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ABSTRACT

We set in this paper a coherent theory based on functional empirical processes that allows to consider both the poverty
and the inequality indices in one Gaussian field in which the study of the influence of the one over the other is done. We
use the General Poverty Index (GPI), that is a class of poverty indices gathering the most common ones and a functional
class of inequality measures including the Entropy Measure, the Mean Logarithmic Deviation, the different inequality
measures of Atkinson, Champernowne, Kolm and Theil called Theil-Like Inequality Measures (TLIM). Our results are
given in a unified approach with respect to the two classes instead of their particular elements. We provide the asymp-
totic laws of the variations of each class over two given periods and the ratio of the variation and derive confidence in-
tervals for them. Although the variances may seem somehow complicated, we provide R codes for their computations

and apply the results for the pseudo-panel data for Senegal with a simple analysis.

Keywords: Functional Empirical Process; Asymptotic Normality; Welfare and Inequality Measure; Weak Laws;

Pro and Anti-Poor Growth

1. Introduction

In many cases, one has to monitor a specific situation
through some risk measure J on some population. The
variation of J over time is called growth in case of nega-
tive variation and recession alternatively. This growth or
recession is not itself sufficient to describe the improve-
ment or deterioration of the situation. Often, the distribu-
tion of the underlying variable over the population should
also be taken into account in order to check whether the
growth concerns a great number of individuals or is ra-
ther concentrated on a few numbers of them.

In the particular case of welfare analysis, one may
measure poverty (or richness) with the help of poverty
indices J based on the income variable X. Over two pe-
riods s =1 and t = 2, we say that we have a gain against
poverty when AJ(s,t)=J(t)-J(s)<0, or simply a
growth against poverty. Before claiming any victory, one
must be sure that, meanwhile, the income did not become
more unequally distributed, that is the appropriate ine-
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quality coefficient | did not increase. One can achieve
this by studying the ratio R=AJ (s,t)/Al (s,t).

To make the ideas more precise, let us suppose that we
are monitoring the poverty scene on some population
over the period time [1,2] and let (Xl, X2) be the in-
come variable of that population at periods 1 and 2. Let
us consider one sample of n>1 individuals or house-
holds, and observe the income couple Z, :(X},ij),_
j=1--,n.For each period ie{1,2}, we assume that X'
is strictly positive, and we compute the poverty measure
J, (i) and the inequality measure 1 (i). We draw the
attention of the reader that we consider here classes of
measures both for poverty and inequality rather than spe-
cific ones. This leads to the very general results but re-
quires extended notation.

For poverty, we consider the Generalized Poverty In-
dex (GPI) introduced by Lo at al. [1] and Lo [2] as an
attempt to gather a large class of poverty measures re-
viewed in Zheng [3] defined as follows for period i,
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where B(Q,(.))= Z?:lw( i), Z(.) is the income level
representing the poverty line, Qn(.) is the number of
poor, s, 4,45 and g, are constants, A(u,v,s), w(t),
and d (y) are mesurable functions of
(u,v,s)eNxNxR? teR?, and xe(0,1). By par-
ticularizing the functions A and w and by giving fixed
values to the xS, we may find almost all the available
indices, as we will do it later on. In the sequel, (1) will be
called a poverty index (indices in the plural) or simply a
poverty measure according to the economists’ terminal-
ogy.

This class includes the most popular indices such as
those of Sen [4], Kakwani [5], Shorrocks [6], Clark-
Hemming-Ulph [7], Foster-Greer-Thorbecke [8], etc. See
Lo [2] for a review of the GPI. From the works of many
authors ([9,10] for instance), J, (i) is an asymptotically
sufficient estimate of the exact poverty measure

331 =["L(x.G,)d [%]dei (x) @)
where G

; is the distribution function of X'(i=12),
and L is some weight function.

As for the inequality measure, we use this Theil-like
family, where we gathered the Generalized Entropy Mea-
sure, the Mean Logarithmic Deviation [11-13], the dif-
ferent inequality measures of Atkinson [14], Champer-
nowne [15] and Kolm [16] in the following form:

'"(”:’[hw»%i“( nmo)] o

j=1

where g, (i) = Z, _X| denotes the empirical mean

while h, h, h2, and 7 are measurable functions.

The inequality measures mentioned above are derived
from (3) with the particular values of «,7,h,h, and h,
as described below for all s>0:

e Generalized Entropy

a#0,a=1,7(s)=

e Theil’s measure:
(s)=s,h(s)=slog(s),h (s)=s,h,(s)=log(s);
e Mean Logarithmic Deviation
z(s)=s,h(s)=h,(s)= log(s’l), h(s)=1

e Atkinson’s measure:
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W(ﬂ1n+ﬂ2Qn(i)_ﬂ3j +ﬂ4)d(

Z(i)-Xj,
Z(i) ] M

a<landa #0,7(s)=1-5
h(s)=h(s)=sh,(s)=0;
e Champernowne’s measure:
7(s)=1-exp(s),h(s)=h,(s)=1log(s).h(s)=1

e Kolm’s measure:
1
O: =—1 5
a>0,7(s) » og(s)

h(s)=h(s)=exp(-as),h,(s)=0.

