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Abstract

A second-order dual problem is formulated for a class of continuous programming problem in which both
objective and constrained functions contain support functions, hence it is nondifferentiable. Under second-
order invexity and second-order pseudoinvexity, weak, strong and converse duality theorems are established
for this pair of dual problems. Special cases are deduced and a pair of dual continuous problems with natural
boundary values is constructed. A close relationship between duality results of our problems and those of the
corresponding (static) nonlinear programming problem with support functions is briefly outlined.
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1. Introduction

Second-order duality in mathematical programming has
been extensively investigated in the literature. A second-
order dual formulation for a non-linear programming
problem was introduced by Mangasarian [1]. Later Mond
[2] established various duality theorems under a condi-
tion which is called “Second order convexity”. This con-
dition is much simpler than that used by Mangasarian [1].
In [3], Mond and Weir reconstructed the second-order
and higher order dual models to derive usual duality re-
sults. It is remarked here that second-order dual to a ma-
thematical programming problem presents a tighter
bound and because of which it enjoys computational
advantage over a first order dual.

Duality and optimality for continuous programming
have been widely investigated by many authors in the
recent past, notably, Mond and Hanson [4], Bector,
Chandra and Husain [5], Mond and Husain [6] and Chen
[7] and other cited references in these expositions.

Chen [7] was the first to identify second-order dual
formulated for a constrained variational problem and
established various duality results under an involved in-
vexity- like assumptions. Husain et al. [8] have presented
Mond-Weir type duality for the problem of [7] and by
introducing continuous-time version of second-order
invexity and generalized second-order invexity, validated
various duality results. Recently, Husain and Masoodi [9]
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have studied Wolfe type duality for a class of nondiffe-
rentiable continuous programming problem and estab-
lished relationship between these results and the duality
results of Husain et al. [10] for nonlinear programming
problems with support functions.

In this paper, we formulate a Wolfe type second-order
dual to a class of nondifferentiability continuous pro-
gramming containing support functions. The popularity
of this type of problems seems to originate from the fact
that, even though the objective function and or/constraint
functions are non-smooth, a simple representation of the
dual problem may be found. The theory of non-smooth
mathematical programming deals with more general type
of functions by means of generalized sub-differentials.
However, square root of positive semi-definite quadratic
form and support functions are amongst few cases of the
nondifferentiable functions for which one can write
down the sub-or quasi-differentials explicitly. Here, var-
ious duality theorems for this pair of Wolfe type dual
problems are validated under second-order invexity and
second-order pseudoinvexity conditions. The special
cases as in [1] are derived. A pair of Wolfe type dual
variational problems with natural boundary values rather
than fixed end points is presented and the proofs of its
duality results are indicated. It is also shown that our
second-order duality results can be considered as dy-
namic generalizations of corresponding (Static) second-
order duality results established for nonlinear program-
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ming problem with support function, considered by Hu-
sain et al. [10].

2. Pre-requisites and Expression of the
Problem

Let I=[a,b] be a real interval, ¢:1xR"xR" —R

and w:1xR"xR" — R™ be twice continuously diffe-
rentiable  functions. In  order to  consider
#(t,x(t), x(t)) where x:1 —R"is differentiable with
derivative X , denoted by ¢, and ¢, , the first order of ¢
with respect to X(t) and X(t), respectively, that is,
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Denote by ¢, the Hessian matrix of ¢, and v,
the mxn matrix respectively, that is, with respect to
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The symbols ¢, 4., ¢, and y, have analogous

representations.
Designate by X the space of piecewise smooth func-

tions X:1 = R" , with the norm "X”:"X"w +||DX||w ,
where the differe{ntiation operator D is given
byy-Dx = x(t):Ju(s)dSs

a

Thus % =D except at discontinuities.

We incorporate the following definitions which are
required in the subsequent analysis.

Definition 2.1 (Second-Order Invex): If there exists a
vector function 7 =7 (t,x,X)eR"
where 7 :1xR"xR" » R" andwith 7=0 att=aandt
= b, such that for a scalar function ¢(t,X,X), the func-

tional J.¢(t,x,)'<)dt where ¢:1xR"xR" — R satisfies
|
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S
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x
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{¢(t,7,x‘)—% p' (t)Gp(t)} dt
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then J.¢(t, x,X)dt is second-order invex with respect to
|

n where G =g, —2Dg, + D’ , and peC(IR"),
the space of " -dimensional continuous vector functions.

