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ABSTRACT 

This work is focused on the effects of heat source/sink, viscous dissipation, radiation and work done by deformation on 
flow and heat transfer of a viscoelastic fluid over a nonlinear stretching sheet. The similarity transformations have been 
used to convert the governing partial differential equations into a set of nonlinear ordinary differential equations. These 
equations are then solved numerically using a very efficient implicit finite difference method. Favorable comparison 
with previously published work is performed and it is found to be in excellent agreement. The results of this parametric 
study are shown in several plots and tables and the physical aspects of the problem are highlighted and discussed. 
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1. Introduction 

The study of fluids is different to that of solids as there 
are differences in physical structure of fluids and solids. 
The nature of fluids and the way of study are two aspects 
of fluid mechanics which make it different to solid me- 
chanics. Furthermore, the fluids are categorized to New- 
tonian and non-Newtonian fluids. The fluids of low mo- 
lecular weight fall into the Newtonian class and are com- 
pletely characterized by the Navier-Stokes theory. There 
is a large variety of materials such as geological materi- 
als, liquid foams, polymeric liquids and food products etc. 
which are capable of flowing but which exhibit flow 
characteristic that cannot be adequately described by the 
Navier-Stokes theory. This inadequacy of the Navier- 
Stokes theory has led to the development of several theo- 
ries of non-Newtonian fluids. 

Unlike Navier-Stokes fluids, there is not a single mo- 
del which can completely describe all the properties of 
the non-Newtonian fluids. They cannot be described in a 
single model as for Newtonian fluids and there has been 
much confusion over the classification of non-Newtonian 
fluids. There are many models describing the properties 
but not all of non-Newtonian fluids. These models or 

constitutive equations, however, cannot describe all the 
behaviors of non-Newtonian fluids, e.g., the normal stress 
relaxation, the elastic effects, and the memory effects. 
The constitutive equations describing the behaviors of 
non-Newtonian fluids are more complicated and non lin- 
ear than those of Newtonian fluids. 

As non-Newtonian fluid model Rivlin-Ericksen fluids 
gained much acceptance from both theorists and experi- 
menters. The special cases of the model, which is the 
fluid of second grade, are extensively used and a lot of 
works have been done on the subject. These investiga- 
tions have been for non-Newtonian fluids of the differen- 
tial type [1]. In the case of fluids of differential type, the 
equations of motion are an order higher than the Navier- 
Stokes equations, and thus the adherence boundary con- 
dition is insufficient to determine the solution completely 
[2-4] for a detailed discussion of the relevant issues. The 
same is also true for the approximate boundary layer ap- 
proximations of the equations of motion. In the absence 
of a clear means obtaining additional boundary condi- 
tions, Beard and Walters [5], in their study of an incom- 
pressible fluid of second grade, suggested a method for 
overcoming this difficulty. They suggested a perturbation 
approach in which the velocity and the pressure fields 
were expanded in a series in terms of a small parame- *Corresponding author. 
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ter ε. Danberg and Fansler [6] studied the solution for the 
boundary layer flow past a wall that is stretched with a 
speed proportional to the distance along the wall. Ra- 
jagopal et al. [7] independently examined the same flow 
as in [5] and obtained similarity solutions of the bound- 
ary layer equations numerically for the case of small vis- 
coelastic parameter λ. It is shown that skin-friction de- 
creases with increase in λ. Dandapat and Gupta [8] ex- 
amined the same problem with heat transfer, where Hady 
and Gorla [9] studied the effect of uniform suction or 
injection on flow and heat transfer from a continuous 
surface in a parallel free stream of viscoelastic second- 
order fluid. The effect of radiation on viscoelastic boun- 
dary-layer flow and heat transfer problems can be quite 
significant at high operating temperature. Very recently, 
researches in these fields have been conducted by many 
investigators [10-14]. 

On the other hand, another physical phenomenon is the 
case in which the sheet stretched in a nonlinear fashion. 
On this domain, Mahdy and Elshehabey [15] studied the 
flow and heat transfer in a viscous fluid over a nonlinear 
stretching sheet utilizing nanofluid where, effects of vis- 
cous dissipation and radiation on the thermal boundary 
layer over a nonlinearly stretching sheet were studied by 
Cortell [16]. Vajravelu [17] studied viscous flow over a 
nonlinearly stretching sheet, where viscous flow and heat 
transfer over a nonlinearly stretching sheet were obtained 
by Cortell [18] then, series solution of flow over non- 
linearly stretching sheet with chemical reaction and mag- 
netic field was investigated by employing the Adomian 
decomposition method by Kechil and Hashim [19] where, 
Ziabakhsh et al. [20] used homotopy analysis method to 
present flow and diffusion of chemically reactive species 
over a nonlinearly stretching sheet immersed in a porous 
medium. Muhaimin et al. [21] studied the effect of che- 
mical reaction, heat and mass transfer on nonlinear boun- 
dary layer past a porous shrinking sheet in the presence 
of suction and, Robert [22] discussed high-order nonlin- 
ear boundary value problems admitting multiple exact 
solutions with application to the fluid flow over a sheet. 
Cortell [23] studied heat and fluid flow due to non-line- 
arly stretching surfaces where, existence and uniqueness 
results for a nonlinear differential equation arising in vis- 
cous flow over a nonlinearly stretching sheet were ob- 
tained by Robert et al. [24]. Finally, Vajravelu et al. [25] 
studied the diffusion of a chemically reactive species of a 
power-law fluid past a stretching surface. 