We will see below that 1 (i) converges to the exact
inequality measure

1(i)= jh ~h (ﬂ(i))J 4)

where (i) = E( X' ) is the mathematical expectation of
X' that we suppose to be finite here.

Each measure of the Theil-like family has its own par-
ticular properties, derived from the combination of dif-
ferent concepts. One may mention the concept of welfare
criteria (Atkinson [14], Sen [17]), that of the analogy
with analysis of risks (Harsanyi [18,19]; Rothschild and
Stiglitz [20]), the complaints approach (Temkin [21]) etc.
The Theil inequality itself finds all its interest in the in-
formation-theoretic idea following that of main compo-
nents (Kullback [22]) and based on the three axioms
(Zero-valuation of certainty, Diminishing-valuation of
probability, Additivity of independent events). A deep re-
view of such of individual properties for a number ine-
quality measures can be found in Cowell [13,23,24] for
instance.

It is worth mentioning that the TLIM presented here is
rather a mathematical form gathering of a number of dif-
ferent measures having different insights. Its main inter-
est is to provide a general and uniform approach for
dealing with both poverty and inequality measures in the
same time and to avoid details and repetitions, in a co-
herent framework for useful comparison studies. In com-
ing papers, the families presented by Cowell [13,23,24]
will be studied in similar ways.

The motivations stated above lead to the study of the
behavior of

(AJ, (s,1),Al,(s.1))

as an estimate of the unknown value of
(AJ(s,t),Al(s,1)).

Precisely confidence intervals of
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AJ (s,t)

R(SY= 250

will be an appropriate set of tools for the study of the
influence of each measure on the other.

To achieve our goal we need a coherent asymptotic
theory allowing the handling of longitudinal data as it is
the case here and a stochastic process approach leading
to asymptotic subresults with the help of the continuity
mapping theorem.

We find that the functional empirical process, in the
modern setting of weak convergence theory, provides
that coherent asymptotic theory.

Indeed, we use bidimensional functional empirical
processes G, and its stochastic Gaussian limit G to
entirely describe the asymptotic behaviour of
(AJn(S,t),AIn(s,t)) in the Gaussian field of G and
then find the law of R (s,t)=AJ (s,t)/Al (s;t) as
our best achievement.

The remainder of the paper is organized as follows. In
Section 2, we remind key definitions and properties for
functional empirical processes, and we state the asymp-
totic representation of the GPI of Sall and Lo [25] stated
in Theorem 1 that will be used later on. In Section 3, we
give our main results and make some commentaries and
data driven applications to Senegalese pseudo-panel data
are considered while the proofs and the tables are post-
poned in an appendix Section 5. Section 4 concludes.

2. Functional Empirical Process and
Representation of GPI

2.1. A Brief Reminder on Functional Empirical
Processes

Let Z,,Z,,---,Z, be a sequence of independent and
identically distributed (i.i.d.) random elements defined on
the probability space (Q,.4,P), with values in some
metric space (S,d). Given a collection F of mesur-
able functions f:S — R, the functional empirical pro-
cess (FEP) is defined by:

f(z,))

This process is widely studied in van der Vaart [26]
for instance. It is directly seen that whenever
E(f (Z)2)<oo, one has

%z?zlf(zi)_’P(f)ZE(f(Z))a.s,
and Gn(f)—w\/'(o,a?) where
a?=E((f(z)_P(f))2)<w, )

as consequences of the real Law of Large Numbers (LLN)

vf e F,G,(f)= Z( (z,)-E

n,1
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and the real Central Limit Theorem (CLT).

When using the FEP, we may be interested in uniform
LLN’s and weak limits of the FEP considered as stochas-
tic processes. This gives the so important results on Gli-
venko-Cantelli classes and Donsker ones. Let us define
them here (for more details see [26,27]).

Since we may deal with non measurable sequences of
random elements, we generally use the outer almost sure
convergence defined as follows. Remind that a sequence
U, converges outer almost surely to zero, denoted by
U, —>0as., whenever there is a measurable sequence
of measurable random variables V, such that
U<V,

2) V,>0as.

The weak convergence generally holds in ¢*(F ),
the space of all bounded real functions defined on F,
equipped with the supremum norm

"X"}' =SUP¢ r X( f )|

Definition 1 A class Fc L (P) is a Glivenko-
Cantelli class for P, if

2(1(z)-B

j=1

lim

n—o

(z,))

= limsup lzn:( f (Zj )—
j=1

=% fern

B (2,))

Definition 2 A class F < L,(P) is a Donsker class
for P, or P-Donsker class |f { () fe}"} con-
verges in ¢“(F) to a centered Gaussian process
{G(f):; feF} with covariance function

=0as”

E(G(f)G(g))
=[((2)-Ef (2))(9(2)-Eg(z))dP(2);
vf,geF.

