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Abstract 
 
A second-order dual problem is formulated for a class of continuous programming problem in which both 
objective and constrained functions contain support functions, hence it is nondifferentiable. Under second- 
order invexity and second-order pseudoinvexity, weak, strong and converse duality theorems are established 
for this pair of dual problems. Special cases are deduced and a pair of dual continuous problems with natural 
boundary values is constructed. A close relationship between duality results of our problems and those of the 
corresponding (static) nonlinear programming problem with support functions is briefly outlined. 
 
Keywords: Continuous Programming, Second-Order Invexity, Second-Order Pseudoinvexity, Second-Order 
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1. Introduction 
 
Second-order duality in mathematical programming has 
been extensively investigated in the literature. A second- 
order dual formulation for a non-linear programming 
problem was introduced by Mangasarian [1]. Later Mond 
[2] established various duality theorems under a condi-
tion which is called “Second order convexity”. This con-
dition is much simpler than that used by Mangasarian [1]. 
In [3], Mond and Weir reconstructed the second-order 
and higher order dual models to derive usual duality re-
sults. It is remarked here that second-order dual to a ma-
thematical programming problem presents a tighter 
bound and because of which it enjoys computational 
advantage over a first order dual. 

Duality and optimality for continuous programming 
have been widely investigated by many authors in the 
recent past, notably, Mond and Hanson [4], Bector, 
Chandra and Husain [5], Mond and Husain [6] and Chen 
[7] and other cited references in these expositions. 

Chen [7] was the first to identify second-order dual 
formulated for a constrained variational problem and 
established various duality results under an involved in-
vexity- like assumptions. Husain et al. [8] have presented 
Mond-Weir type duality for the problem of [7] and by 
introducing continuous-time version of second-order 
invexity and generalized second-order invexity, validated 
various duality results. Recently, Husain and Masoodi [9] 

have studied Wolfe type duality for a class of nondiffe-
rentiable continuous programming problem and estab-
lished relationship between these results and the duality 
results of Husain et al. [10] for nonlinear programming 
problems with support functions. 

In this paper, we formulate a Wolfe type second-order 
dual to a class of nondifferentiability continuous pro-
gramming containing support functions. The popularity 
of this type of problems seems to originate from the fact 
that, even though the objective function and or/constraint 
functions are non-smooth, a simple representation of the 
dual problem may be found. The theory of non-smooth 
mathematical programming deals with more general type 
of functions by means of generalized sub-differentials. 
However, square root of positive semi-definite quadratic 
form and support functions are amongst few cases of the 
nondifferentiable functions for which one can write 
down the sub-or quasi-differentials explicitly. Here, var-
ious duality theorems for this pair of Wolfe type dual 
problems are validated under second-order invexity and 
second-order pseudoinvexity conditions. The special 
cases as in [1] are derived. A pair of Wolfe type dual 
variational problems with natural boundary values rather 
than fixed end points is presented and the proofs of its 
duality results are indicated. It is also shown that our 
second-order duality results can be considered as dy-
namic generalizations of corresponding (Static) second- 
order duality results established for nonlinear program-
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ming problem with support function, considered by Hu-
sain et al. [10]. 
 
2. Pre-requisites and Expression of the 

Problem 

Let  = ,I a b be a real interval, : n nI R R R     

: n n mand I R R R    be twice continuously diffe-
rentiable functions. In order to consider 

    , ,t x t x t  where : nx I R is differentiable with 

derivative x , denoted by x xand  , the first order of   

with respect to    x t and x t , respectively, that is,  

1 2 1 2
, , , , , , ,

T T

x xn nx x x x x x

                          
 

  
 

Denote by xx  the Hessian matrix of  , and x  

the m n  matrix respectively, that is, with respect to 
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2

, , 1, 2, ,xx i j
i j n

x x


 

  
  

  , x the 

m n  matrix  

1 1 1

1 1

2 2 2

1 2

1 2

n

n
x

m m m

n
m n

x x x

x x x

x x x

  

  


  


   
 
   

   
     
 
 
   

    





  



 

The symbols , ,x xx xx xand        have analogous 
representations. 