In this paper, as motivated by the previous studies and 
the study of Cortell [26] which investigated the effects of 
heat source/sink, radiation and work done by deforma- 
tion on flow and heat transfer of a viscoelastic fluid over 
a stretching sheet, we consider viscoelastic fluid with an- 
other physical phenomenon in which the sheet stretched 
in a nonlinear fashion. Also, the effects of work due to 

deformation on viscoelastic flows and heat transfer in the 
presence of radiation, viscous dissipation and heat source/ 
sink have been studied. 

2. Problem Formulation 

Consider a steady two-dimensional flow of an incom- 
pressible second grade fluid through a porous medium 
over a wall coinciding with the plane , the flow 
being confined to . Two equal and opposite forces 
are applied along the x-axis so that the wall is stretched 
keeping the origin fixed. Thus, the basic boundary layer 
equations, governing the flow and heat transfer in pres- 
ence of radiation, with a temperature-dependent heat 
source/sink in the flow region, viscous dissipation, and 
taking into account the work due to deformation, are 
given in usual notation by 
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where, the power-law heat flux on the wall is considered 
in the form 
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where  ,x y  denotes the Cartesian coordinates along 
the sheet and normal to it, u and v are the velocity com- 
ponents of the fluid in the x   and directions, re- 
spectively, b and n are parameters related to the surface 
stretching speed, v is the kinematic viscosity, 

y 

  is the 
thermal diffusivity, pc  is the specific heat at constant 
pressure, r  is the radiative heat flux and Q the volu- 
metric rate of heat generation/absorption. The radiative 
heat flux term by using the Rosseland approximation is 
given by [27] 
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 

sid

where  and are the Stefan
and the mean abs rption coeffici

ation (3) reduces to 

k  
o

-Boltzmann constant 
ent, respectively. We 

can con er that the temperature differences within the 
flux are sufficiently small such that the term 4T  may be 
expressed as a linear function of temperature by expand- 
ing 4T  in a Taylor series about T  and neglecting 
higher-order terms we get [28] 
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where it can be seen that the effect of radiation is to en- 
hance the thermal diffusivity. 

Defining the following dimensionless function u, v and 
g, which related to the similarity variable   as  
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where,   is the free stream function that 
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dary layer partial 
differential equations, which are highly non-linear, have 
been converted into a set of nonlinear ordi
tial equations by applying suitable similarity transforma- 

ns are obtained with a 
ements the three-stage 

mation is taken in account and this is also true for the 
second case, where , ,R n  and   have an opposite 
behavior. 

The plots in F ures 1(a) and (b) show the tem era- 
ture distribution 

eration in this study. The basic boun

nary differen- 
ig p
 g    different values of the heat 

source/sink parame ith two cases of the radiation; in 
the case of existence of the thermal radiation and absence 
of the thermal radiatio  and w hout work done by 
deformatio

for
r w

n with
viou

pos

tions and their numerical solutio
finite difference code which impl te
Lobatto IIIa formula is used to solve that system [29-31]. 
In order to verify the accuracy of the present numerical 
method, the results are compared with those reported 
earlier by [26] for the case of linear stretching sheet. The 
results of these comparisons are shown in Table 1. It can 
be seen from this table that excellent agreement between 

it
n. It is ob s that, the effect of increasing 

th
op

e strength of the heat sink is to increase the temperature 
profile, and the ite behavior is seen for a heat 
source. In contrast of thermal radiation, the existence the 
work done by deformation is to decrease the temperature 
profile. 

From Figures 2(a) and (b), we can see that the effect 
of increasing values of Prandtl number  is to decrease 
temperature at a point in the flow field, as there would be 
a thinning of the thermal boundary layer as a result of 
reduced thermal conductivity. On the other hand Figures 
3(a) and

the results exists. This lends confidence to the numerical 
results. 

The effects of viscous dissipation, work due to defor- 
mation, internal heat generation/absorption and thermal 
radiation are considered in the energy equation and the 
variations of dimensionless surface temperature, dimen- 
sionless velocity profiles as well as the heat transfer cha- 
racteristics with various values of non-dimensional vis- 
coelastic parameter  , nonlinear stretching parameter 
n , heat source/sink parameter N , magnetic parameter 
M, suction parameter R, Prandtl number  , Eckert 
number cE  and radiation parameter RN  shown in 
Figures 1-10. 

Also, the values of wall temperature g(0) for various 
va

 (b), demons e effect non linear pa- 
ra

trate th of the 
meter n  and it is evident that, the temperature profile 

decreases with increasing the values of the non linear 
stretching parameter. Moreover, we can see the effect of 
increasing the Eckert number cE  from Figures 4(a) and 
(b) for the same cases disused in Figures 1(a) and (b), 
which is to increase the temperature distribution. 

