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Abstract 
 
In this paper we study the viscosity analysis of the spatially homogeneous Boltzmann equation for Maxwel-
lian molecules. We first show that the global existence in time of the mild solution of the viscosity equation 

( , )t vf Q f f f       . We then study the asymptotic behaviour of the mild solution as the coefficients 

0  , and an estimate on 
0

f f   is derived. 
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1. Introduction 
 
In this paper we shall investigate the asymptotic 
properties of the solution of the viscosity 
Boltzmann equation for Maxwellian molecules 

 ,t vf Q f f f        in   30, R       (1) 

as the viscosity coefficients 0  . Here, ( , )Q f f  
is the Boltzmann collision operator for Maxwellian 
molecules defined by its quadratic form 
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where function b  is nonnegative and continuous, 
and    1cos sin 0,b L   . Here the shorthand 

 , 'f f t v  ,  * *,f f t v   are used; *',v v  are the 
post-collisional velocities corresponding to the 
pre-collisional velocities *,v v  respectively, which 
submit to the elastic collision law 
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where ( , )   denotes the scalar product. 2S  the 2-D 
unit sphere and ( ' )/ | ' |v v v v    .   is the angle 
between *v v  and  ,  0,  . On physically, Q  
satisfies the symmetrization and translation invariance. 

For Maxwellian potential Q  can be split into Q  and 
_Q : 

     , , ,Q f f Q f f Q f f    

   3 2 * *, cos
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Q f f f f b d dv 
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The problem of viscosity approximation of the spa-
tially homogeneous Boltzmann equation, namely wheth-
er the solution of (1) converges to the solution of the 
equation 

 ,t f Q f f   in   30, R          (3) 

as 0  , is very interested for mathematical theory of 
Boltzmann equation as well as practical applications. We 
know that the energy of the solution of (1) is increasing 
with the time t due to the diffusion effect. We cannot 
expect that the solution of (1) approaches to the Maxwel-
lian equilibrium in large time. This observation has re-
cently been shown by Li-Matsumura [1]. In early work  

of the authors an explicit estimate of f f   in 1
kL   

was derived which indicates also the dependence of time 
[2]. It must be stressed this result excludes the case of 
Maxwellian molecules. Actually, the produce of mo-
ments for cutoff potential is not valid for Maxwellian 
molecules. In this paper we shall study the viscosity ap-
proximation for Maxwellian molecules. Our goal is to 
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study the existence and uniqueness of the global solution 
of the viscosity equation (1) in time, and to estimate  

f f   explicitly in 0C -norm. The new tool is the  

Gagliardo-Nirenberg inequality. 
Let us mention some works about the spatially homo-

geneous Boltzmann equation with cutoff potential, see 
[3-11] for example. For the Maxwellian molecules Mor-
genstern first deduced the existence and uniqueness of 
the solution in 1L  space [12]. We also remark that the 
approximation with diffusion term in velocity variable 
was present in the work of DiPerna-Lions [13]. 

Now we complement the equation (1) and (3) with the 
same initial condition: 

3
0 0| | ( ),t tf f v v R     .        (4) 

In the sequel we always assume that 

1 30 ( ) ( )v L R  .             (5) 

It must be emphasized that the nonnegative hypothesis 
of ( )v is not necessary in present paper. 

In the following we denote the mC norm by | |m , and 

   
3

,0 | |
max max sup

m j jj m j v R

f f and f D f

   

   

Here   is the multi-index. 
This paper is organized as follows. We introduce a 

mild solution to the Cauchy problem (1) and (4) in Sec-
tion 2. We prove local existence of the mild solution by 
the contracted mapping principle. In Section 3, we pro-
pose the global existence of the mild solution. Our main 
tool is the interpolation inequalities. Finally, we study 
the 2, pW estimate of f  in Section 4 and deduce the 
following asymptotic expression 

0

ktf f Ae   . 

 
2. The Local Existence  
 
In this section we shall study the local existence of the 
solution of the Cauchy problem (1), (4). 

Definition 1. Given 0  . We call f  is the mild 
solution to the Cauchy problem (1) and (4), if 

      1, 30, ; 1pf C W R p       and satisfies  
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(6) 
where 
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The following is the local existence theorem. 
Theorem 1. Given 0  . Let 1, 3( )pW R  , 

1 p    and satisfy (5). Then there exists 0T   such 
that the Cauchy problem (1) and (4) has a unique mild 
solution , 0f t T    . 

In order to prove Theorem 1, let us recall a 
well-known result which is often called convolution 
property. 

