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ABSTRACT 

An operator on formal power series of the form  S S  , where   is an invertible power series, and   is a 

series of the form  is called a unipotent substitution with pre-function. Such operators, denoted by a pair  2t t

 ,   , form a group. The objective of this contribution is to show that it is possible to define a generalized powers for 

such operators, as for instance fractional powers  ,
a

b   for every 
a

b
 . 
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1. Substitution of Formal Power Series 

In this contribution we let  denote any field of 
characteristic zero. We recall some basic definitions from 
[1,2]. The algebra of formal power series in the variable 

 is denoted by 



t  t  
 tS

. In what follows we sometimes  

use the notation  for  tS     to mean that   S

is a formal power series of the variable t. We recall that 
any formal power series of the form tS    for  

   and  tS      is invertible with respect to  

the usual product of series. Its inverse is denoted by 1  
and has the form  for some 1 tV   tV     . In 
particular, the set of all series of the form 1 tT  

2t t T
n

 
forms a group under multiplication, called the group of 
unipotent series. For a series of the form ,    
we may define for any other series 

0
tnn

S 
  an  

operation of substitution given by   0 nn
S n  




2

. A  

unipotent substitution is a series of the form . 
Such series form a group under the operation of 
substitution, called the group of unipotent substitutions 
(whenever 

t t T  

0  , a series  is invertible 
under substitution, and the totality of such series forms a 
group under the operation of substitution called the 
group of substutions, and it is clear that the group of 
unipotent substitutions is a sub-group of this one). The 

2t t T  

inverse of   is then denoted by  1   and satisfies  
      1t1      . Finally, it is possible to define a  

semi-direct product of groups by considering pairs 
 ,   where   is a unipotent series, and   is a 
unipotent substitution, and the operation  1 1 ,   

      2 2 1 2 2 1 2, ,      . The identity element is 

(1, t) . This group has been previously studied in [3-5], 
and is called the group of (unipotent) substitutions with 
pre-function. These substitutions with pre-function act on 

 t    as follows:   , S S       for every 
series . In [3] is associated a doubly-infinite matrix 

 ,

S
M    to each such operator which defines a matrix 
representation of the group of substitutions with pre- 
function, and it is proved that there exists a one- 
parameter sub-group  ,M 

  
M 

 . Therefore, it sa-  

tisfies      , ,M M  
,    

    for every ,   , and  

 ,M 
   is the usual  -th power of  ,M    whenever  

  is an integer. It amounts that for every  ,  ,M 
   is 

the matrix representation of a substitution with pre-  

function say  ,    so that   , ,M M  


   



. The  

authors of [3] then define   , ,      . Actually 
in [3] no formal proof is given for the existence of such 
generalized powers for matrices or unipotent substitu- 
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tions with pre-function. 
In this contribution, we provide a combinatorial proof 

for the existence of these generalized powers for unipo- 
tent substitutions with pre-function, and we show that 
this even forms a one-parameter sub-group. To achieve 
this objective we use some ingredients well-known in 
combinatorics such as delta operators, Sheffer sequences 
and umbral composition which are briefly presented in 
what follows (Sections 2, 3, 4 and 5). The Section 6 con- 
tains the proof of our result. 

2. Differential and Delta Operators, and 
Their Associated Polynomial Sequences 

By operator we mean a linear endomorphism of the 
-vector space of polynomials   x  (in one indeter- 

minate ). The composition of operators is denoted by a 
simple juxtaposition. If 

x
 xp

p
, then we sometimes 

write  to mean that  is a polynomial in the va- 
riable . 

xp
x



Let  be a sequence of polynomials.    0
xn n

p

 

It is called a polynomial sequence if  deg np n  for 
every  (in particular, 0 ). It is clear that a 
polynomial sequence is thus a basis for 

0n  p 
 x . 

An operator  is called a differential operator (see 
[6]) if 

D

1) 0D   for every   . 
2)  for every non-constant poly- 

nomial . 
   deg deg 1Dp p

p


For instance, the usual derivation  of polynomials 
is a differential operator. Moreover, let 


  , and let 

us define the shift-invariant operator E  as the unique 
linear map such that  nE x x n   for every 

. Then,  is also a differential operator. 0n  1E   id
 pA polynomial sequence  is said to be a normal 

family if 
0n n

1) . 0 1p 
 0p2)  for every . 0n 

D
0n 

Let  be a differential operator. A normal family 
 is said to be a basic family for  if  n n

p
0

D

 1 1n nDp n p    

for every . It is proved in [6] that for any differen- 
tial operator admits is one and only one basic family, and, 
conversely, any normal family is the basic family of a 
unique differential operator. As an example, the normal 
family  is the basic family of . 

