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Abstract 
 
This paper deals with the initial boundary value problem for a class of nonlinear Kirchhoff-type equations 

with strong dissipative and source terms 
2 2
2

( ) | | , , 0tt tu u u a u b u u x t          in a bounded 

domain, where , 0a b  and 2   are constants. We obtain the global existence of solutions by construct-

ing a stable set in 1
0 ( )H   and show the energy exponential decay estimate by applying a lemma of V. Ko-

mornik. 
 
Keywords: Kirchhoff-type Equation; Initial Boundary Value Problem; Stable Set; Exponential Decay  

Estimate 

1. Introduction  
 
Let  be a bounded domain in nR  with smooth boun-
dary  . In this paper, we investigate the existence and 
the energy exponential decay estimate of global solutions 
for the initial boundary value problem of the following 
Kirchhoff-type equation with strong dissipative and 
source terms in a bounded domain 

 2 2

2
, , 0,tt tu u u a u b u u x t

          (1.1) 

0 1( ,0) ( ), ( ,0) ( ), ,tu x u x u x u x x      (1.2) 

( , ) 0, , 0,u x t x t            (1.3) 

where , 0a b   and 2  are constants, ( )s  is a 
1C -class function on [0, )  satisfying 

       0 0
, , 0,

s
s m s s d s            (1.4) 

with 0 1m   constant. 

When 1n  , the equation (1.1) describes a small am-
plitude vibration of an elastic string ([1]). The original 
equation is 

2 2

02 202

Lu u Eh u u
h P ds f

t L xt x
      

       
  

where 0 x L  and 0,t  ( , )u x t is the lateral dis-
placement at the space coordinate x and the time t,  is 
the mass density, h is the cross-section area, L is the 
length, 0P  is the initial axial tension,  is the resistance 
modulus, E is the Young modulus and f is the external 
force. 

Many authors have studied the existence and unique-
ness of solutions of (1.1)-(1.3) by using various methods. 
When , 0a b  , and ( ) , 1,rs s r    K. Nishihara and Y. 
Yamada [2] have proved the existence and the polynomi-
al decay of global solution under the assumptions that the 
initial data 0u  and 1u are sufficiently small and 0 0u  . 
However, the method in [2] can not be applied directly to 
the case that the equations have the blow-up term 

2| |u u  . M. Aassila and A. Benaissa [3] extend the 
global existence part of [2] to the case where ( ) 0s   

with  2

0 0u    and the nonlinear dissipative term 
2| |t tu u  . K. Ono and K. Nishihara [4] have proved the 

global existence and decay structure of solutions of 
(1.1)-(1.3) without small condition of data using Galerkin 
method. K. Ono [5] has obtained the global existence of 
solutions for the problem (1.1)-(1.3) with dissipative term 

tu  instead of tu . 
In the case 0a  , for large   and   0s r   , P. 
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D. Ancona and S. Spagnolo [6] proved that if 
 0 1 0, nu u C R  are small, then problem (1.1)-(1.3) has 

a global solution. When   0,s  M. Ghisi and M. Gob-
bino [7] proved the existence and uniqueness of a global 
solution  ,u x t  of (1.1)-(1.3) for small initial data  

        1 2 1
0 1 0 0,u u H H H       

with  2

0 0m u   

and the asymptotic behavior  

        , , ,0,0t ttu t u t u t u  

in           1 2 1 2
0 1 0 0,u u H H H L          

as t   , where either 0u   or  2
0u   . 

The case ( ) 0s r    has been considered by M. 
Hosoya and Y. Yamada [8] under the following condi-
tion: 

2
0 , 5; 0 , 4.

4
n n

n
       


 

They proved that, if the initial data are small enough, 
the problem (1.1)-(1.3) has a global solution which de-
cays exponentially as t   . 

In this paper, we prove the global existence for the 
problem (1.1)-(1.3) by applying the potential well theory 
introduced by D. H. Sattinger [9] and L. Payne and D. H. 
Sattinger [10]. Meanwhile, we obtain the exponential 
decay estimate of global solutions by using the different 
method from paper [8]. 

We adopt the usual notation and convention. Let mH  
denote the Sobolev space with the norm  

2

2

( ) ( )
| |

,mH L
m

u D u


 



 
  
 
  

0 ( )mH  denotes the closure in mH of 0 ( )C  . For sim-
plicity of notations, hereafter we denote by 

p
  the 

Lebesgue space ( )pL   norm,   denotes 2 ( )L   norm 

and we write equivalent norm   instead of 1
0 ( )H   

norm 1
0 ( )

.
H 

 Moreover, M  denotes various positive 

constants depending on the known constants and it may 
be different at each appearance. 
 