Figures 5(a) and (b) depict the effect of the magnetic 
field M , by analyzing these graphs, we see that the ef- 
fect of increasing values of M  is to increase the tem- 
perature distribution in the bo dary layer. This is be- 
cause of the fact that the introduction of transverse mag- 
netic field to an electrically conducting fluid give

lues of physical parameters are shown in Tables 2 and 
3 with and without taking the work done by deformation 
at the energy equation, respectively. There are many re- 
sults which can be obtained from those tables. For more 
details, Increasing the heat source parameter N  or, the 
Eckert number cE , or the magnetic parameter M , or 
the radiation paramete  

un

s rise to 
a 

en

f σ

r RN  leads to an increasing in the 
wall temperature  0g  when t work done by defor- 

resistive force, known as Lorentz force. This force has 
a tend cy to slow down the motion of the fluid in the  

, NR and Ec with n = 0.0 (Nonlinear stretching sheet). 
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Table 1. Comparison results of g(0) for various values o

λ Ec NR σ Nβ 
Cortell [26] Present Result 
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Table 2. Wall temperature (0) with work do rmation. 
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Figure 1. Temperature profiles for several values of Nβ (a) with and (b) without work done by deformation. 
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Figure 2. Temperature profiles for several values of σ (a) with and (b) without work done by deformation. 
 
boundary layer and to increase the temperature distribu- 
tion, where the effect of the suction parameter is plotted 
in Figures 6(a) and (b) and the effect of the viscoelastic 
parameter   is clearly shown in Figures 7(a) and (b) 
with all cases. 

Velocity profiles with  for various values 

of 

0.5,3.0n 

M is shown in Figure 8(a) where the same values is 
pl n Figure 8(b) but fo  Also, the same 
val  of Figures 8(a) and (b) otted for different 
va es of the viscoelastic para Figures 9(a) and 
(b) We can see from those figu faster motion is 

red when the visc increases 

otted i
ues

lu
. 

conside

r 1.0.R 
 are Pl

meter in 
res that, a 

oelastic parameter 



F. M. HADY  ET  AL. 209

 

0 0 .5 1 1 .5 2 2 .5
0

0 .1

0 .2

0 .3

0 .4

0 .5

        
(  a  )

g 
( 
 

)

0 0 .5 1 1 .5 2 2 .5
0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

        

g 
( 
 

)

(  b  )

-  -  -

. . . .

 -  - t

-  -  -  -  -   W ith  th erm al r ad ia tio n  N R =  1 .0 ,

. . . .

. . . . . . . . . . .   W ith o u t th er m al r ad iatio n .

  W ith  th er m al r ad ia io n  N R  =  1 .0 ,

. . .   W ith o u t th erm al r ad iatio n .

  =  0 .1 5 ,  R  =  0 .1 ,
M  =  1 .0 ,    =  8 .0 ,
N   =  -0 .2 ,  E c  =  0 .0 2 .

n  =  1 /3 ,  1 .0 ,  3 .0 .

n  =  1 /3 ,  1 .0 ,  3 .0 .
  =  0 .1 5 ,  R  =  0 .1 ,
M  =  1 .0 ,    =  8 .0 ,
N   =  - 0 .2 ,  E c  =  0 .0 2 .

 

Figure 3. Temperature profiles for several values of n (a) with and (b) without work done by deformation. 
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Figure 4. Temperature profiles for several values of Ec (a) with and (b) without work done by deformation. 
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Figure 5. Temperature profiles for several values of a) with and (b) without work done by deformation. 
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Figure 6. Temperature profiles for several values of R (a) with and (b) without work done by deformation. 
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Figure 7. Temperature profiles for several values of λ (a) with and (b) without work done by deformation. 
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Figure 8. Velocity profiles with n = 0.5, 3.0 for various values of M and R. 
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Figure 9. Velocity profiles with n = 0.5, 3.0 for various values of λ and R. 
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Figure 10. Variation of skin fraction coefficient against R for different values of M, n, and λ. 
 
4. Conclusions 

The effects of heat source/sink, radiation and work done 
by deformation on flow and heat transfer of a viscoelastic 
fluid over a nonlinear stretching sheet have been investi-
gated. Numerical solutions for momentum and heat 
transfer are obtained. In the light of the numerical results 
the following conclusions may be drawn: 
 A faster motion is considered when the viscoelastic 

parameter or the nonlinear stretching parameter in- 
creases whereas it is slower when the suction pa- 

e magnetic force increase. 
 The effect of increasing values of magnetic parameter 

is to increase the temperature distribution in the boun- 
dary layer and so does the Eckert number. 

 The influence of the work due to deformation has sig- 
nificance effect of the temperature distribution. 

 The presence of the thermal radiation term in the en- 
ergy equation yields an augment in the fluid’s tem- 
perature. 

 The internal heat generation/absorption enhances or 
damps the heat transport. Finally, increasing suction 

rameter and th
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parameter or viscoela
ber is to decrease the temperature distribution in the 
flow region. 
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