0n 

 nx
0n

Let  be an operator such that for every non-zero 
polynomial 


L

 xp
0

,  (in particu- 
lar,  for every constant 

   deg degLp p
 L   

L


). Such an op- 
erator is called a lowering operator (see [7]). For in- 
stance any differential operator is a lowering operator. 
Then given a lowering operator , we may consider the 
algebra of formal power series L    of operators of 

the form 
0

n
nn
L

  where n   for every . 0n 

The series 
0

n
nn
L

  converges to an operator of  

 x  in the topology of simple convergence (when  
has the discrete topology) since for every 


 xp , 

there exists pn   such that for all pn n , 
 nL p 0 , so that we may define 

   
0 0

.
pn

n n
n n

n n

L p L p 
 

   
 
   

According to [6], if  is a differential operator, then  D

 D      if, and only if,   commutes with , i.e., D

D D  . Moreover, if  0
n

nn
D D 


     , then  

  is also a differential operator if, and only if, 0 0   
and 1 0  . 

Following [1], let us define a sequence of polynomials  

0

x

n
n



  
  
  

 by 
x

0
0

 
 

 
 and 

   0

x 1
x

1 1 !
n

i
i

n n 

 
    

  

for every integer . For n   , we denote by 
n

 
 
 

 

the value of the polynomial  for 
x

n

 
 
 

x  . Let  be  L

a lowering operator, and let  U id L L       be its 
unipotent part. Then we may consider generalized power  

 0
n

n
U L

n
 



 
L     

 
   (in particular, this explains  

the notation E  for the shift operator). We observe that 
for every integer ,  really coincides to the -th  k kU k

power 
factorsk

U U  of U Moreover, U. U U     

every ,

 for

   . We may also form  

       
1

1

1
n

log log n
n

U id L L L
n




         

in such a way that for every   , 

  log  expU   U

where for every  0
n

nn
L L 


       with 0 0  , 

  0

1
exp

!n n
n   (it is a well-defined 


  operat  

kind of generalized powers may be used to compute frac-  

tional power of the form 

or). This 

a

bU  for every a , b   

(for instance, 
1

n

ties of powers:

nU U ). They satisfy t

 

he usual proper- 
0U id , U U U     . The objective 

of this contributi  pr of the existence on is to ovide a proof 
of such generalized powers for unipotent substitutions 
with pre-function. 
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Following [8], we may consider the following sub-set 
of

An operator 

 differential operators, called delta operators. A poly- 
nomial sequence  p  is said to be of binomial-type 
if for every 0n 

 

0n n
, 

     
=0

x y x y x, y .
n

n k n k
k

p p p      

  is a shift-invariant operator if for 
every   , E E  . Now, a delta operator D  
is a sh ri  such that xDift inva ant operator  . For in- 
stance, the usual derivation   of poly s a delta 
operator. It can be proved th  a delta operator is a dif- 
ferential operator. The basic family (uniquely) associated 
to a delta operator is called its basic set. Moreover, the 
basic set of a delta operator is of binomial-type, and to 
any polynomial sequence of binomial-type is uniquely 
associated a delta operator. If D  is a delta operator, 
then there exists a unique  -alg ra isomorphism from 



nomials i
at

eb
t    to the ring of shift variant operators -in  D    

ps 

 

that ma
0 !

nt
S s   to  nn n 0 !

n

nn n
. In [8

hat given a del erator , and a se

D
S D s  ]  

is proved t ta op ries  D

1
tn

nn
 


    0 0   with 1 0  , then  D  is 

onversely, if also a delta operator. C   is a in- 
variant operator (so that 

 shift-
D     ), then if it is a 

delta operator, the unique se
 

ries  

 0

tn

t
!nn n

 


       

such that  D   satisfies 0 0   and 1 0  . 

3. Sheffer Sequences 

riefly recall some definitions 

sequence of polynomials in

In this section, we also b
and results from [8]. 

Let  p  be a 
0n n

  x . 
on of We define th

0

e exponential generating functi
 np  as 

n

      
0

t
; t x t .

!

n

n nn
n

EGF p p
n

       

Let be a delta operator and be its basic 
set. Let

D  
 

  0n n
p


 

 t      with 0 0  1 0 and    such 
that   D . Then   from [8

   
], 

 1  x t; t e .n n
EGF p   

A polynomial sequence is said  be a Sheffer 
se

 

 for every 

lowing [9], a p nce  is a 
Sheffer sequence if, and only if, there pair 

  0n n
s


 

nomial
 to

quence (also called a poly  sequence of type zero 
in [9] or a poweroid in [10]) if there exists a delta opera- 
tor D  such that 

1) 0s  , 

2) n 1 1n nDs s   n . 