2. Preliminary 
 
In order to state and prove our main results, we first de-
fine the following functionals 

  2

0 ,K u m u b u



      20

2

m b
J u u u




    

for  1
0u H  . Then we define the stable set S  by 

        1
0 , 0, 0 ,S u H K u J u d     

 
where  

      1
0

0
inf sup , 0d J u u H





   . 

We denote the total energy functional associated with 
(1.1)-(1.3) by 

   
2

2

2 0

1 1

2 2

u

t

b
E t u s ds u









         (2.1) 

for  1
0 , 0u H t   , and 

   
2

02

1 02 0

1 1
0

2 2

u b
E u s ds u









    

is the total energy of the initial data. 
Lemma 2.1 Let q be a number with 2 ,q    

2n   and 
2

2 , 2.
2

n
q n

n
  


Then there exists a cons- 

tant C  depending on   and q  such that 

1
0

1
0( )

, ( )
q H

u C u u H


    . 

Lemma 2.2 [11] Let   :y t R R  be a nonincreas-
ing function and assume that there is a constant 0A  , 
such that 

( ) ( ), 0 ,
s

y t dt Ay s s


     

then 
1

( ) (0) , 0.
t

y t y e t


    

We state a local existence result, which is known as a 
standard one. 

Theorem 2.1 Suppose that  satisfies 

2
2 , 2; 2 , 2.

2

n
n n

n
       


       (2.2) 

If 1 2
0 1 0( , ) ( ) ( )u u H L    , then there exists 0T   

such that the problem (1.1)-(1.3) has a unique local solu-
tion ( )u t  in the class 

         1 2
00, ; , 0, ; .tu C T H u C T L       (2.3) 

Lemma 2.3 Let ( , )u t x be a solutions of problem 
(1.1)-(1.3). Then ( )E t  is a nonincreasing function for 

0t   and 

                .t

d
E t a u t

dt
               (2.4) 

Proof By multiplying equation (1.1) by tu  and inte-
grating over  , we get 

    0.t

d
E t a u t

dt
     

Therefore,  E t  is a nonincreasing function on t . 
Lemma 2.4 Let  1

0u H  , if (2.2) holds, then 
0.d   

Proof  Since 

 
2

20 ,
2

m b
J u u u






 


    



Y. J. YE 
 

Copyright © 2010 SciRes.                                                                                  AM 

531

so, we get 

  2 1
0 .

d
J u m u b u

d



  


    

Let   0
d

J u
d




 , which implies that 

1
1

2
2

1 2
0

.
ub

m u

 





 

              
As 1  , an elementary calculation shows that 

 
2

2
0

d
J u

d



 . 

Hence, we have from Lemma 2.1 that 

   

2
1

22 2

1
0 0

1
22 2

2

0

2
sup

2

2
0.

2

ub
J u J u

um

b
C

m















 






 






 



            

 
  

 

 

we get from the definition of d  that 0.d   
In order to prove the existence of global solutions for 

the problem (1.1)-(1.3), we need the following Lemma. 
Lemma 2.5 Supposed that (2.2) hold, If 

 2
0 1,u S u L    and  0E d , then u S , for 

each  0, .t T   
Proof  Assume that there exists a number  * 0, .t T  

such that  u t S on  0, *t  and  *u t S . Then, in 
virtue of the continuity of  u t , we see  *u t S . 
From the definition of S and the continuity of   J u t  
and   K u t  in t , we have either 

  *J u t d  or   * 0K u t  . 

It follows from (1.4) and (2.1) that 

      

   

20* * *
2

* 0 .

m b
J u t u t u t

E t E d




  

  
       (2.5) 

So, the case   *J u t d  is impossible. 

Assume that   * 0K u t   holds, then we get that 

     22
0* 1 .

d
J u t m u

d
  


    

We obtain from   * 0
d

J u t
d




 that 1  . 