Remark 1 When S=R and F={f =T, .teR|,

. Isthe real empirical process and is denoted ]by a,.

In this paper, we only use finite-dimensional forms of
the FEP, that is (Gn ( fi),i :1,--‘,k). And then, any
family {fi,i :1,--‘,k} of measurable functions satisfy-
ing (5), is a Glivenko-Cantelli and a Donsker class, and
hence

(Gn(fi)’i :L""k)_d—)(G( fl)’G(fz)""’G( fk))

G

where G is the Gaussian process, defined in Definition
2.

We will make use of the linearity property of both G,
and G. Let f,---,f, be measurable functions satisfy-
ing (5)and a eR,i=1,---,k, then

]L)G[gaj )
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The materials defined here, when used in a smart way,
lead to a simple handling the problem tackled here.

2.2. Representation of the GPI

In this paper, we use the GPI in a unified approach that
leads to an asymptotic representation for a large class of
indices classified in three kinds.

First we consider the threshold condition:

(H1) There exist f>0 and 0<<& <1 such that,

0<p<G(Z)<&<l.

Next we have form conditions (on the indices):

(H2a) There exist a function h( p, q) where
(p,g)eN? and a function c(s,t) where (s,t)e (0,1)2
such that, when n — +o,

max

max A(nQ)h (nQ)W(n+ Q- sy j+ p1,)
—c(Q/n, j/n)| zop(n—l/z);

(H2b) There exists a function =(s,t) with (s,t)e R’
such that, when n — +o,

max

max :Op(n—3/z)_

w(i)h (n.Q)-—r(Q/n. i/n)

Further we need regularity conditionson ¢ and =:
(H3) The functions c(-) and =(-) have uniformly
continuous partial derivatives, that is

lim sup
(k‘l)—>(0‘0)(x‘y)e(0’1)z

oc oc
—(x+Ly+k)-— x,y‘zo

(x+by+k) = (%)
and

lim sup @(x+l,y+k)—%(x,y)‘:0;

(k1)>(0,0) p<x<e,ye(0.1)| OX

(H4) The functions ya%(x,y) and ya%(x,y)

are monotonous.
(HS) The distribution function G is increasing.
(H6) There exist H, >0 and H_ <+ such that

Hy<H,(6)=[["e(6(2).6())()d6(3)< ..
and
H, < Hn(G)='[0+°°n(G(Z),G(y))e(y)dG(y)< H,

where 7(x):d£ZZ_X

xeR.
Based on these hypotheses, we put

3(6)=H.(G)/H.(6),

jH(XQ) and e(x)=I, for
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with
0.()=¢(G(2).6())7().9.()=7(G(2).G () e().
K(G)=H,'(G)K,(G)-H,(G)H,*(G)K,(G)

where

and
L0=5(6(2).60))7().
v()=5,(6(2).6()e()
Now recall the functional empirical process
an(g):ﬁig(xj)_Eg(xi)

and introduce
ﬂn(V):%jzn;{Gn(xj)_G(xj)}v(xj)’

the reduced process of Sall et Lo (see [25]).

The representation results of [25] for the GPI is the
following.

Theorem 1 Suppose that (H1)-(H6) are true, then we
have the following representation

Jn(3,(6)-3(G))=an (9)+ 4, (v)+0: (1).  (R)

Although these conditions may appear complicated,
they are simple to check in usual cases with the popular
poverty measures. We will see this in Section 3.

We are going to state our main results.

3. Results and Commentaries
3.1. Notations

Let us consider the following Renyi representations. Let

{Uj}jzl,.,.ﬁn and {Vi}jzl,..,,n

ent uniform rv’s on D =(0,1). Then we have the repre-
sentation, meant as equalities in distribution:

Xj=G,'(U;)and X} =G,"(V,).je{l-.n}

two sequences of independ-

where G;' is the generalized inverse of G,. We sup-
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pose that G, is continuous. The copula associated with
the couple (X X 2) is defined by

C(u,v)=G, (Gl’1 (u),G,' (v)),v(u,v) eD?,

where G , is the joint distribution function of ( X 1, X 2) .
Next we consider the bidimensional functional em-
pirical process based on {(U i»V; )} ,
j=l,--n
sker class F :

for some Don-

vf e F,G,(f)=

ROALICH

njl

) (uv)(f));

and the limiting centered Gaussian stochastic process
G, its variance-covariance function defined by, for
(f.g)eF*:

E(G(f)G(9))
=P (=B (1)) (0 9))
_IDZ( u,v)- (f

where

Py, (F)=B(f(U,V))=]_, f(u,v)dC(u,v).

Now we introduce the following notations based on
the functions 7, h, h, h, of(3)and on the functions
g and v of Theorem 1. The subscript i refers to the
period. The following series of notations are about the
variation of the inequality measures and are listed below.
Let us first denpte:

Bn(i)zl >(X}).B(7)=[;h(x)

and next, for all (u v)eD?,

f(0.9) =G eI, (1)

where II; isthe i" projectionon (0,1),

f.(u,v)=ho f (u,v).