Fol olynomial seque    0n n
s


exists a 

 ,   of formal power series in  t    with   in- 
vertible, and 0 0  , 1 0  , such that 

    ; t t eEGF s    x t .

ta ope

n n

c set ofRema
Sheffe

rk  a del or  is a 
r seque

1. The basi
nce. 

rat  D

Let D  be a delta-operator with basic set   0n
. 

Following [8], the f
np

0
ertib

ollowing result holds.  

 
Prop ition 1. A polynomial sequence  ns a 

Sheffer sequence if, and only if, there exists
os  is 

le 
n

an inv
shift-invariant operator S  such that 1

n ns S   each 
0n  . Moreover, let S  be an invertible shift-invariant 

operator. Let 

p  for
 

 t      be the un al power  

 such that 

ique form

series   S   . Then,   is invertible, and 

  ; t     xeEGF    
 11

1 


ns
n

where  n n
s  is the She quen d  ffer se ce define by

1
n ns S p  for each 0n   t , and  


ation. 

 
unique es su    . Fi

 is the  

orm
hav

 f
we also 

al power seri ch that nally 
e the followi aracteriz

D
ng ch

Proposition 2. Let  n n
s  be a polynom uence. It 

is a Sheffer sequence if, and only if, there ex
ial

np

 seq
elta ists a d

.  

operator D  with bas   n n
p  such that 

     y y x,
n

n k k

n
s s

k 
 

   
 

 

ic set

x x y
0k

4. Umbral Composition 

This section is based on [11]. 
Let  p  be a fixed polynom ence.  us n n

define an operator 
ial sequ  Let

  by   xn
np  for each .  0n 

Since  pn n
 is a basis of  x , this means that   is  

a linear isomorphism of  x
en 


, th

. Wh n n
i th

basic set of a delta operator
en  p  e s 

  is referred to as an 
umbral operator, while if  np

n
 is a Sheffe quence, 

then 
r se

  is said to be a Sheffer ope or. An umbral op-
erator maps basic sets to b ts, while a Sheffer op-
erator aps Sheffer sequences to Sheffer sequences. 

Let 

rat
asic se

 m
 n n

p  be a polynomial sequence. For every n ,  

0k
x x

n k kp p   where n n xkp  is the coeffici   
k e polyno 

ent

of x  in th mial xp . Let   n n
p  and 

 n n
q  mial sequ heir umbral com- be two polyno ences. T

nomial position is defined as the po sequencly e  n n
r   

   #n nn n
q  defined by p

0

x
n

k
n

k

r p q


   n k

h . By simple computations, it m be 

 that 

for eac

proved

0n  ay 

x x xn nk
q

 

ences becomes a (non-

nk kr p  . The s t of  

l sequ
 with 

e

all polynomia commutative) 
monoid under #  xn

n
 as identity. We observe 
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that if T  is the operator defined by xn
nT q  for each  

0n  , then     #n n nn n n
p q p . More generally, we  

k k

T

have  wher

r of for t i

 seque  

  xk nT e    #

n n
q  is the       #

n nn
q

k -th p he umbral on (it is  

equal t 
owe

o a

  n n
q  

nce say

 composit

 n n
r k  and we deno  r k   te 

n

 # k l o lby nq ). Under umbr osition, the set l 
Sheffer sequences is a ( mutative) group, called 

a comp f a
non-com

Sh

d umbral 
co

sets 

the er group ([12]), and the set of all basic se- 
quences is a sub-group of the Sheffer group. 

From [8] we have the following result that combines 
delta operators, basis sets, Sheffer sequences

eff

 an
mposition.  
Theorem 1. Let Q  and P  be two delta operators 

with respective basic  nq
n

 and  n n
p . Let 

an
S  

d T  be two inve ble shi -invariant operators. Let 
 n n

rti ft
s  and  n n

t  be the She sequenc fined b  
1

n n

ffer es de y
s S q  and 1

n nt T p  for each n . Let ,   be 
nvertib eries such that  S   , two i le s  T   . 

