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ABSTRACT 

Let 
1

n

n i i
i

X I I I


   and : n nf X X  be a continuous map. If f is a second descendible map, then  P f  is 

closed if and only if one of the following hold: 1)    2 : 0kpp f k  ; 2) For any , there exists a  z R f

   ,y w z f P f  such that every point of the set  ,orb y f  is a isolated point of the set ; 3) For any 

, the set  is finite; 4) For any 

 ,w z f

 z R f  ,w z f  fz R , the set  ,w z f  is finite. The consult give another condi- 

tion of f with closed periodic set other than [1]. 
 
Keywords: Periodic Point; Recurrent Point; w-Limit Point; Second Descendible Map 

1. Introduction 

In this paper, let nX  denote 
1

i n

i i
i

I I I




 , X denote  

compact metric space,  denote all continuous 
self-maps on X. The concepts of periodic point, w-limit 
point of z and the orbit of z are showed by [2]. Denote by 

0 ,C X X 

 P f  the sets of periodic points of f, denote by  ,w z f
 , f

 
the w-limit points of z, and denote by  the 
orbit of z. A point 

orb z
x X

 V x
  m

  is said to be recurrent point if 
for any neighborhood  of x, there exists a positive 
integer m such that f x V x . Let  R f  denote 
the set of recurrent points. 

In recent years, many authors studied equivalent con-
ditions of closed periodic points set. Gengrong Zhang [3], 
Xiong Jincheng [4] and Wang Lidong [5] studied respec- 
tively anti-triangular map of X2, continuous self-map of 
the closed interval and continuous self-map of the circle. 
They showed equivalent conditions of closed periodic 
points set (see more detail for [3-5]). Du Ruijin [1] given 
five equivalent conditions of closed periodic points set if 
f is a second descendible map of Xn. 1)  P f   R f ; 2) 
   P f W f ; 3)    P f f  ; 4)  P f   f

valent

CR

new equi

; 5) 
.   P f AP f

In this paper, we will 


continue to  

co

 study 

nditions about that the set  P f  is closed. The fol- 
lowing theorem are given. 

Main Theorem Let : n nf X X
endible map, 

 be a continuous 
map. If f is a second desc then the following 
properties are equivalent: 

1) The set  P f  is closed; 2) ; 3) 
Fo

   2 : 0kpp f k 
r any  z , there exists R f a    ,y w z f P 

 ,y f  is a isolat
f  

such that eve nt of the set orb  
point of the set 

ry poi ed
 ,w z f ; 4) For  f , the set  any z R

 ,w z f  is finite; 5) For any z the set  R f , 
 ,w z f  is finite. 

2. Definition and Lemma 

Definition 1 For any  ,1, 2,i  n , let , :i np X I
define:    1 2, , , nx x

. 
,i i np x x x x X  , th  

to be can
Definition 2 Let 


onical projection

en pi is said

 ,n n
0f C X X

ble if for any 
, the map f is said to 

be second descendi  1, 2, ,i n  , there 
exists  0 ,iF C I I  such that  

 ,ip f n  . In thi

Lemma 1 [6]

1,i iF p i
oup of f. 

2, s case Fi is a descend- 

 Let 
ible gr

 0 ,n nf C X X
valent: 

. Then the follow- 
ing properties are equi

1) iF  is a descendible group of f; 
2) 1 2 nf F F F    . 

Copyright © 2013 SciRes.                                                                                  AM 



G. R. ZHANG  ET  AL. 970 

Lemma 2 Let  0 ,n nf C X X . If f is a second de- 
sc ible map anend d iF  is cendi

n nz X , we hav
 a des ble group of f, then 

an

Proof. Suppose 

y  1 2, , ,z z z  e  

 
i n

i iw z F


 
1

, ,
i

w z f


 . 

   1 2, , , ,ny y y y w z f  .
nteger sequence  km  suc

 There 
exists a positive i h that 

 kmf z y . By Le
       1 1 2 2, , ,k k k km m m m

n n

mma 1, we can get  
f z F z F z F z  Hence for 

, n , we have  km
. 

any 1,2,i  i i iF z  y . Thus  

i  proof. 

Lemma 3 Le


1

,
i

w z F

 .
i n

i iy  This complete the 

t  0 ,n nf C X X . Then  z R f  if 
and only if 

a positive integer sequence 

 ,z f . 
 z R f . For a

z w
Proof. Suppose ny positive integer k, 

there exists  km  such that  

  1
,kmf z V z
k

   
 

. Hence  ,z w z f . A me  ssu

 The a positive integer se- 
such that

 ,z w z f .
quence km

n there exists 
   kmf z z

0 ,

. By definition, 


 z R f . H

a 4 
ence we complete the proof. 

Lemm ] Let n n[5 f C X Then 
any z X , the set  ,w z f  is

X . 
1) For  periodic orbit 

if and only if the set .  ,w z f  is finite
2) Let    ,y w F f  . If  isolated point of 

the set  ,w z f , then e  ,w z f
z f  y is a

 we hav
 5 Let 0 ,

y . 
Lemma n nf C X X  and  

  ,y w z f . If all poinf P ts of the set  ,rb y f  
en we have 

o
are

 ,orb y f w z
 isolated poin  ,z f , 

. 
Proof. Suppose  ,

ts of the set w
 , f

th

 y w z f   Then there ex- P f .
ists a positive integer  such that l and a sequence  km
 lf y y  and km  f z y . Hence for any  1, 2, ,i l  , 

we have       ,i l i lf y F f w f z f   assump- 
any i l , the point of 

. By
tion, for  1, 2, ,   if y  is a 
isolated po  any  

 1,2, ,i l  , a neighborhoo
int of the 

 the
set  ,w z f . Thus 

re exists 
for

d   y  
of  i

iV f
f y  such that       i if y,w z f V f y .  

ng the , w

.  