Designate by X the space of piecewise smooth func-
tions : nx I R , with the norm x x Dx

 
  , 

where the differentiation operator D is given 
by    

t

a

u D x x t u s ds    , 

Thus 
d

D
dt

  except at discontinuities. 

We incorporate the following definitions which are 
required in the subsequent analysis. 

Definition 2.1 (Second-Order Invex): If there exists a 
vector function  , , nt x x R    
where : n n nI R R R     and with 0   at t = a and t 

= b, such that for a scalar function  , ,t x x  , the func-

tional  , ,
I

t x x dt   where : n nI R R R    satisfies 

       

        

1
, , , ,

2

, , , , ,

T

I I

TT T
x x

I

t x x dt t x x p t Gp t dt

t x x D t x x Gp t dt

 

    

  


  

 

 



 
 

then  , ,
I

t x x dt   is second-order invex with respect to 

  where 22xx xx xxG D D      , and  , np C I R , 

the space of n -dimensional continuous vector functions.  
Definition 2.2 (Second-Order Pseudoinvex): The 

functional  , ,
I

t x x dt   is said to be second-order 

pseudoinvex with respect to   if  

    
       

0

1
, , , , .

2

TT T
x x

I

T

I I

D Gp t dt

t x x dt t x x p t Gp t dt

    

 

   

  




 




 

Definition 2.3 (Second-Order Quasi-Invex): The 
functional  , ,

I

t x x dt   is to be second-order qua-

si-invex with respect to   if 
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, , , ,
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0.

T

I I

TT T
x x

I

t x x dt t x x p t Gp t dt

D G t p t dt

 

    

  


   

 

 


 

Consider the following nondifferentiable continuous 
programming problem (CP) with support functions of 
Husain and Jabeen [11]: 

(CP): Minimize      , , |
I

f t x x S x t K dt   

Subject to 

   0x a x b              (2.1) 

    , , | 0 , 1, 2, , ,j jg t x x S x t C j m t I      (2.2) 

where f and g are continuously differentiable and each 
Cj ,(j=1,2,…,m) is a compact convex set in Rn. In [11], 
Husain and Zamrooda derived the following optimality 
conditions for the problem (CP):  

Lemma 2.1 (Fritz-John Neccesary Optimality Condi-
tions): If the problem (CP) attains a minimum at 
x x X  , there exist r R  and piecewise smooth func-

tion : my I R with         1 2, , , my t y t y t y t  ,

: nz I R and : , 1,2, ,j nw I R j m   , such that 

         

     
1

, , , ,

, , , , ,

m
j j j

x
j

T

x x

r f t x x z t y t g t x x w t

D rf t x x y t g t x x t I



        

    



 

 

 
 

       
1

, , 0,
m

Tj j j

j

y t g t x x x t w t t I


       

      | ,
T

x t z t S x t K t I   

      | , 1, 2, , ,
T j jx t w t S x t C j m t I    
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   , , 1, 2, , ,j jz t K w t C j m t I     

  , 0,r y t t I   

  , 0 ,r y t t I   

The minimum x of (CP) may be described as normal 
if 1r  so that the Fritz John optimality conditions re-
duce to Karush-Kuhn-Tucker optimality conditions. It 
suffices for 1r  that Slater’s condition holds at x . 

Now we review some well known facts about a sup-
port function for easy reference. 