Let ,   be two wer series with 0 0fo al porm 0   , 

1 10    such that  Q    a  , 

      R P        is a shift-inva - 

s 

nd  P  
ria

. Th

nt ope

en

ra

 

 

tor, i a delta ope

sequ  given by 

T 

 

n


ence

    rator with basic sequence  

  #n n n n
v q p . Finally, let  n n

r  be the Sheffer    n

     #n nn n
 n nr R v   n n

t . Then, r s 1

for eac
 that if 

h n . 
It may be proved  n n

s  
perator

is t quence
rom the delta o  with basic 

se

he
  

 Sheffer se  
obtained f  D

t  n n
p  and the invertible shift-invariant operator 

1 S   i.e., n n , s S p  for each n , then the inverse 

 n n
p ect to the u bral composition 



 n n
q

is the 

 of  

 set of

with resp m

basic  the delta operator    1   , the inverse 

 n n
t  of  n n

s  with respect to the um position 

is the S    
bral com

heffer sequence  n nt q  . 1 

5. U tentnipo  Sequences 

The basic set  n n
p  of   a delta oper is said to be ator D

unipotent if the unique series   such that  D    
satisfies 11   (and, obviously, 0 0  ), i.e.,   is a 
unipotent substitution. A Sheffer sequence  n n

s  asso-
ciated to a delta operator  D    (with  0 0  , 

1 0  ) an invertible shi riant o rator 
 S    (with 

and ft-inva pe
  invertible), i.e., n n

1s S
et o

p  for 
every n  where  n n

p  is the f D , is said to  
otent if  n n

p  is unipotent, and if 
 basic s

be unip   is unipo-  

tent, i. 0 1e.,   . also clear from the previous sec-It is 
 that 

nce

f unipotent basic sets 
al

tion (theorem 4) the (umbral) inverse of  unipotent 
basic set is unipotent, and the (umbral) inverse of a 

 a

Sheffer seque  is also unipotent. 
It is clear from theorem 4 that the group of basic sets 

under umbral composition is isomorphic to the group of 
substitutions. Moreover, the group o

so is isomorphic to the group of unipotent substitutions. 
Likewise, the group of (unipotent) Sheffer sequences is 
isomorphic to the group of (unipotent) substitutions with 
pre-function (see also [12]). 

Lemma 1. Let  ,   be a substitution with pre-  

function, and let     ,n nn n
s p  be the Sheffer sequence 

an

 

d the basic set associated to the delta operator     
v rand the invertibl ant operator   e shift-in a i  (this  

means that  n n

   1

n n

p et of    , and  is the basic s

s p


   for each n ). Then,  ,  a uni- is 

potent substitution with pre-function if, and only if, 

x 1 x  for ev ry n . 

Proof. Let us first assume that  ,

n n
n np s  e

   is a unipotent 
substitution with prefunction. We have 1p   for every  0

basic set, so that 0 1 1p  . Let n . We have  

  2
k

kk
 


     . Then,   1p n p     is  1n n

equivalent to 

    1

0 =0
1 x

n n k
n nk k

p n p 


    . 

on of the coefficient of on both sides, 

we obtain 

1 xk


By identificati xn  

   1
11 x 1 xn n

n nn p n p
    

(since   is assumed to be a unipotent bstitution), and, 
by induction, 

 su
1x 1np 

1n  . Besides, we have 

  n n

1
s p  for each n . But       

(because there morphism between 


1

  1   

 t   is a ring iso   

and     ), and 1 1 t    , where  t     . 

Then, by identification of the coefficient of xn , w   e have

x x 1ns pn n
n   n . Conver s for every sely, let u   

assume that     ,n nn n
eq

the basic set associat

s p  is the Sheffer s uence and  

ed to the delta operator     and 
the invertible t operator     with shift-invarian

x 1 xn n  ructio  n np s  for every n . By const n we 

have    1
1 11 x 1n

n nn p n p xn 
   so that  1 1  . 

Likewise, 0 x xn , s  that 0 1n
n ns p o   . □ 

6. Gener
Substi -Functio

alized Powers of Unipotent 
tutions with Pre n 

The purpose of this section is to define  ,    for any 
  and any unipotent substitution with pre-function 
 ,  , and to prove that it is also a unipotent

 that 
 substitu- 

tion with pre-function. Moreover we show
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 ,
    is a one-parameter sub-group, i.e., 

     , , ,


            for every ,   , and 

Let 

   0
, 1,   t . 

 ,   be a unipot on with

function of

ent substituti  pre-  

 t 
(unipotent

 . Let be the unipotent basic 
set of

 n n
p  

 the ) delta operator    . Let  n n
s   

nt Sheffer sequence associated to be the unipote      

and the (unipotent) invertible shift-invarian  operator t    . 
Let R  be the umbral operator given xnby R pn  for

d by
very

 
all n , and let T  be the Sheffer operator define  

xn
nT s  for all n . It is easily checked that for e   

integ r k ,    # xk k n
np R  and    # xk k n

ns T . In par-  

for each n ,  
e

ticular, 
1

0
x x x x

nn n n k
n nk

T s s



     

(by Lem a 5). T id Lm  Therefore,   , where  
1

0
x x

nn n k
nk

L s



   fo   x r each . The operator is

r. Then according to section 2, 

it is possible to defin

 n L  

actually a lowering operato

e  k
k

T L L  
0 k

       for  
 

 

every  .   exp logT T Moreover, we have .  

