0 60 0.0 0.197 6.05 T,S,VP I 
39 2.0 80 0.0 0.398 5.47 T,S,VP I 
40 2.0 100 0.0 .564 T,S,VP I 
41 2.2 40 0.0 0.0   T,S,SS 
42 2.2 60 0.0 0.192 6.04 T,S,VP I 
43 2.2 80 0.0 .399 5.50 T,S,VP I 
44 2.2 100 0.0 0.0 ,S,VP A 
45 2.4 40 0.0 0.0   T,S,SS 
46 2.4 60 0.0 0.196 6.06 T,S,VP I 
47 2.4 80 0.0 .406 5.56 T,S,VP A 
48 2.4 100 0.0 0.0 ,S,VP A 
49 2.6 40 0.0 0.0   T,S,SS 
50 2.6 60 0.0 .200 6.11 T,S,VP I 
51 2.6 80 0.0 0.0 5.37 T,S,VP A 
52 2.6 100 0.0 0.0 ,S,VP A 
53 2.8 40 0.0 0.0   T,S,SS 
54 2.8 60 0.0 .208 6.08 T,S,VP I 
55 2.8 80 0.0 0.0 5.41 T,S,VP A 
56 2.8 100 0.0 0.0 1 ,S,VP A 
57 3.0 40 0.0 0.0   T,S,SS 
58 3.0 60 0.0 0.0 5.94 T,S,VP A 
59 3.0 80 0.0 0.0 5.49 T,S,VP A 
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numbers (Re ≥ 40) the single vortex shedding street is 
reached in the range G ≤ 0.4. However, for larger G (G ≥ 
0.6), the approach to the vortex shedding flow remained 
dependent on Re. The flip-flopped vortex-shed-ding oc-
curred in the gap-ratio range 0.4 ≤ G ≤ 1.8 with Re ≥ 60. 
In-phase vortex shedding is detected at 0.4 ≤ G ≤ 1.8, and 
anti-phase vortex shedding is founded at large G (G ≥ 
2.2). Notably, while Table 2 presents the explicit physi-
cal details of various flows, for the sake of facilitating 
immediate comprehension of a trend, the parameter 
space diagram is suitably summarized in Figure 2. As 
shown in Figure 2, it is clear that flows are semi-single 
at G < 0.5. At intermediate Gap ratios the two 
side-by-side cylinders is known to exhibit a deflected or 
biased flow patterns, which are bi-stable in nature. The 
deflected jets through circular gap are further affected by 
the shedding vortices at higher Re and flows become 
flip-flopped consequently. The range of Gap ratios where 
the flip-flopped flow pattern is observed extends from 
approximately Gap ratios between 0.4 - 1.8 depending on 
the Reynolds number. At higher Gap ratios, i.e., the cyl-
inders are spaced sufficiently far apart, the pair of cylin-
ders may behave as two independent bluff bodies. Prox-
imity interference effects, however, lead to various 
modes of synchronization, anti-phase and in-phase, in the 
vortex formation and shedding processes and the result-
ing parallel vortex streets. For example, in-phase and 
anti-phase vortex shedding flows at Re = 100 are clearly 
revealed at G = 2.0 and G = 3.0, respectively. 

3.2. Hysteresis Scenario of In-phase and 
Anti-phase Synchronized Forms 

To investigated the transition of in-phase and anti-phase 
synchronized forms in flows past a pair of side-by-side 
circular cylinders, two sets of computations including 
anti-phase and in-phase branches are carried out. The 
anti-phase branch started from the anti-phase vortex 
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Figure 2. Simulated different wake patterns observed be-
hind two side-by-side circular cylinders. 

shedding flow at G = 3.0 and Re = 100 and are calculated 
by progressively decreasing G in very small steps. In the 
meanwhile, the in-phase branch started from the in-phase 
vortex shedding flow at G = 2.0 and Re = 100 and are 
calculated by progressively increasing G in small steps. 
The observed distinctive physical properties of these 
flows are sequentially characterized in Table 3. It is 
noted that in anti-phase branch, the solution at a higher G 
is used as the initial condition for the next lower G. 
Similarly, in in-phase branch, the solution at a lower G is 
used as the initial condition for the next higher G. 