And finally,

with Ki:z"[ B(7)

-h i and
F (U’V) = Fz*,l (U’V) - Fl; (U’V)’
where h', h) and 7' are respectively the derivatives
of the functions h, h, and 7.
For our results on the variation of the GPI, we need the
functions g¢; and v; provided by the representation of

Copyright © 2013 SciRes.

Theorem 1. Put accordingly with these functions:
g, (x)=c(G, (x))q (x)and v; (s)=c'(s) g, (G (s))-
We define forall (u,v)e D’
fos (V) =10, (T ()T (V)
where I, is the indicator function on the set (0,s),
F(uv)=g;0 f(uv)=g,0G " o1, (uv),
and

F(u,v)=F (u,v) - R (u,v).

3.2. Main Theorems

We are now able to state our theorems. The first concerns
the variation of the inequality measure.

Theorem 2 Let (i) finite for i=1,2 and let each
h, continuously differentiable at each (i), i=12.
Let P, (F**)<w, then we have the following con-
vergence as n— o

Jn (Al (1,2)- Al (1,2)) >,

where —, stands for the convergence in distribution
and

N(0,T,(1,2))

r, (1,2)=jD2(F,* (u,v)—IP’(Uﬁv)<F,*))2 dc(u,v).

The second concerns the variation of the GPI.
Theorem 3 Let (i) finite for i=1,2. Suppose that

P(UN)((fLs)z)’ IED(UN)((fz,s)z) and By, (F;?) are
finite. Then

Jn(a3,(1,2)-A3(1,2))
-, G(FJ*)+jD(G( £ )v2(3)-G(fis)v, (s))ds

which is a centered Gaussian process of variance-co-
variance function:

[, (1,2)=T,(1,2)+T,(1,2)+2I(1,2)
where
0 (L2)= [ (F (Wv) =By (Fr ) dC (uv):

Fz(132)271_272+73

with
7= [ v2(s)v, (t)(min {s,t} —st)dsdt,
7= [ va (5)n ()(C(ts)—st)dsdt,
75 = v (5)vy (t)(min {s,t} - st)dsdt;
and
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L S 202
e (S)-[(O»S)X(OJ) Fy (uv)dC (u,v)} as then we have \/H{Rn (1,2)- R(I,Z)} tends to a func-
~Pyy) ( = )J'DS (v2 (s)-, (S)) ds. tional Gaussian process

Thus last one handles the ratio of the two variations. a(G ( Fy ) * I D (VZ (S)G( s ) " (S)G( fis )) ds)
Theorem 4 Supposing that the above mentioned hy- _ bG(F,* );

potheses are true, then
of covariance function

t
(\/H(AJn (1,2)—AJ (1,2)),\/H(A|n (1,2)—A| (1,2))) 1—‘(1’2) _ aZFJ (1’2)_'_ bzrl (1’2)_ 2ab1",5J (1’2).
-, N,(0,%),
o 3.3. Commentaries
wi
First of all, the results cover a large class of poverty
Y - T (1’2) T (1’2) measures and inequality indices. This explains why the
r,(L2) T(L2) notations seem heavy. Secondly, the variances of the
d limiting Gaussian processes seem also somehow tricky.
an But all of them are easily handled by modern computa-
_ - X - " tion means. We are going to particularise our results for
T (12)=Fy ‘V)((F' Fu ‘V)(F' ))(FJ Fu V)(FJ ))) famous measures and provide workable software codes
N for the computations.
+ID{V2(S)I(0,1)X(0,S) F (u,v)dC(u,v)} ds p
34.R tati fS P ty Indi
—ID{Vl (S)IO . F|* (U,V)dC (U,V)}dS epresentation or some Foverty Indices
(0sh(01) We may easily find the functions g and v for the most
+P(U,V)(Fl*).[DS(Vl(S)—VZ(S))dS. E:rorgin(;-n members of the GPI family (see [25,28]) in
aple 1.
In this case, let Where
G(y) (Z—yj G(y) ) 3:(¢)
={2(|1- - K (G) Lo
gs(y) { |:( G(Z)J Z G(Z) G(Z) + s( ) (y<2)
and
2 |(Z2-y) J(G)
= I
Vs(y) G(Z)|:( Z j+ G(Z) (y<z)
with
6(2) S Z-G7'(s
a4
J, (G
KS(G)—2£1 ZGI(Z) f(Z)G‘l(s)dsJ+ GS((Z))
And

Copyright © 2013 SciRes. AM



Notice that the functions are indexed by k for the
Kakwani measure. For the FGT measure of index « , we
have that v=0 and

g(x) :maX(O,(Z —X)/Z )a.