Let  be a compact set in nR , then the support func-
tion of  is defined by  

         max : ,
T

S x t x t v t v t t I     

A support function, being convex everywhere finite, 
has a subdifferential in the sense of convex analysis i.e., 
there exist   ,nz t R t I  , such that 

       ( ) ( ) ( ) ( )
T

S y t S x t y t x t z t      

From [12], the subdifferential of   S x t  is given 
by  

            , such that .
T

S x t z t t I x t z t S x t        

For any set nA R , the normal cone to A at a point 
 x t A  is defined by  

         ( ) ( ) ( ) 0,n
AN x t y t R y t z t x t z t A       

It can be verified that for a compact convex set B, 
 ( ) ( )By t N x t if and only if 

   ( ) ( ),
T

S y t B x t y t t I   

 
3. Second Order Duality 
 
The following problem is formulated as Wolfe type dual 
for the problem (CP): 

(CD): Maximize  

              
1

, , , ,
m

T T Tj j j

jI

f t u u u t z t y t g t u u u t w t



  


  

     1

2
T

p t H t p t dt
 


 

Subject to 

   0u a u b               (3.1) 
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m
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 (3.2) 

   , , , 1, 2, ,j jz t K w t C t I j m         (3.3) 

  0,y t t I                (3.4) 

where 
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If   0,p t t I  , the above dual becomes the dual of 

the problem studied in [11]. 
Theorem 3.1 (Weak duality): Let  x t X  be a 

feasible solution of (CP) and 
       1, , , ,u t y t z t w t       2 ,..., ,mw t w t p t  be 

feasible solution for (CD). If  
for all feasible 

                1 2, , , , , , , ,mx t u t y t z t w t w t w t p t   

and with respect to  =  , ,t x u  

      ( ) ,.,.
T

I

i f t z t dt 
 

and 

        
1

,.,. .
m

j j j

j I

y t g t w t dt


 second-order invex . 

Or 

              
1

( ) ,.,. . ,.,. .
m

T Tj j j

jI

ii f t z t y t g t w t dt


 
   

 


is second-order pseudoinvex then. 

inf (CP) ≥ sup (CD).

Proof: 

                          
1

1
, , | , , , ,

2

m
T T T Tj j j

jI I

f t x x S x t K dt f t u u u t z t y t g t u u u t w t p t H t p t dt


      


     

                            
1

1
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2

m
T T T Tj j j

jI I I I
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(using   22xx xx xxF t f Df D f     and the second-order  invexity of  

      ,.,. . )
T

I

f t z t dt  

                     
           

1

, , , , , , , ,

1 1

2 2

mt b T TT T j j j
u u u t a
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yielding, 

inf (CP) ≥ sup (CD). 
(ii) From (3.2), we have 
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(by integrating by parts) Using boundary conditions (2.1) and (3.1), we have 
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This, in view of second-order pseudo-invexity of 
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Using (2.2) and (3.4) together with 

      |
T

x t z t S x t K   
and       | , , 1,2, ,

T j jx t w t S x t C t I j m     

This gives, 
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That is, inf (CP) ≥ sup (CD). 
Theorem 3.2 (Strong Duality): If  x t X is a local 

(or global) optimal solution of (CP) and is also normal, 
then there exist piece wise smooth factor : my I R , 

: nz I R and : ( 1, 2, , )j nw I R j m    such that 
              1 2, , , , , , , 0mx t y t z t w t w t w t p t   is a 

feasible solution of (CD) and the two objective values 
are equal. Furthermore, If the hypotheses of Theorem 3.1 
hold, the             1 2, , , , , , , ( )mx t y t z t w t w t w t p t  
is an optimal solution of (CD). 