Since 

      
2

1 02
* 2 * 0.

d
J u t m u t

d  
        

Consequently, we get from (2.5) that 

        1
0

sup * * *J u t J u t J u t d


  


    

which contradicts the definition of d . Therefore, the  
case ( ( )) 0K u t   is impossible as well. Thus, we con-
clude that ( )u t S  on [0, ).T  
 
3. Main Results and Proof 
 
Theorem 3.1 Suppose that (2.2) holds, and  u t  is a 
local solution of problem (1.1)-(1.3) on  0,T . If 

 2
0 1,u S u L    and  0E d , then  ,u x t  is a 

global solution of the problem (1.1)-(1.3). 

Proof  It suffices to show that    2 2

tu t u t    

is bounded independently of t . 
Under the hypotheses in Theorem 3.1, we get from 

Lemma 2.5 that  u t S on  0, .T  So the following 
formula holds on  0, .T  

 

20

2 20

20

( ( )) ( ) ( )
2

( ) ( )
2

( 2)
( ) ,

2

m b
J u t u t u t

m b
u t u t

m
u t










  

   


 

           (3.1) 

Therefore, we have from (3.1) that 

  

2 20

2

( 2)1
( ) ( )

2 2

1
( ) ( ( )) ( ) (0) .

2

t

t

m
u t u t

u t J u t E t E d





 

    
     (3.2) 

Hence, we get 

2 2

0

2
( ) ( ) max 2, .

( 2)tu t u t d
m




 
      

 

The above inequality and the continuation principle lead 
to the existence of global solution, that is, T   . 
Therefore, the solution  u t  is a global solution of the 
problem (1.1)-(1.3). 

The following Theorem shows the exponential decay 
estimate of global solutions for problem (1.1)-(1.3). 

Theorem 3.2 If the hypotheses in Theorem 3.1 are va-
lid, then the global solutions of problem (1.1)-(1.3) has 
the following exponential decay property 

   
1

0 ,
t

ME t E e


  

where 0M   is a constant. 

Proof  Multiplying by u  on both sides of the Equa-
tion (1.1) and integrating over [0, )T , we obtain that 



Y. J. YE 
 

Copyright © 2010 SciRes.                                                                                  AM 

532 

   2 2

2
0 | | ,

T

tt tS
u u u u a u b u u dxdt 


                       

(3.3) 
where 0 .S T     

Since 

2
.

T TT
tt t S tS S

uu dxdt uu dx u dxdt
  

           (3.4) 

So, substituting the Formula (3.4) into the right-hand 
side of (3.3), we get that 

 2 2 2

2

2

2
0

2

2
1 .

T

tS

T

t tS

TT
t S S

b
u u u u dt

u a u u dxdt

uu dx b u dt


















 
     

 
     

 
   

 



 

 

    (3.5) 

It follows from (3.2) that 

           
2

0 0 0

2 2 2
0

2 2 2
u t E t E d

m m m

  
  

   
  

        

(3.6) 

By exploiting Lemma 2.1 and (3.6), we easily arrive at 

     

   

2 2

2

2 2

0

2
,

2

b u bC u t bC u t u t

bC d u t
m

   




 






    

 
    

  (3.7) 

We obtain from (3.6) and (3.7) that 
2

2
2

0

2

2

0 0

2

2

0 0

2 2 2
1 ( )

( 2)

2 2 2
( )

( 2) ( 2)

2 2
( ).

( 2)

b u bC d u t
m

bC d E t
m m

bC
d E t

m m



 









 
  

  
  










   
        

  
    

 
   



  (3.8) 

We derive from (1.4) that 

   
2

2 2

0
,

u
s ds u u 


            (3.9) 

It follows from (3.5), (3.8) and (3.9) that 

   
2

2

0 0

2

2
2 1

2

2 | | .

T

S

T T
t t t SS

bC
d E t dt

m m

u a u u dxdt uu dx


 





 

 
         

      



  

   (3.10) 

We have from Lemma 2.1 and (3.2) that 

 
 

     

22

2
220

0

2

0

1 1

2 2

2 1

2 2 2

max , 1 ,
2

T T
t S t S

T
t S

T
S

uu dx u u

mC
u u

m

C
E t ME S

m


 






   
 

 
      

 
    



   (3.11) 

Substituting the estimate (3.11) into (3.10), we conclude 
that 

   

 

2

2

0 0

2

2 2
2 1

2

2 .

T

S

T

t tS

bC
d E t dt

m m

u a u u dxdt ME S


 







 
         

      



 

    (3.12) 

We get from Lemma 2.1 and Lemma 2.3 that 

      

2 2 22

2 2

2 2 2

2 2
.