The flow past cylinder-pair at constant Reynolds num-
ber (Re = 100) retains anti-phase vortex shedding syn-
chronized forms at high gap ratio ( ), as 
indicated by our extracted data on Table 3(a). Once G is 
decreased to G = 2.06, the anti-phase vortex shedding 
flow transits to the in-phase synchronized vortex shed-
ding form. For clarity, the existence of the anti-phase 
vortex shedding flow pattern at Re = 100, and G = 2.32 is 
exhibited in Figure 3. It reveals clearly the anti-phase 
vortex shedding behavior of the simulated flow in the 
sub-domain x = [−5, 50], y = [−9, 9]. The continuation of 
zero central-line velocity (Figure 3(d)), and perfectly 
anti-phase synchronized growth of the lift (CL,1, CL,2) 
coefficients (Figures 3(b) and (c)) ensure the inherent 
anti-phase characteristic of vortex shedding (Figure 3(a)) 
in the wake. Note that, unlike for in-phase vortex shed-
ding flow (Figure 4), the equal but opposite natured 
variations of CL,1 and CL,2 in the present case contribute 
to the continued vanishing of CL,1+2 (Figure 3(d)) during 
the entire time-evolution.  

2.08 3.0G 

Upon maintaining anti-phase synchronized vortex shed-
ding forms with the past findings related to side-by-side 
cylinder-pair (Re = 100, ), once the gap- 
ratio was subsequently increased (from 

2.08 3.0G 
2.0G  ), the 

in-phase synchronized vortex shedding were encountered 
behind the cylinder-pair (Re = 100, ). The 
distinguishable physical characteristics associated with 
the in-phase vortex shedding flows past the cylinder-pair 
at Re = 100 and again G = 2.32 is extracted in Figure 4. 
It can be noted from the figure that the gap-flow quickly 
lost stability; however, the shedding vortices appeared 
clearly in-phase synchronized at least up to x ≤ 12. 
Thereafter, instability is seen to quickly grow, leading to 
the development of a combined binary vortex street 
within 12 < x <26, and beyond that there occurred an 
irregular flow pattern over a conversion point. Physical 
details of this in-phase flow in terms of enhanced CL,1+2, 
and significantly modulated transient evolution (in-phase) 
of individual lift (CL,1 and CL,2) coefficients are extracted 
in Figures 4(d), (b) and (c). 

2.0 2.58G 

3.3. Hysteresis Loop 

From the simulated data on Table 3, the reader may note 
that at constant Reynolds number (Re = 100), the anti- 
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phase branch ranges between , and the 
in-phase branch ranges between . In the 
other word, the anti-phase and in-phase synchronized forms 
behind a pair of circular cylinders (Re = 100) can 
co-exist at . The co-existences of the 
anti-phase and in-phase vortex shedding flow patterns (at 
Re = 100 and G = 2.32) have been shown in Figures 3 
and 4, respectively. Figures 3(a) and 4(a) reveal the 
anti-phase and in-phase synchronized vortex shedding 
forms, respectively, by iso-vorticity plots of the flows. The 
persistence of symmetric flow nature (having zero time 
mean central-line transverse velocity and lift-coefficient) 
in both anti-phase and in-phase vortex shedding flows 
are clearly reflected by the time histories of ,1 2L

2.08 3.00G 
2.0 2.58G 

2.08 2.58G 

C   
(Figures 3(d) and 4(d)). However, an enlarged view of 
individual lift- coefficients ( , ) for the upper 
and the lower 

,1LC ,2LC

 
Table 3. (a). Numerical results of flow past a pair of side- 
by-side circular cylinders by decreasing G slowly (Re = 100). 
* denotes the computed case where transition is happen; (b) 
Numerical results of flow past a pair of side-by-side circular 
cylinders by increasing G slowly (Re = 100). * denotes the 
computed case where transition is happen. 