Proof: From Lemma 2.1, there exist piecewise smooth 
functions : my I R , : nz I R  
and : ( 1,2, , )j nw I R j m   satisfying 
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That is, the objective values are equal. Furthermore,  for every feasible solution, we have  
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So,             1 2, , , , , , mx t y t z t w t w t w t  is op-

timal for the problem (CD).  
Theorem 3.3 (Converse duality): Let f and g are 

thrice continuously differentiable  

and                1 2, , , , , , ,mx t y t z t w t w t w t p t  be 

an optimal solution of (CD). If the following conditions 
hold: 

(A1): The Hessian matrix H(t) is non-singular, and 

(A2):              T T

x x
t H t t D t H t t   
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      2 0,
x

t D H t t t I   


  

  0,t t I    

Then  x t  is feasible solution of (CP), and 

        
1

, , 0,
m

Tj j j

j

y t g t x x x t w t t I


    . In addi-

tion, if the hypotheses in Theorem 3.1 hold, then  x t  is 
 
 

an optimal solution of the problem (CP). 
Proof: Since 

              1 2, , , , , , ,mx t y t z t w t w t w t p t
 

is an optimal solution for (CD), then there exist piece 
wise smooth : nI R   and : mI R  such that fol-
lowing Fritz John type optimality conditions [7] are sa-
tisfied: 
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By the singularity of H(t), (3.11) implies, 
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Using the expression of H (t) and (3.16), this gives 
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This, in view of the hypothesis (A2) implies, yields,  
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The relations (3.9) and (3.10) imply     T
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     , 1, 2, ,
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which respectively yields,       | ,
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The relation (3.7) with   0,p t t I  and (3.12) 
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t I  and       | , ,
T

x t z t S x t K t I  yields 

    , , | 0, 1, 2, , ,j jg t x x S x t C j m t I      

That is, x is feasible to (CP). 

Now, in view of       | ,
T

x t z t S x t K t I  and 

(3.11) and  
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This, along with the hypotheses of Theorem 3.1, yields 

that  x t is an optimal solution of (CP). 

 
4. Special Cases 
 
Let for  ,t I B t  positive semi-definite matrices and 

continuous on I. Then 

         
1

2
| ,

T
x t B t x t S x t K t I   

where           1,
T

K B t z t z t B t z t t I    

Replacing   |S x t K by       
1

2T
x t B t x t  and 

suppressing each   | jS x t C , j=1,2,…,m from the 
constraints of (CD), we have following problems treated 
by Husain and Masoodi [9] 
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1

2
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T
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5. Problems with Natural Boundary  
Conditions 

 
In this section, we formulate a pair of nondifferentiable 
dual variational problems with natural boundary values 
rather than fixed end points. The proofs for duality theo-
rems for this pair of dual problems is omitted as they 
follow immediately on the basis of analysis of the pre-
ceding section and, of course, slight modifications are 
needed on the lines of [12]. The problems are: 

(CP0): Minimize      , , |
I

f t x x S x t K dt   

Subject to 

    , , | 0 , , 1, 2, ,jg t x x S x t C t I j m      

(CD0): Maximize  

              
1

, , , ,
m

T T Tj j j

jI

f t x x x t z t y t g t x x x t w t



  


  

 

     1

2
T

p t H t p t dt
 


 

Subject to 

          

           
1

, , , ,

, , , , 0,

m
j j j

x x
j

T

x x

f t x x z t y t g t x x w t

D f t x x y t g t x x H t p t t I



  

    



 

 

 

   , , 1, 2, , ,j jz t K w t C j m t I     

  0,y t t I 
 

     , , , , 0,
T

x x
t a

f t x x y t g t x x


   

     , , , , 0,
T

x x
t b

f t x x y t g t x x


   
 

 
6. Nonlinear Programming Problems 
 
If all functions in the problems (CP0) and (CD0) are in-
dependent of t, then these problems will reduce to the 
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following nonlinear programming problems studied by 
Husain et al. [10]. 

(CP1): Minimize     |f x S x t K  

Subject to 

    | 0, 1,2, ,j jg x S x t C j m     

(CD1): Maximize 

          
1

1

2

m
TT j j T j T

j

f u u z t y t g u u w t p Hp


   
 

Subject to 

          
1

0 '

, , 1, 2, , .,

m
Tj j j

u
j

j j

f u z t y t g u w t Hp

z K w C j m



    

  




 

where    .T
uu uuH f u y g u   
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