T T T

t t tS S S
u dxdt u dt C u dt

C C
E T E S E S

a a


  

   

   
  (3.13) 

From Young inequality, Lemma 2.1, Lemma 2.3 and 
(3.6), We receive that 

  

          

       

22

0

0

2

2

2
.

2

T T

t tS S

T

S

T

S

a u udxdt a u M u dt

a
E t dt M E S E T

m

a
E t dt M E S

m

 

 


 



      

  


 


  





  

(3.14) 
Choosing small enough   such that 

   

2

2

0 0 0

2 2
1,

2 2

a bC
d

m m m


 

 



 
     

 

then, substituting (3.13) and (3.14) into (3.12), 

   .T

S
E t dt ME S             (3.15) 

Let T   , then we have from (3.15) that 

   .
S

E t dt ME S


            (3.16) 

Thus, we receive from (3.16) and Lemma 3.1 that 

     
1

0 , 0, .
t

ME t E e t


          (3.17) 

The proof of Theorem 3.2 is finished. 

4. Acknowledgments 

This Research was supported by Natural Science Foun-



Y. J. YE 
 

Copyright © 2010 SciRes.                                                                                  AM 

533

dation of Zhejiang Province (No.Y6100016), The Sci- 
ence and Research Project of Zhejiang Province Educa-
tion Commission (No. Y200803804 and Y200907298), 
The Research Fundation of Zhejiang University of Sci- 
ence and Technology (No. 200803) and the Middleaged 
and Young Leader in Zhejiang University of Science and 
Technology (2008-2012). 
 
5. References 
 
[1] K. Narasimha, “Nonlinear Vibration of an Elastic String,” 

Journal of Sound and Vibration, Vol. 8, No. 1, 1968, pp. 
134-146. 

[2] K. Nishihara and Y. Yamada, “On Global Solutions of 
Some Degenerate Quasilinear Hyperbolic Equations with 
Dissipative Terms,” Funkcialaj Ekvacioj, Vol. 33, No. 1, 
1990, pp. 151-159. 

[3] M. Aassila and A. Benaissa, “Existence Globale et Com- 
portement Asymptotique des Solutions des Equations de 
Kirchhoff Moyennement Degenerees avce un Terme 
Nonlinear Dissipatif,”  Funkcialaj Ekvacioj, Vol. 43,  
No. 2, 2000, pp. 309-333. 

[4] K. Ono and K. Nishihara, “On a Nonlinear Degenerate 
Integro-Differential Equation of Hyperbolic Type with a 
Strong Dissipation,” Advances in Mathematics Seciences 
and Applications, Vol. 5, No. 2, 1995, pp. 457-476. 

[5] K. Ono, “Global Existence, Decay and Blowup of Solu- 
tions for Some Mildly Degenerate Nonlinear Kirchhoff 
Strings,” Journal of Differential Equations, Vol. 137, No. 
1, 1997, pp. 273-301. 

[6] P. D. Ancona and S. Spagnolo, “Nonlinear Perturbations 
of the Kirchhoff Equation,” Commnicathins on Pure and 
Applied Mathematics, Vol. 47, No. 7, 1994, pp. 1005-1029. 

[7] M. Ghisi and M. Gobbino, “Global Existence for a 
Mildly Degenerate Dissipativehyperbolic Equation of 
Kirchhoff Type,” Preprint, Dipartimento di Matematica 
Universita di Pisa, Pisa, 1997. 

[8] M. Hosoya and Y. Yamada, “On Some Nonlinear Wave 
Equations II: Global Existence and Energy Decay of 
Solutions,” Journal of the Faculty of Science, The 
University of Tokyo, Section IA, Mathematics, Vol. 38, 
No. 1, 1991, pp. 239-250. 

[9] L. E. Payne and D. H. Sattinger, “Saddle Points and 
Instability of Nonlinear Hyperbolic Equations,” Israel 
Jounal of Mathematics, Vol. 22, No. 3-4, 1975, pp. 
273-303. 

[10] D. H. Sattinger, “On Global Solutions of Nonlinear 
Hyperbolic Equations,” Archive for Rational Mechanics 
Analysis, Vol. 30, No. 2, 1968, pp. 148-172. 

[11] V. Komornik, “Exact Controllability and Stabilization, 
The Multiplier Method, RAM: Research in Applied 
Mathematics,” Masson-John, Wiley, Paris, 1994. 

 