(a) 

No. G Re , 1.5C xV 
 

,1 2LC 
 T Flow type

1 3.00 100 0.0 0.0 5.54 T,S,VP A 

2 2.60 100 0.0 0.0 5.13 T,S,VP A 

3 2.56 100 0.0 0.0 5.13 T,S,VP A 

4 2.54 100 0.0 0.0 5.13 T,S,VP A 

5 2.52 100 0.0 0.0 5.13 T,S,VP A 

6 2.50 100 0.0 0.0 5.12 T,S,VP A 

7 2.48 100 0.0 0.0 5.12 T,S,VP A 

8 2.46 100 0.0 0.0 5.11 T,S,VP A 

9 2.44 100 0.0 0.0 5.11 T,S,VP A 

10 2.42 100 0.0 0.0 5.09 T,S,VP A 

11 2.40 100 0.0 0.0 5.06 T,S,VP A 

12 2.38 100 0.0 0.0 5.09 T,S,VP A 

13 2.36 100 0.0 0.0 5.09 T,S,VP A 

14 2.34 100 0.0 0.0 5.10 T,S,VP A 

15 2.32 100 0.0 0.0 5.08 T,S,VP A 

16 2.30 100 0.0 0.0 5.04 T,S,VP A 

17 2.28 100 0.0 0.0 5.08 T,S,VP A 

18 2.26 100 0.0 0.0 5.06 T,S,VP A 

19 2.24 100 0.0 0.0 5.09 T,S,VP A 

20 2.22 100 0.0 0.0 5.04 T,S,VP A 

21 2.20 100 0.0 0.0 5.03 T,S,VP A 

22 2.18 100 0.0 0.0 5.05 T,S,VP A 

23 2.16 100 0.0 0.0 5.04 T,S,VP A 

24 2.14 100 0.0 0.0 5.08 T,S,VP A 

25 2.12 100 0.0 0.0 5.04 T,S,VP A 

26 2.10 100 0.0 0.0 5.02 T,S,VP A 

27 2.08 100 0.0 0.003 5.00 T,S,VP A 

28* 2.06 100 0.0 0.659 5.21 T,S,VP I 

29 2.04 100 0.0 0.665 5.21 T,S,VP I 

(b)  

