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ABSTRACT 

In this article, we prove certain isoperimetric inequalities for eigenvalues of Riesz potentials and show some applica- 
tions of the results to a non-local boundary value problem of the Laplace operator. 
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1. Introduction 

Historically, the minimization of the first eigenvalue of 
the Dirichlet Laplacian is probably the first such problem 
which appeared in the scientific literature. In Rayleigh’s 
famous book “Theory of Sound” [1] (first published in 
1877), by using some explicit computation and physical 
interpretations, he stated that a circle minimizes (among 
all domains of the same area) the first eigenvalue of the 
Laplacian with the Dirichlet boundary condition. The 
proof of this conjecture was obtained only after 30 years 
later, simultaneously (and independently) by G. Faber 
and E. Krahn. Nowadays, the Rayleigh-Faber-Krahn in- 
equality has been expanded many other boundary value 
spectral problems and operators; see [2,3] for further 
references. 

In the present paper, we give simple proofs of some 
isoperimetric inequalities for the eigenvalues of Riesz 
potential by using methods of symmetrical decreasing 
rearrangements of positive measurable functions and va- 
riational principles. Riesz potentials, that is convolution 
operators with fractional powers of the distance to a point 
in , have important roles in fractional calculus theory. 
We also apply these results for the Laplacian with a non- 
local boundary conditions, in particular, we prove Ray- 
leigh-Faber-Krahn inequality for the obtained non-local 
boundary value spectral problem of the Laplacian. 
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2. Main Results 

Let in an open bounded domain  of  the 
following spectral eigenvalue problem of the Riesz po- 
tential has discrete spectrum: 
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 and Г is the gamma func-  dR

tion. The potential  satisfies in the distributional sense 
(

u
  is the characteristic function of the set ) 
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Note that when d N  and 2   Riesz potential 
coincides with the classical Newtonian potential and for 

2m   satisfies a polyharmonic equation in  (cf. 
[4]). We denote eigenvalues of the Reisz potential by 

dR

     1 2 3        (enumerate their eigen- 
values in decreasing order) each time repeated according 
to multiplicity. For the spectral problem (2.1), we obtain 
the following results: 

Theorem 1. Let dR 
R

 open simple-connected 
bounded domain and d   is a ball of the same 
measure as the  , i.e.    , then 

    1 1 .                 (2.2) 

Theorem 2. Let dR   open simple-connected 
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bounded domain and  is a ball of the same 
measure as the , i.e. 

dR 
    , and the following 

series has convergence then 

   2 2
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3. Preliminary 

Let  bounded measurable set in . Its symmetric 
rearrangement  is an open ball originated at 0 with a 
volume equal to the volume of , i.e. 

 dR

     and 

 ,
dd

dx R x     , 

where 
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d d
   is the surface area of the unit sphere  

in . Let u  be a nonnegative measurable function 
vanishing at infinity, in the sense that all its positive level 
sets have finite measure, 

dR

     Vol , 0 .x f x t t      

In the definition of the symmetric decreasing rearran- 
gement of  can be used the layer-cake decomposition 
(see, for example, [5]), which expresses a nonnegative 
function  in terms of its level sets as 

u

u
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where   is the characteristic function of the corre- 
sponding domain. 

Definition. A function 
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is called a symmetric decreasing rearrangement of . u
As its level sets are open domains  is lower semi- 

continuous function, and it is uniquely determined by the 
distribution function 

u

     Vol .u t x u x   t

0 .

 

By construction, u  is equimeasurable with u , i.e. 
corresponding level sets of the two functions have the 
same volume, 



     ,u u
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Lemma 1. For each non-negative function of  from 
, we have 
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Proof. Using the layer-cake decomposition (3.1), Fu- 
bini’s theorem and (3.2), we obtain 
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Lemma 1 is proved. 
In proofs of the theorems we use the following 
F. Riesz’s inequality [5,6] 
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where ,f g   and h  symmetric and non-increasing 
rearrangement of positive measurable functions ,f g  
and  respectively. h

4. Proofs of Theorems 1 and 2 

Since Riesz kernel of the potential (2.1) is symmetric and 
positive, by Ench theorem [7], its largest eigenvalue 1  
is positive and simple, and the corresponding eigen- 
function  1u x  can be chosen positive in . 

Let us use the denotation  ,
1:d d

x y
C x y
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Using the Riesz inequality (3.3) and the fact that 
 ,d x y   is positive, symmetric and decreasing for all 

 ,x y  , we have 
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Hence by Lemma 1 and the variational principle for 
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Theorem 1 is completely proved. 
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Note 1. One may wonder whether the ball is only 
maximizer of 1  among all domains of the same vo- 
lume. But the answer is no. For example, if we remove a 
set of zero capacity from the ball, a new domain also 
maximizes the value of 1  since the Hilbert space 

 does not change if we remove from  a set of 
zero capicity. 

 H  

Now we prove Theorem 2. By bilinear decomposition 
of repeated kernel, we have 

    22
,
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d di d
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From (3.3) and the fact that   2

,d x y   is a sym- 

metric and positive decreasing function, we obtain 
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According to (4.1), 
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Theorem 2 is proved. 
Note 2. We can generalize Theorem 2 writing in the 

following form 

   
1 1
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but obviously, in this case we need some restrictions on 
 depending on the dimension of the Euclidean space 
 and 

n
d  . 

5. On Applications of Results for Boundary 
Value Problems of the Laplacian 

Let  and 3d  2  . In this case, the Riesz potential 
coincides with the classical Newton potential, that is, the 
kernel of the Riesz potential is  

   2

2

1 , 3d d
x y d
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where  is a natural number. d
Lemma 2. For any function  suppf  

the Newton potential 
  ,f H   

     ddu x x y f y y


            (5.1) 

satisfies the boundary condition 
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and the boundary condition (5.2), then the function 
 u x  coincides with the Newton potential (5.1), here 

yn
  denotes the outer normal derivative on the  


boundary. 
Proof. Suppose that    2 1u C C    . A direct 

calculation shows that, for any , we have x
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components of the unit normal. 
This implies, for x , we get 
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Applying properties of single-layer and double-layer 
potentials [8] to Formula (5.4) with , we get x 
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i.e. (5.5) is a boundary condition for the Newton potential 
(5.1). Passing to the limit we can easily show that (5.5) 
remains valid for all  2u H  . Thus, the Newton 
potential (5.1) satisfies the boundary condition (5.2). 

Conversely, if the function  satisfies  2g H 
g f   and the boundary condition (5.2), then it 

coincides with the Newtonian potential (5.1). Indeed, if 
this is not so, then the function  2H u g   , 
where  is the Newton potential (5.1) satisfies the 
homogeneous equation 

u
0   with the boundary con- 
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As above, applying Green’s formula to  2H   , 
we see that 

And from Theorem 2 we obtain the following ana- 
logue of Dittmar’s result [9]. 

Proposition 2. Series made up of squares of reciprocal 
eigenvalues of the Laplacian with the boundary condition 
(5.9), 
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is minimized in a ball among all domains of the same 
measure. 

Passing the limit as , we obtain x 
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Note that in [10] in the case of two-dimensional ball 
and three-dimensional ball we calculated all eigenvalues 
of the the Laplacian with the boundary condition (5.9). 
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