Definition 2.2 (Second-Order Pseudoinvex): The
functional I #(t,x,x)dt is said to be second-order

|
pseudoinvex with respect to 7 if

I{”T@ +(Dn)' 4, +77TGp(t)} dt>0=

[o(t.x.%)dt > J.{gzﬁ(t,i,?)—% p’ (t)Gp(t)} dt.

Definition 2.3 (Second-Order Quasi-Invex): The
functional j¢(t, x,X)dt is to be second-order qua-

si-invex withI respectto 7 if
. - = 1 T
t,x, Xx)dt < tL,X,X|——p(t) Gp(t)dt
Jo(txxjats [{g(tx%)-3 p(t) p()}

= [{n"g, +(Dn) 4,+77G (1) p(1)]dt <0,

Consider the following nondifferentiable continuous
programming problem (CP) with support functions of
Husain and Jabeen [11]:

(CP): Minimize J'{ f(t,x,x)+S (x(t)| K)}dt

Subject to
x(a)=0=x(b) (2.1)

g’ (txX)+S(x(t)[CV)<0, j=1,2,--,m,tel (2.2)

where f and g are continuously differentiable and each
e ,(G=1,2,--,m) is a compact convex set in R". In [11],
Husain and Zamrooda derived the following optimality
conditions for the problem (CP):

Lemma 2.1 (Fritz-John Neccesary Optimality Condi-
tions): If the problem (CP) attains a minimum at
X=X e X , there exist r € R and piecewise smooth func-

tion ¥:1—R™ with F(t)=(y"(t),¥ ()., ¥" (1)) ,

Z:1 >R"and w':1 >R",j=1,2,---,m, such that
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Z(t)eK,w! (t)eC’, j=1,2,--,
(r.y(t))=0,tel
(r.y(t))=0,tel

The minimum X of (CP) may be described as normal
if T =1so that the Fritz John optimality conditions re-
duce to Karush-Kuhn-Tucker optimality conditions. It
suffices for T =1 that Slater’s condition holds atX .

Now we review some well known facts about a sup-
port function for easy reference.

Let I be a compact set in R", then the support func-
tion of I is defined by

S (x(t)|r) = max {x(t) v(t):v(t) e Tt e 1}

A support function, being convex everywhere finite,
has a subdifferential in the sense of convex analysis i.e.,
there exist z(t) e R", t e I , such that

S(y®|T)-S(x®|T) = (y©-x®)" z(t)

From [12], the subdifferential of S (x(t
by

mtel

)[T)is given

33 (x(1)Ir) ={z(t) €T te I such that|x(1)" 2(1)

s(x(tﬂr)}

For any set Ac R", the normal cone to A at a point

x(t)e A is defined by
N (x() = {y() e R"| y(t) (2(t) - x(t)) <0, v (t) A}

It can be verified that for a compact convex set B,
y(t) e Ng (X(t)) if and only if

S(yO[B)=x(t)

y(t), tel

3. Second Order Duality

The following problem is formulated as Wolfe type dual
for the problem (CP):
(CD): Maximize

f{f (tua)+a(t) z(t)+ Dy () (0’ (tu.u)+u(t) w (1))

1 j=t

Proof:

ET AL.

_% p(t) H (1) p(t)}dt
Subject to
u(a)=0=u(b) 3.1
f, (Lu0)+2(0)+ 2y (0 (0! (tuu)+w (1))

j=1
-D(f, (tu,0)+y(t) g, (tu,u))+ H(t) p(t) =0, tel
(3.2)
z(t)eK,w (t)eClitel, j=12,--.m  (3.3)
y(t)=otel (3.4)

where

H (1) = f,, (bu,)+(y (1) g, (tuu)) -

ZD[fuu (t,u,u)+(y(t)T 9y (t,uau))u}
+D2[fuu (t,u,u)+(y(t)T 9y (t,u,u))u}

If p(t) =0, tel, the above dual becomes the dual of

the problem studied in [11].
Theorem 3.1 (Weak duality): Let x(t)e X be a

feasible solution of (CP) and
u(t),y(t),z(t),w'(t), (Wz(t),...,w"‘(t),p(t)) be
feasible solution for (CD). If

for all feasible

(X(t),u(t), y(t),z(t),w' (t),w?(t),,
and with respectto 5 =77(t, X,U)

(M J{ t)+ () )}dt and
i.[{yj (t)(gj (t.)+()w! (t))} dt second-order invex .