3.5. Datadriven Applications and Variance
Computations

3.5.1. Variance Computations for Senegalese Data

We apply our results to Senegalese data. We do not
really have longitudinal data. So we have constructed
pseudo-panel data of size n=116, from two surveys:
ESAM II conducted from 2001 to 2002 and EPS from
2005 to 2006. We get two series X' and X*. We pre-
sent below the values of T',(1,2) denoted here y(1),
[;(1,2) denoted here »(2) and I'(1,2) denoted
here y(3).

When constructing pseudo-panel data, we get small
sizes like n = 116. We use these sizes to compute the
asymptotic variances in our results by mean of nonpara-
metric methods. In real contexts, we should use high
sizes comparable to those of the real databases, that is
around ten thousands, like in the Senegalese case. Nev-
ertheless, we back on medium sizes, for instance n = 696,
which give very accurate confidence intervals.We use
here the abreviations are given in Table 2.

The obtained confidence intervals are described in

P. D. MERGANE, G. S. LO

Tables 3 to 10, in Subsection 5.2. Before we present the
outcomes, let us say some words on the packages. We
provide different R script files at:
http://www.ufrsat.org/lerstad/resources/mergslo01.zip
The user should already have his data in two files
datal.txt and data2.txt. The first script file named after
gamma_mergslol.dat provides the values of y(1),
7(2) and y(3) for the FGT measure for a=0,1,2
and for the six inequality measures used here. The sec-
ond script file named as gamma_mergslo2.dat performs

Table 1. Specific functions of the poverty measures.

Mesure g 14

Z-y Z-y
Thon 2(1 —G(y))( > ]ng) —2[—2 j]l(yg)
Sen g, Ve
Kakwani O« Vi
Table 2. Notation of each measure.
Notations Indices

GE(a) , =0.5,23 Generalized Entropy with parameter «

THEIL Theil

MLD Mean Logarithmic Deviation

ATK(a), a=05,-0.5 Atkinson with parameter «

CHAMP Champernowne
SHOR Shorrocks
SEN Sen

KAK(k), k=12 Kakwani with parameter k

FGT(a) , a=0,1,2 Foster-Greer-Thorbecke with parameter «

Table 3. Variations of the inequality indices.

Indice Al(1,2) r,(1,2) Cl,,, (AI(1,2))

GE (0.5) ~0.04025832 0.01770106 [-0.05588673; ~0.03611789]
GE (2) -0.06408679 0.07224733 [0.09545863; ~0.05552007]
GE (3) -0.1008038 0.1205114 [-0.1495352; —0.09795348]
THEIL ~0.04569319 0.02223474 [-0.0635651; ~0.04140879]

MLD ~0.03645671 0.01523784 [-0.05085476; 0.03251291]
ATK (0.5) ~0.01976068 0.004225092 [-0.02742201; ~0.01776374]
ATK (-0.5) -0.04423886 0.02212773 [-0.06159485; —0.03949192]

CHAMP -0.03421829 0.01283687 [0.04734396; ~0.03050904]

Copyright © 2013 SciRes.

AM



P. D. MERGANE, G. S. LO

Table 4. Variations of the poverty indices.

Ratio AJ(1,2) r,(1,2) Cl,,,(AJ(1,2))
SHOR —0.03024621 0.02353406 [-0.04264967; —0.01985518]
KAK (1) —0.02108905 0.01097123 [-0.02982085; —0.01425729]
KAK (2) —0.02055594 0.01007820 [-0.02961271; —0.01469601]
FGT (0) —0.05977098 0.3170756 [-0.09355847; —0.009889805]
FGT (1) —0.01859332 0.00922992 [-0.02620413; —0.01192899]
FGT (2) —0.00432289 0.0008381113 [-0.007194404; —0.002892781]
Table 5. Ratio of the variations with Shorrocks measure.
Ratio R(1,2) r,(1,2) r(1,2) Cl,, (R(1,2))
SHOR/GE (0.5) 0.7513034 0.005477263 15.60737 [0.3858608; 0.9728719]
SHOR/GE (2) 0.471957 0.006487665 8.157275 [0.2018082; 0.6261873]
SHOR/GE (3) 0.3000503 0.009018111 2.851175 [0.1271085; 0.3780043]
SHOR/THEIL 0.6619413 0.005642781 12.36007 [0.3342390; 0.8566255]
SHOR/MLD 0.8296473 0.8296473 18.77303 [0.4278509; 1.071647]
SHOR/ATK (0.5) 1.530626 0.002695030 64.49043 [0.7866646; 1.979908]
SHOR/ATK (—0.5) 0.6837023 0.007288597 12.21780 [0.555278; 1.395697]
SHOR/CHAMP 0.8839194 0.005165236 20.86647 [0.4634852; 1.142229]
Table 6. Ratio of the variations with Sen measure.
Ratio R(1,2) r,(1,2) r(1,2) Cl,,.(R(1,2))
SEN/GE (0.5) 0.3290702 0.003112166 7.754599 [0.272201; 0.6859714]
SEN/GE (2) 0.3290702 0.003512353 4.013294 [0.1431155; 0.4407834]
SEN/GE (3) 0.2092089 0.005939808 1.354192 [0.0916464; 0.2645570]
SEN/THEIL 0.461536 0.003364929 6.035583 [0.237376; 0.6024165]
SEN/MLD 0.5784683 0.002968939 9.506736 [0.2996504; 0.7577893]
SEN/ATK (0.5) 1.067223 0.001542060 31.99108 [0.555278; 1.395697]
SEN/ATK (-0.5) 0.4360427 0.003368434 6.534366 [0.2461303; 0.625955]
SEN/CHAMP 0.6163094 0.003038844 10.33521 [0.3273292; 0.8050137]
Table 7. Ratio of the variations with Kakwani (2) measure.
Ratio R(1,2) r,(1,2) r(1,2) Cl,, (R(1,2))
KAK (2)/GE (0.5) 0.510601 0.002574653 7.443462 [0.2788993; 0.6842854]
KAK (2)/GE (2) 0.3207516 0.008486058 2.93814 [0.1661299; 0.4208233]
KAK (2)/GE (3) 0.2039203 0.005185377 1.276858 [0.09508295; 0.2629838]
KAK (2)/THEIL 0.4498688 0.002906321 5.72986 [0.2442552; 0.5999303]
KAK (2)/MLD 0.5638451 0.002365820 9.220372 [0.3058926; 0.7570787]
KAK (2)/ATK (0.5) 1.040245 0.001292464 30.63183 [0.5694048; 1.391776]
KAK (2)/ATK (-0.5) 0.4646579 0.001933209 6.672792 [0.2464103; 0.630237]
KAK (2)/CHAMP 0.6007296 0.002781442 9.709634 [0.3376321; 0.8006341]
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Table 8. Ratio of the variations with FGT (1) measure.