For each  , let us define    xn
ns T    for  

every . When kn    , we have  ns k   

 xk n
nT s o that in this cas # k . S e,   n 

n
s k  is the  

unipoten ffer sequen ated to  ,t She ce associ
k   

 
. This

means that if  , ,
k

k k    , and  the uni-  n n
q  is 

rator potent basic set of the (unipotent) delta ope  k  ,  

then  # k
n k  1

ns q n . Sim , let  for each ilarly 
1

0
x x x x

nn n k k
n nk

R p p



    for every n . There-  

fore, here R id N  , w
1

0
x x x

nn k
nk

N p



  k  is a  

lowering operator. Again for every  , we define 

   log kR N
k




 
     . 0

exp
k

R


   r each  N  Fo
 

 , we define  for each  In particular  

for 

   xnp R  n n .

k   , , so that it is th

of p

   # k
n np k p e basic set  

 the unipotent delta o erator   k  . Clearly, 
 n    1

k ns k p 
 , we hav

k  for each

    (1) 

n i

Now, let be a variable commuting with  and 
and let us define  

x, z

an  

x, z

for each . As polynomials in the variable , their 
ost . As polynomials in th riable 

 n . Thus for every 
k e 

   

   
0

0

x y

x y ,

n

n i
i

n
k i k n i

i

p k
i

n
R R

i







 
 
 

  
 




 

    x yn i

n
p k p k

 
 

        

   
0

0

x y x y

x y ,

n

n i
i

n
k i k n i

i

n
s k s k p k

i

n
T R

i








 
   

 
 

  
 




     (2) 

z  x y , 

     0 0

z z
z x x

ni n i n
n i i

s L L
i i 

    
      

    
    

d similarly,  

z      0 0

z
z x x

ni n i n
n i i

p N N
i i 

  
     

    
   , 

 n  z
e vadegrees are at m n

z ,   yns z x  ,   z x ynp ,  

have also a degree at most Because the equations (1) 
2) hold for every integ  the polynomials (in the 
ble 

n ip

n ip

are identically zero, and the above equations hold for  

 

     0
z x z y

n

i n ii

n
p p

i 

 
 
 

  

and 

    0
z x z y

n
i n ii

n
s p

i 

 
 
 

  

n . 
er and (

varia
k ,

z ) 

          0
z x y z x z y

n
n ii

n
p p

i 

 
   

 
  

and 

n

n
s

          0
z x y z x z y

n

ii
s

i 
   

 
  

. Therefore,   n n
p every   is a polynomial  

sequence of binomial-type, and   n n
s   is a Sheffer 

sequence for every  . , for every  Moreover
,   , we have  

    



     
  

x

n

k

k
k

R R

R



so that


=0

=0

x

x

n k
n nk

n

nk

R p p

p p

  

 

 






 

x x  n np R    

         #n n nn n
p p q    

n
. Similarly,  

        #n n nn n
s s s

n
      for every ,   . 

Moreover,  

             0 00 x x xn n n
n nn nnn n

p R T q    . 0

ore, Theref   n n
p     ns

n
    and 
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are one-parameter sub-groups. It fo

and 

(inverses under umbral operation). 
We define

REFERENCES llows that  

        # 1

n nn n
p p 


   

        # 1

n nn n
s s 


   

  ,
   as the pair of formal power ser


ies 

 ,    such that   
 

is the substitution that defines 
the delta operator    with basic seque  nce   n n

p  , 
and   is the invertible series such that  

     1
s p  n n    


 

for each  . Since   n n
p   and   n n

s   are 
unipotent sequence  clear that s, it is   is unip  otent, and

  is a unipotent substitution. It is also clear that  

whenever k   , then    , ,k k

k    . Let us

check that 

  

 ,    
e group of unipote

 is a one-parameter
nt su ns with

 sub- 
group of th bstitutio  pre- 
function. This means that for every ,   , 

          

 
, , ,      



 




 

  ,      

First of all, by definition, 



    is the unipotent sub- 
stitution associated to the basic set  

        #n n nn n
p p p     , 

n

and therefore         . In a similar way, the se- 
ries     is uniquely associa o the Sheffer sequence  

  
ted t

     #n n nn n n
s s s      and to the basic set  

        #n n nn n
p p p    

n
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