=1

Or
(if) lj{f(t )+(.)Tz(t)+jiyj(t)T(gj(t,.,.)+(.)wj(t))}dt

is second-order pseudoinvex then.
inf (CP) > sup (CD).

w" (t), p(t))

j{f (t%,%)+S(x } ][{ (t,u,u) ( )+iyl( ) ( (t,u,u)+u(t)T w! (t))—%p(t)T H(t) p(t)}dt

{ (t,x, %)+ x(t z( }dt '!.{ (t,u,u)+uf(t) }dt iJ’yJ ( (t,u,u)+u( W‘(t))dtﬂ;%p(tf H (t) p(t)dt

> [ L (tuu)+z( )++(D77) f, (tu,u)+n F(t dt p p(t)dt— Z}J‘y T(gJ t,u,u)+u(t)ij(t))dt
j% X p(t)t,
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(using F (t) = f,, —2Df, + D* f,, and the second-order invexity of
j{ F(to)+() 2(t)}dy
I

' {f, (t.u,u)+z(t)++Df, (tu,u)+F(t) p(t )}dt}+77 f, (t,u,u | —ij (g"(t,u,u)+u(t)T w! (t))dt

j=11

Pl M+I ) H(t) p(tyt

0" {i!yj (t) (guj (t,u,u)+w (t))— D(y(t)T g, (t,u,u))—G(t) p(t)}dt—znj“][yi (t) (g,— (tu,u)+u(t) w! (t))dt

Z—jzm;.lfy‘(t)T(g‘(txx)Jru(t) W‘(t))dt—.lf%p(t)TG(t)p(t)dt—.lf%p(t)T (t) p(t)dt+ [2 p(t)" H (1) p(t)t
z_gyl(tf(gl(t xX)+S(x(t)|C7))dt=0
This implies,

J(F(tx%)+S(x(t) K))dt=[{F (t,u,0)+u(t) ) z(t)+ >y (09" (Lx %) +u(t) w (t))—%p(t)T H (1) p(t)}dt

1 1 j=1

yielding, (i1) From (3.2), we have
inf (CP) > sup (CD).

0:.'[[ L (Luu)+z(t) Jiyi(t)T(gi(t,u,u)+u(t)T wi (t))—D(fu (tu,u)+y(t) g, (t,u,u))+H(t)p(t)}dt]
:J[UT{fu (t,u,u)+z(t)+jzm;yi (t)T (gu, (t,u’u)Jer (t))+

(0n)' (£, (Lua)+y(6) g, (Lu.u)) +57H () p(O)}de=n" (1, +y8,)| " |
(by integrating by parts) Using boundary conditions (2.1) and (3.1), we have

([ {f, (t,u,u)+z(t)+jiy" (0)(9d (Lu,u)+w (1))} +(Dn)" (f, (Lu,u)+y (1) g, (tu,u))+n" H (1) p(t) Jdt =0

This, in view of second-order pseudo-invexity of yields,

{16+ 20+ £ 0 (8w () o

j{f (t,%%)+x(t) z(t)+

M3

90 () 0] w(0) o
>j{ (t,u,u)+u( z(t)+iyj (t)(gj (t,u,u)+u(t) w! (t))—%p(t)T H (1) p(t)}dt

j=1
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M3

:j{ (t.x,%)+S(x(t)[K)+ y‘(t)(gj(t,x,x)+8(x(t)Cj))}dt

i

sz (tu,u)+u(t) z(t)+jznj;yj () (0 (tu.u)+u(t) w! (t))—%p(t)T H(t) p(t)}dt
Using (2.2) and (3.4) together with and X(t)T w (t)<S(x(t)] Ci)tel,j=1,2,--,m
X(t) Z(t) < S(X(t)‘ K) This gives, ( )