Ratio R(1,2) r,(12) r(1,2) Cl,,.(R(1,2))

FGT (1)/GE (0.5) 0.4618504 0.003359959 6.109622 [0.2308332; 0.5981059]
FGT (1)/GE (2) 0.29901272 0.004159761 3.140289 [0.2316082; 0.4949175]
FGT (1)/GE (3) 0.1844506 0.005815332 1.100702 [0.0761356; 0.2320249]
FGT (1)/THEIL 0.4069167 0.003487018 4.824886 [0.2000723; 0.5264534]

FGT (1)/MLD 0.5100109 0.003329621 7.371324 [0.2557003; 0.6591174]
FGT (1)/ATK (0.5) 0.9409253 0.001652060 25.25488 [0.4705622; 1.217276]
FGT (1)/ATK (-0.5) 0.4202938 0.004429351 4.81098 [0.2142764; 0.5401868]

FGT (1))CHAMP 0.5433737 0.003126249 8.218207 [0.2768286; 0.7027897]

Table 9. Ratio of the variations with FGT (0) measure.
Ratio R(1,2) r,(1,2) r(1,2) Cl,,(R(1.2))

FGT (0)/GE (0.5) 1.484686 1.484686 192.9616 [0.09236428; 2.156398]
FGT (0)/GE (2) 0.9326567 0.02159780 82.69382 [0.009587167; 1.360782]
FGT (0)/GE (3) 0.5929437 0.03215672 31.62072 [0.0002219161; 0.8357621]
FGT (0)/THEIL 1.308094 0.01626234 149.7108 [0.07643712; 1.894496]

FGT (0)/MLD 1.639505 0.01332770 236.7108 [0.09833456; 2.383401]
FGT (0)/ATK (0.5) 3.024743 0.00717539 799.837 [0.1882737; 4.390527]
FGT (0)/ATK (-0.5) 1351097 0.01606948 160.4669 [0.08224307; 1.964480]
FGT (0)/CHAMP 1.746755 0.01248913 266.9863 [0.1148277; 2.542700]

Table 10. Ratio of the variations with FGT (2) measure.
Ratio R(1,2) r,(1.2) r(1,2) Cl,.(R(1,2))

FGT (2)/GE (0.5) 0.1073788 0.000974483 0.5139224 [0.05637792; 0.1628977]
FGT (2)/GE (2) 0.06745369 0.001055690 0.2494247 [0.02970793; 0.103916]
FGT (2)/GE (3) 0.0428842 0.001371335 0.09271563 [0.01813633; 0.06338001]
FGT (2)/THEIL 0.09460689 0.0009653898 0.4092489 [0.04856479; 0.1436198]

FGT (2)/MLD 0.118576 0.001013111 0.6110173 [0.06292282; 0.1790699]
FGT (2)/ATK (0.5) 0.2187623 0.0004795731 2.126811 [0.1148914; 0.3315849]
FGT (2)/ATK (-0.5) 0.09771703 0.001424631 0.3939442 [0.05315702; 0.1464178]
FGT (2)/CHAMP 0.1263327 0.000954164 0.6848654 [0.0680842; 0.1910499]

the same for the Shorrocks measure. Lastly, gamma_
mergslo3.dat concerns the kakwani measures. Unless the
user uploads new datal.txt and data2.txt files, the out-
comes should be the same as those presented in the
Appendix.

