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ABSTRACT 

The principle aim of this research article is to investigate the properties of k-fractional integration introduced and de- 
fined by Mubeen and Habibullah [1], and secondly to solve the integral equation of the form 
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confluent k-hypergeometric functions, by using k-fractional integration. 
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1. Introduction 

Erdélyi [2] investigated the solutions of integral equa- 
tions whose kernels contain Legendre functions. Love [3] 
solved the integral equations involving hypergeometric 
functions using fractional derivatives. Using variance of 
fractional integration, Habibullah [4] investigated the 
solution of the integral equations involving confluent hy- 
pergeometric functions and Srivastava [5] discussed the 
equations with polynomial kernels. 

Diaz et al. [6-8] have introduced k-gamma and k-beta 
functions and proved a number of their properties that we 
are interested in. They have also studied k-zeta function 
and k-hypergeometric function based on Pochhammer 
k-symbols for factorial functions. These studies were 
then followed by works of Mansour [9], Kokologiannaki 
[10], Krasniqi [11,12] and Merovci [13] elaborating and 
strengthening the scope of k-gamma and k-beta functions. 
Very recently, Mubeen and Habibullah [14] gave a sim-
ple and useful integral representations of generalized k- 
hypergeometric and confluent k-hypergeometric func- 
tions that could helpful in completing the present re- 
search paper. 

2. Fractional Integration 

Mubeen and Habibullah [1] defined a k-fractional in- 
tegration as a variant of Riemann-Liouville fractional 
integral as 
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mann-Liouville fractional integral by taking  as 
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3. k-Hypergeometric and Confluent  

k-Hypergeometric Differential Equations 

The following k-hypergeometric function defined by Mu- 
been and Habibullah [14] 
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is the solution of the linear second order differential 
equation of the form 

   1 0kz kz k k z               . 

In this article, we call it k-hypergeometric differential 
equation. It reduces to ordinary hypergeometric differen- 
tial equation by taking . 1k 
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And also the following confluent k-hypergeometric 
function defined by Mubeen and Habibullah [14] 
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is the solution of the linear second order differential equa- 
tion of the form 

  0kz kz        . 

In this article, we call it confluent k-hypergeometric 
differential equation. It reduces to ordinary hypergeo- 
metric differential equation by taking . 1k 

4. Main Results 

Theorem 4.1. If 0, 0 and ,  thenx t     
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Proof. Consider 
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Put  and s tu z
x t
 


t x  in the above equation, 

then we get the desired result. 
Theorem 4.2. Let 

  

 
 
     

1

1 1,
0

, ;
d

, ;

kx

k
k

kx t
F t x f t t g x

k
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If  g x  is a given function, then 
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Proof. Set  
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where 0, 0, 0 and 0 .k x t         
Apply kI   on both sides, we get the following 
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Changing the order of integration by using Fubini’s 
theorem. 
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By Theorem 4.1, we have 
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This may be written as 
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to an improved presentation of the paper. The author is 
also pleased to pay special thanks to Dr. Atiq ur Rehman 
for his support in this research. 
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This is the solution of the integral equation, if it exists. 
This integral equation implies that 
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Now, we find a solution of another integral equation 
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Using the Mubeen’s relation [15] 
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Thus, if 0, 0, 0 and 0 ,k x         then 
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Also, we have the following result 
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