J{F(tx%)+S(x(t) K)jdt

zlj{ (tu.)+u(t) 2(t)+ >y (1)(g (t,u,u)+u(t)TW‘(t))—%p(t)TH(t)p(t)}dt

=1

That is, inf (CP) > sup (CD). oy mooL .
Theorem 3.2 (Strong Duality): If X(t)e X is a local f(L%.X)+2 (t)+;yj (t) (ng (t’X’X)JrW])
(or global) optimal solution of (CP) and is also normal, .
then there exist piece wise smooth factory: 1 —R", —D( f (65,%)+ ¥ (t gx(tjj)):(): tel
z:1>R"and w':1 >R"(j=12,---,m) such that mo ) _
(X (1), 7(t).Z(t), & (t), & (t).--.&" (t), p(t) =0) is a YV () (gl (tx.X)+w')=0,tel
feasible solution of (CD) and the two objective values =
are equal. Furthermore, If the hypotheses of Theorem 3.1 Y(t)T Z(t)=S(X(t)|K), tel

hold, the (X (t),¥(t),Z(t),® (t), W’ (t),--,.@" (1), p(t))
is an optimal solution of (CD).

Proof: From Lemma 2.1, there exist piecewise smooth f(t ) K,w! (t) e
functionsy: 1 - R™,z:1 > R"
andw’ : 1 - R"(j =1,2,---,m) satisfying

(LX) +Z(t)+ iyl() H(LXX) 4w Hence
= ( ) (X(1).¥(1).Z(t). W (t), @ (t),--,@" (1), p(t) =0) sa-
—D(fX (t,f,x;)+7(t ! gX(t,Y,?)):O, tel tisfies the constraints of (CD) and
1
= 2 (3.5)

zj{f (tu)+u() 2(t)+ 2y (0 (o' (to.0)+u(t) w (t))—%p(t)T H (1) p(t)}dt

I Jj=1

So, (Y('[),V(t),?(t),v_\l1 (t), W (t),-,w" (t)) is op- an optimal solution of (CD). If the following conditions

timal for the problem (CD). hold:
Theorem 3.3 (Converse duality): Let f and g are (A): The Hessian matrix H(t) is non-singular, and

thrice continuously differentiable T T
(A2 (w () H(O)w (1)) -D(w () HOw(1)

and  (X(t),¥(t).Z(t). W (t),@ (t).---,@" (1), p(t)) be

Copyright © 2010 SciRes.

AM



I. HUSAIN

+2y () D(H () (1)), =0,tell
=y(t)=0, tel

Then Y(t) is feasible solution of (CP), and
iyj (t)(gj(t,Y,i)+Y(t)T W (t)):(), tel. In addi-
j=1

tion, if the hypotheses in Theorem 3.1 hold, then Y(t) is

ET AL. 539

an optimal solution of the problem (CP).
Proof: Since

(X(6).7(1).2(). W (1).% (t), %" (t). p(t))
is an optimal solution for (CD), then there exist piece
wise smooth @:1 - R" and g:1 — R" such that fol-

lowing Fritz John type optimality conditions [7] are sa-
tisfied:

| }Le(t)T{fxx(tj’X;)*(y(t)T QX)X (3.6)

(fx(tjj)+f(t)+zm:7’ (t)(g’ (t.%,%)+w’ t))j—D(fx(t,Y,Y)+7(t)T gx(t,i,i))+(H(t)ﬁ(t)):0, tel (3.8)
j=1
X (1) +0(t) e N (z(t)) (3.9) (7. 1(D.0(1)) 0 tel (3.14)
z—y(t)T y! (t)+9(t) y! (t) c NCj (WJ (t)) j=12,-,m By the singularity of H(t), (3.11) implies,
(3.10) Ot +rp(t) =0, tel (3.15)
(H(t)—rﬁ(t) "H (t)=0, tel (3.11) If =0, then O(t)=0tel and so x(t)=0,
(1) y(t)=0, tel (3.12)  te ! . This contradicts (3.14),
Hence 7 >0
(r,,u(t))ZO,te | (3.13)

Using the expression of H (t) and (3.16), this gives
B H () p(V)+D(B() H()B(),

~2p(t)' D(H(t)p(t)) =0.tel
This, in view of the hypothesis (A,) implies, yields,
p(t)=0,tel (3.17)

The relations (3.9) and (3.10) imply Y(t)T e N (Z (t))
and Y(t)T eN, (wj (t)),j =1,2,---,m

Copyright © 2010 SciRes.