Usi  equation of 
i l

i l


e      
1

, ,
i

w z f w f z f



l ihave    i iV f y w f z

By 2) of Lemma 4, we ca
    , f f y

n get that   ,iw f z f l   
 i f y w z. Hence we have that orb y f  , , f . 

Lemma 6 Let  0 ,n nf C X X  and the set  ,w z f  
e. Then any 0k m is infinit  can get that, we   

   k mf z f z . 
Proof. Assume o ntrary that there 

 th
n the co exists 

such a0k m   t    k mf z f z . Thus  
    k m m mf f z f z  . Hence the point  mf z  is a 
point. Ther  ,orb z f

us the lemma is prove
Lemma 7 [5] Let  0 ,n

periodic 
which is im

efore the set 
. Th

  is fi
d. 

nite, 
possible

nf C X  for any X

 z R f , the set  ,w z f  is finite. Then we have 
   ,z f P f  . 

 8 Let 
w

Lemma  , n
0

nf C X

i

X . If f is a second de- 
d scendible map an F  is a descendible group of f, and 

the set  P f  is c  l  any osed. Then
 1 2, , , n nz z z z X  , we have the set  ,w z f  is pe- 

riodic o
 [6], we can get that

i n

P


rbit
Proof. 

. 
According   

t

 to

   
1

i
i

f P F


 . By assumption, the se   P f  is  

closed. Hence for any  1,2, ,i n  , the set  iP F  is 
closed. Let  0 ,g C I I . A ccording to [4 et ], the s
 P g  is closed if and any  only if for x I set , the 
 ,w x g  is periodic orbit. Hence for any x I  and any 
 2, , n , the set 1,i  , iw x F  is periodic orbit. Using 

mma 4, for any 1) of Le x I  and any 2, , ,  1,i n
the set  iF  is fi set ,w x nite. The  ,w z f  is finite 

since    
1

,
i n

i i
i

w w z F



 . Therefor ve the set 

 

e we ha,z f 

 ,w z f  is periodic orbit. 

3. The Proof of Main Theorem 

Main Theorem Let : n nf X X  be a
If f is a second descendible map, the

 continuous map. 
n the following 

properties are equival
1) The set 

ent: 
 P f  is closed; 

2)    2 : 0kpp f k  ; 
3) For any  zR f , there exists a  

   ,y w z f P f  such that every point of the set 
 ,b y f  is point of the set or

4) For a
a iso

ny 
lated  ,w z f ; 
 f , the set  ,w z f  is finite; 

ny 
zR

5) For a  z R f , the set  ,w z f   is finite. 
 set Proof. 1) rst we w that the  2) Fi will sho

 

 and

P f  is clos  only if 1,2, ,i ed if for any nand  , 
   2 0k

iF    (*). 

we can get that  .  

: k

o 

pp

According t

He

  
1

i
i

P f P F



i n

[6], 

nce the set  P f  is closed if an y d only if for an
 1, 2, , i n , the set  iP F  is closed. Let  0 ,g C I I . 

It is obvious tha set  P g  is closed if and only if t the 
   : 0k . T e complete the  

Assume 
2k pp g hus w proof of (*).

 
t

 1 2, , , nz z z z f  . Then there exists a  

hat  2l

P

integer l  0  such i i iF z z for any   

 i n1,2, , . Hence  2l

f z  .z  Therefore 1) implies 
2). 

2)   1) Suppose  2 : 0k k  . For any   pp f
 n , 1, 2, ,i  i iz P F 

an get that 

. Let 1 2, ,z z z 
i n

 , nz . Ac-  

c . Henc  cording to [6], e w  P f  e  
1

i
i

P F



 f .
 2l

z P  Then th ists a integer  such that ere ex 0l 
f z z . Thus izfor any   2,

l

i n  1,2, , i iF z  . 
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. 
 and according 

t 

By (*), the set  P f  is closed
1)   3) By assumption to [1], 
 P f  f . For any  z R f , le z . Thus 

  
R

 ,
y

y w z

1) im

f

Thus plie

P f . By assu e 
set  ,w z f  is ic orbit. Us  
se  ,z

mption a
ing 

nd  8, th
1) of a 4, the

3) 4) 
t

Lemma
 Lemm period

By as

t w f  is finite. Hence the set  ,w z f  is empty. 
s 3). 

sumption, for any  z R f , there 
exis    ,

  
s a y w z f P f  such that every point of the 

set f  is a isolated point of th  ,z f . By 
Lemma 5,    , ,orb y f w z f . Hence t


 , orb y e set w

he set  ,w z f  
is finite. 

4)  t 4) implies 5). 
5)  or any  z R f , we have 

 5) It ious tha
 1) F

 is obv
  z w . 

Case 1: S  ,w z f  is finit  
1) of Lem  odic  

 z P f

,z f
e. Usinup g

ma orbit. So

infinite. Th
ex

pose th
4, the set

at the set 
  ,w z

e set 

f  is peri
. Thus    P f R f . 

t  Cas : Assume tha  ,w z f  is ene 2  th  
ists a sequence  km  such that the se uence  q  kmf z  

converges to z  and by L , all points of the set 
  are di  ,z w z f . By as- 

em
 t. 

ma 6
Hence 

 is finit
,orb z f

su
fferen

mption that the set  ,w z f e and Lemma 7, 
we have that    z w f P f  . Thus  , z  R f . P f

According t [1], the set  P f  is closed. Thus we 
co he proof of the theorem. 
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