3.5.2. Analysis

First of all, we find in Tables 3 and 4 in the appendix 5
that at an asymptotical level, all our inequality measures
and poverty indices used here have decreased. When

Copyright © 2013 SciRes.

inspecting the asymptotic variance, we see in Table 4
that for the poverty indice, the FGT and the Kakwani
classes respectively for a=1, =2 andk=1,k=2
have the minimum variance, specially for ¢ =2 and k
= 2. This advocates for the use of the Kakwani and the
FGT measures for poverty reduction evaluation. As for
the inequality approach in Table 3, it seems that Atkin-
son measure ATK (0.5) has the minimum variance and
then is recommended.

As for the ratio of the poverty index over the inequality
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Table 11. Dependence of over 50%.

Couples (KAK (2), GE (0.5)) (KAK (2), MLD) (FGT (1), CHAMP)
Dependences (%) 51.06 51.06 54.33
Couples (SEN, MLD) (KAK (2), CHAMP) (SEN, CHAMP)
Dependences (%) 57.84 60.07 61.63
Couples (SHOR, THEIL) (SHOR, ATK (—0.5)) (SHOR, GE (0.5))
Dependences (%) 66.19 68.37 75.13
Couples (SHOR, MLD) (SHOR, CHAMP) (SHOR, ATK)
Dependences (%) 82.29 88.39 153.06

measure, we have a dependence of over 50% for the fol-
lowing couples in Table 11, that we can find in Tables 5
to 8.

The maximum ratio 3.024 is attained for FGT (0) and
Atkinson (0.5). Based on these data, and on the confi-
dence intervals in Table 9, we would report at least of
46.43% for these two measures and conclude that the
gain over poverty in Senegal between these two periods
is significally pro-poor. We would have worked with all
couples with a ratio over 50% to have the same conclu-
sion.

The present analysis should be developped in a sepa-
rated paper research since this one was devoted to a theo-
ritical basis. We plan to apply at a regional basis, that is
for the countries of the UEMOA in West Africa.

4. Conclusion

We have been able to compute confidence intervals for
the ratio of variations for the poverty and the inequality
indices. The results enabled us to cheek whether the
growth is pro or against poor in Senegal from 2002 to
2006. It always remains to undertake large scale data
driven applications at a regional level, precisely in the
UEMOA African area. We used in this paper a Theil-like
family of inequality measures that does not include the
celebrated and important Gini index. Moreover other the
Theil-like families exist. It would be interesting to have
the same theory developed here using the Gini index and
other families as well. We plan to do it in a very close
future.
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Appendix
Proofs of the Theorems

Proof of Theorem 2.
By using the delta-method, we have for all ie {1,2} :

iy (e, (1)) =y (2(0)} = (e (D)3 (10 (D)= (1)) +05 (1) = (1(1))

Then

Jn{B (u)—B(u)}=in;(h(x;)—E(h(xJ)))=in;(fh(u v
and then
Vn{B, (i)-B(i)} =G, (f.,)
Further
it (u)—|<n>}:ﬁ{{h18;f'),))—h2(u (u))}—r o
:K,\/ﬁ{hf;lfi()i))—hz(yn(i))—hl(B/Ei()i))+h2(y(i))}+op(1)
But
n B”(i) - i))- B(i) + i
Oy )
Cn{B.()-B(i)} [ B(i)h(u(i)) s WAL () (i o
-l B[ SORAOD ) o0+,
_ 1 B B(i)h (1)) + i ‘o
") () {m(ﬂam(uno))) o ”]G”(f) )
-~ (n(i(i)) b [B(h) h%;i))”5(”“))}‘]”')(”
Thus
!
that is

Copyright © 2013 SciRes.

997

(6)

(7

®)

®

AM



998 P. D. MERGANE, G. S. LO

Finally using the linearity of the FEP, we get
Jn{al, (1,2)-A1(1,2)} =n {1, (2)-1(2)}=Vn {1, (1)~ 1 (1)}
=G,(F)-G,(F})+0,(1)=G, (R, -F})+0,(1)
and conclude by

Jn{al, (1.2)-A1(1,2)} =G, (F*)+0, (1) (10)

and
r, (1,2):E(G(F|*)2) = (R (W) —By (F)) de(u).

Proof of Theorem 3. We have

34 (0) = 2e(1 (X} (1)
and then

x/ﬁ{Jn(i)—J(i)}:Lnjzn_;(gi(X},n)—Egi(X}’n))+.[Dan(s)vi(s)ds+op(1)

:Ln.zz;(gioe (UJnVJn) BEg; © G H'(Ulnvln))

+Jolnjzn;(nl(ﬂ<0s>(um Vi) ) B (L) (U30)- Ty (Vin) )11 (8)ds 40, (1)

:Lnjzn:‘(F'J(UJ"VJ”) IP)(UV( )) .{Tnl( |s( j.n> Jn) IED(Uv)(]c )) ()ds+0 (1)

We arrive at
In{3,(1)=3 (1)} =G, (5 )+ [ G, ( fis)vi(s)ds+0, (1). (11)

We get the variation of J, between to instants i=1 and i=2 as follows
V{83, (1.2)- A (1L2)} =V {3, (2)-3 (2)} ¥ {3, (1) -3 (1)
=G, (R =5 )+ [, (Ga(f,0v, (5) =G, (v (s))ds+0, (1).
This leads to

Er1(1,2)+r (1,2)+2r,(1,2).