(3.16)

which respectively yields, Y(t)T T(t) =S (Y(t) | K),
tel and

X(1) @ (t)=S(X(1)|C'), j=1,2,-m, tel

The relation (3.7) with p(t):O, tel and (3.12)
gives
¥ (1)) (LX) +x ()@ (1)) =0, tel

j=

(3.11)

The relation (3.7) with p(t)=0, tel, u'(t)=0,

AM
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tel and X(t) z(t)=S(X(t)|K), tel, yields
o’ (LX.X)+S(X(t)|C))<0, j=1,2,,
That is, X is feasible to (CP).

m, tel

j{f (LX.%)+x(t) 7(t)+i yi(t) (g" (t.X.X

= [ (tX.%)+S(X(t)] K)d:t

This, along with the hypotheses of Theorem 3.1, yields
that X(t) is an optimal solution of (CP).

4. Special Cases

Let for tel,B(t) positive semi-definite matrices and

continuous on I. Then
(x(V)" BOX(1)* =s(x(t) 1K) tel

where K ={B(t)z(t)|2(t) B(t)z(t)<Ltel]

Subject to

suppressing each S (X(t) |C j) , =12,
constraints of (CD), we have following problems treated
by Husain and Masoodi [9]

Now, in view of X(t) Z(t)=S(X(t)|K), tel and

(3.11) and

Replacing g (X(t)| K) % and

by (x(t)" B(t)x(1))

m from the

(CPy): Minimizej{f (t, x,)'()+(x(t)T B(t)X(t))%}dt
Subject to |
x(a)=0=x(b)
g(t,x,x) <0, tel
(CD): Maximize

j{f (tu,u)+u(t) B(t)z(t)+y(t) g(t,u,u)—%p(t)T H(t) p(t)}dt

u(a)=0=u(bh)

F(tuu)+u(t) B(O)2(t)+y(1) g, (tu,0)=D(f, (tu,u)+y(t) g, (tu,u))+ H(t) p(t) =0, tel

z(t) B(t)z(t)<1, tel y(t)=0

5. Problems with Natural Boundary
Conditions

In this section, we formulate a pair of nondifferentiable
dual variational problems with natural boundary values
rather than fixed end points. The proofs for duality theo-
rems for this pair of dual problems is omitted as they
follow immediately on the basis of analysis of the pre-
ceding section and, of course, slight modifications are
needed on the lines of [12]. The problems are:

(CPo): Minimize [{f (t,x,x)+S(X(t)| K)}dt
|
Subject to
g(t,x,X)+S(7(t)\Cj)§0, tel,j=12,--,m

(CDp): Maximize

J'{f(t,x,x)er(t)T z(t)+

v () (0! (txx)+x(t) wi (1))

M=

Copyright © 2010 SciRes.

LTI p(t)}dt

2
Subject to

£ (tx, )+ 2(t )+iyj(t)(gg(t,x,x)+wj ()

t)eK,W'(t)eC‘,j-lZ m¢tel
y( )>0, tel
fo( )+y(t)T gy (X, %) =0,
t=a
fo( )+y(t)T 9y (t, %, X) b=0,
t=

6. Nonlinear Programming Problems

If all functions in the problems (CP;) and (CDy) are in-
dependent of t, then these problems will reduce to the

AM
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following nonlinear programming problems studied by
Husain et al. [10].

(CPy): Minimize f (x)+S(X(t)|K)
Subject to
g’ (x)+S(X(t)[C?)<0,j=1,2,-,m

(CDy): Maximize

f (u)+uTz(t)+JZr:yj (t)T (gj (u)+uw’ (t))—% p"Hp
Subject to
f(u)+2(t)+ 2y ()] (0 (u)+w! (1)) + Hp=0°

j
zeK,w eC!, j=12--.,m,

where H = f, (u)+y'g,, (u).
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