No. G Re , 1.5C xV 
 

,1 2LC 
 T Flow type

30 2.02 100 0.0 0.665 5.18 T,S,VP I 

31 2.04 100 0.0 0.665 5.21 T,S,VP I 

32 2.06 100 0.0 0.659 5.21 T,S,VP I 

33 2.08 100 0.0 0.651 5.19 T,S,VP I 

34 2.10 100 0.0 0.563 5.15 T,S,VP I 

35 2.12 100 0.0 0.664 5.20 T,S,VP I 

36 2.14 100 0.0 0.664 5.22 T,S,VP I 

37 2.16 100 0.0 0.659 5.21 T,S,VP I 

38 2.18 100 0.0 0.651 5.19 T,S,VP I 

39 2.20 100 0.0 0.564 5.15 T,S,VP I 

40 2.22 100 0.0 0.664 5.20 T,S,VP I 

41 2.24 100 0.0 0.665 5.19 T,S,VP I 

42 2.26 100 0.0 0.660 5.20 T,S,VP I 

43 2.28 100 0.0 0.653 5.20 T,S,VP I 

44 2.30 100 0.0 0.566 5.15 T,S,VP I 

45 2.32 100 0.0 0.665 5.20 T,S,VP I 

46 2.34 100 0.0 0.666 5.20 T,S,VP I 

47 2.36 100 0.0 0.662 5.20 T,S,VP I 

48 2.38 100 0.0 0.655 5.20 T,S,VP I 

49 2.40 100 0.0 0.569 5.16 T,S,VP I 

50 2.42 100 0.0 0.667 5.20 T,S,VP I 

51 2.44 100 0.0 0.669 5.20 T,S,VP I 

52 2.46 100 0.0 0.665 5.20 T,S,VP I 

53 2.48 100 0.0 0.658 5.20 T,S,VP I 

54 2.50 100 0.0 0.572 5.13 T,S,VP I 

55 2.52 100 0.0 0.670 5.20 T,S,VP I 

56 2.54 100 0.0 0.672 5.20 T,S,VP I 

57 2.56 100 0.0 0.668 5.20 T,S,VP I 

58 2.58 100 0.0 0.662 5.20 T,S,VP I 

59* 2.60 100 0.0 0.0 5.13 T,S,VP A 
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Figure 3. The simulated anti-phase flow at G = 2.32 and Re 
= 100. (a) Observed anti-phase flow pattern. Time-histories 
of: (b) CL,1(t); and (c) CL,2(t). (d) Vanishing of the combined 
lift- coefficient CL,1+2. 
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Figure 4. The simulated periodic in-phase flow at G = 2.32 
and Re = 100. (a) In-phase vortex shedding behavior. 
Time-histories of: (b) CL,1(t); and (c) CL,2(t). (d) Enhance-
ment of the combined lift-coefficient CL,1+2. 
 

1.8 2.0 2.2 2.4 2.6 2.8 3.0

G

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
L

,1
+

2

: by increasing G gradually

: by decreasing G gradually

the in-phase branch

the anti-phase branch

 

Figure 5. The hysteresis region with G of in-phase and anti- 
hase synchronized vortex shedding forms for flows past a 
pair of circular cylinders at Re = 100. 
 
cylinders (Figures 3(b) and (c)/Figures 4(b) and (c)) 
reveals occurrence of anti-phase/in-phase vortex shed-
ding vortices of the upper and lower vortex streets. 
Readers may note that the corresponding lift-amplitudes 
( ,1 2 ) in anti-phase vortex shedding flows become 
neutralized as shown in Figure 3(d), on the contrary, the 
corresponding lift-amplitudes ( ) in in-phase vortex 
shedding flows become enhanced as shown in Figure 
4(d), respectively. Since the value of stands as a 
characteristic value of anti-phase/in-phase synchronized 
vortex shedding forms, it is worthy to show the 

LC 

,1 2LC 

,1 2LC 

,1 2LC   
distributions. As shown in Figure 5, the ,1 2LC   distri-
bution along the anti-phase branch ( ,1 2C ) combines 
the in-phase branch (

0L  
,1 2LC  0 ) becomes a hysteresis 

loop. Particularly, the anti-phase branch starting from G 

= 3.0 trace along a straight segment, ending at G = 2.08, 
and then merges to the in-phase branch. While the in- 
phase branch starting from G = 2.0 trace along a wavy 
line, ending at G = 2.58, and then merges to the 
anti-phase branch. 

4. Conclusions 

Numerical results have been presented for the in-phase 
and anti-phase vortex shedding synchronized forms of 
flows behind a pair of side-by-side circular cylinders. 
Flows are restricted in low-Reynolds-number (Re  100) 
laminar regime for various small/middle gap ratio 
( 0.2 3.0G  ). The computations have been carried out 
in two-dimensional, using a high resolution numerical 
method based on a nested Cartesian grid formulation, in 
combination with an effective immersed boundary method 
and a two-step fractional-step procedure. 

Hysteresis phenomenon of the in-phase/anti-phase 
vortex shedding synchronized forms of flows has been 
studied in detail. For flows behind a pair of side-by-side 
circular cylinders at Re = 100, the hysteresis loop with 
width ranges between  is clearly found. 2.08 2.58G 
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