Let us compute these three numbers. First consider,
2 2
r, (1,2):E(G(F;) ):'[DZ(FJ*(U,V)—IP(U‘V)(FJ*)) dC (uv).

Secondly, compute

T, (1’2):E((J.D(v2 (S)G( fzﬁs)—vl(s)G( fl,s))ds)zj
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By developing and applying Fubini to this term, we get
1L2)=[ v, (3)v, () B(G( f,,)G( f,, ))dsdt— [ ,v, (s)v, () E(G( F,, )G( f,, ))dsdt
~[ (), (DE(G(f,,)G(f,,))dsdt+ [ v, (s)v (DE(G( f,,)G(f,,))dsdt;

B(G( f3) G ( 1) =B (T (V) =) (T (V) =) = min (s,t) - st;
B(G( £,.)6( 1)) =B((T0s) (V) =) (Tog (U) 1)} =C (t,5) -t
then
IDZ v, (s)v, (t)E(G( fz,s)G( fz’t))dsdt = J.Dz v, (s)v, (t)(min(s,t)— st)dsdt;
and

[va ()va (O E(G(f,,)G( f,,))dsdt = [ ,v,(s)v, (t)(C(t.5)—st)dsdt;
Similarly we obtain
() (DEB(G( )G (f,))dsdt = [ v, (s)v, (t)(C(s,t)—st)dsdt;
RAC (t)E(G( fl,s)G( fle ))dsdt = .[DZ v, (s)v, (t)(min(s,t)—st)dsdt;
But

[ (t)va(s)(C(t,s)—st)dsdt = [ v, (s)v, (t)(C(s,t)—st)dsdt.

By identification, we get
F2(1,2)=71—272+73
and remind that these quantities were defined in Theorem (3). Finally, we have
I (12) = B(G(F; ) [ (G( )2 (5)-G( fis)wi(s))ds)
=[,v: ()E(G(F;)G(£.,))ds [ i () B(G(F;)G(f,,))as
‘ID{z () 105, F7 (1) (uv) (S)I(O‘S)X(OJ)FJ*(u,v)dC(u,v)}ds
P (R )f (Vz(s) vi(s))ds.

This achieves the proof of Theorem (3).
Proof of Theorem 4.
By (6) and (10), is clear that

(Vn(a3,(1,2)-A3(1,2)),Vn (A1, (1,2) - A1 (1,2))

is asymptotically Gaussian with covariance
F1o (12)=B(6(F)(G(F )+ [ (v (5) 6 (f.e) - ()G (.,
=B(G(R)G(F)))+ [, (5)B(G(R)6(F.,))d

;) —
| ~—
— ——
o
~
—_
>
~—
&
—_—
2
—_
_n
~—
2
—_
—h
~—~—
~—
o
w

Then
L, (1 2) = ]P(u,v) (( R - IP>(u V) (FI* ))( Fy - ]P)(u V) (FJ* ))) + ID {Vz (S)J.(O,l)x(o,s) F (U»V)dc (U’V)} ds

—I{ j F*(u,v)dC(u, v)}ds+IP>(U,V)(F,*)jDs(vl(s)—vz(5))ds.

Copyright © 2013 SciRes. AM



1000 P. D. MERGANE, G. S. LO

Next straightforward computations yield
Al (1,2) AJ(L,2) AJ(1,2) AJ(1,2)
R (1,2)-R(1,2){ = n - _
ViR, (1.2)-R(1.2)} ﬁ{Nn(l,z) AlL(12) AL (L2) Al(12)
AI(1,2)

- Jn{ad, (1,2)- A3 (1,2)} - Jn{al, (1,2)-A1(1,2)}

Al (1,2) AL(1,2)Al, (1,2)
i C )L 08 () ()E(1.) o) AAI‘]((:2)2G(FI*)+OP(1)
Then
Jn{R,(1,2)-R =a(G, (7 )+ ], (2 (9)Gy (£os) =1(5) Gy (1,4))ds ) -G, (R ) +0, (1),

We finish by computing its variance I'(1,2). For this, let
(G FJ*) j ( (fzjs)—vl(s)G(flys))ds),
A =G(F)
and
r(1,2)=B((as, -ba, )’ ) =a’B((4,)") +bB((4, )')-2abB (4, 4, ).
By using the notation of Theorem 4, where we introduced a and b, we arrive at
I'(1,2)=a’l,(L,2)+b’T, (1L,2)-2abl", , (1,2).

This completely achieves the proofs.
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