Proposition 2 ([10,14]). For any 1 p   , if 
1 3 3( ), ( )pf L R g L R   then there exist constant 0C   

dependent on b only, such that 

  1, pp L LL
Q g f C g f  

The proof of Theorem 1 Consider the following space 

     1, 30, ; pf C T W R   

T is determined. Defined the mapping : f f   by 
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, 0
,
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t
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v t
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(7) 

where *v  denotes the convolution in variable v . 
By  1 3L R   and the definition of the mild solu-

tion (6), we have 

 11 10
,

t

LL L
f Q f f ds      

Making use of the Prop. 2 and Gronwall’s lemma, we 
obtain the estimate of 1L

f . 
In terms of (7), we denote   , 0f t v t   by 1I  and 

2I . Obviously, 

1, 1,1 p pW W
I   

By Prop. 2 and Young’s inequality, noting that 

1 1t s L
G   , one obtain 

 1 12 0
,p pp

t

t sL L L LL
I G Q f f ds C f f t      

Here the nonnegative constant C  depends on b  
only. In what following, we denote C  for various non-
negative constants independent of   unless special 
statements. On the other hand, 

 12 0
,p p

t

t sL L L
I G Q f f ds     

 
1

1 1
2 2

0
p

t

LL
C t s f f ds 

    

1

1 1

2 2
pL L

C f f t 


 .                   (8) 

Therefore,  
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1, 1,

1

2
2 p pW W

I C t t f
 

   
 

 

This follows the mapping   is closed. Let 
1 2,f f  , by the bilinearity of Q  

     1 1 2 2 1 1 2, , ,Q f f Q f f Q f f f     

       1 2 2 1 1 2 1 2 2,Q f f f f L f f f f L f       

Thus  

   1 1 2 2 1 2, , pp LL
Q f f Q f f C f f    

   
1

2
1 1 2 2, , pL

C t t Q f f Q f f
 

    
 

 

1,

1

2
1 2 pW

C T T f f
 

    
 

               (9) 

So, one deduces that the mapping   is locally Lip-
schitz continuous. By choosing 0T   suitably, such 
that 0 t T  , the Cauchy problem (1) and (4) exists a 
unique mild solution. 
 
3. The Global Existence of the Wild Solution 
 
In order to prove the global existence of the mild 
solution above, it suffices to show that 

1, , 0pW
f t      

First, let us recall the N dimensional Gagliar-
do-Nirenberg’s inequality: let 1 ,q r   , j, m  

are integers and 0 j m  . Suppose that ,1
j

a
m
    

,  

( 1a   if /m j N r   is a nonnegative integer). 
Then there exists a constant C dependent on q, r, j, 
m, a, N such that for any uD  ( )NR , 

1
qp r

a

a

LL L
j m

D u C D u u 

 



 

 
   

 
   

where 
1 1 1j m a

a
p m r N q

     
 

 

Lemma 3. Given 0  . Let 1, 3( )pW R  , 1 p    
and satisfy (5). Then  0, 0,T t T   , the solution of 
Cauchy problem (1) and (4) satisfies 

 , pp LL
f C T   

Proof From (1), we have 

3

11
sgnp

p p

tL R

d
f f f f dv

p dt    
   

  3

1
sgn ,

p

R
f f f Q f f dv        

 3

2 2
1

p

R
p f f dv        

 3

1

1 2sgn ,
p

R
f f Q f f dv I I   

           (10) 

Obviously 1 0I  . By Prop. 2 and Holder’s inequality 

   3

1 1
, , pp

p p

LLR
f Q f f dv Q f f f     

   

1 p p

p p

L L L
C f f C f                         (11) 

By these estimates above and Gronwall’s lemma, we 
derive 

 , pp LL
f C T   

This finishes the proof of the lemma. 
Lemma 4. Given 0  . Let  1, 3pW R  , 1 p    

and satisfy (5). Then  0, 0,T t T   , the solution of 
Cauchy problem (1) and (4) satisfies 

 1,, pp WL
f C T   . 

Proof In terms of (6), for any 0t   

   
0

, * * , .
t

t t sf t v G G Q f f ds       

Therefore, 

 
0

* * ,
t

t t sf G G Q f f ds            (12) 

By Young’s inequality 

 1
0

,pp q r

t

t t sLL L L L
f G G Q f f ds         (13) 

where 

1 1 1
1

p q r
   , 1 , ,p q r   . 

Next we estimate qt s L
G  and  ,

Lr
Q f f   re-

spectively. Noting that 

2
1

32
2

,
2

zz e e z R
    . 

Thus  

2 ( )t s t s

v
G G

t s  
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2 2 2
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2 2 2 2 2

2

2
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 1

1 1 11
2q

q q
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G G G C t s

 
          (15) 
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By Gagliardo-Nirenberg’s inequality, 

      , , ,r p p

a

L L L
Q f f Q f f Q f f          

  1
, p

a

L
Q f f 


                  (16) 

where 

1 1 1 1
, 0 1

3

a
a a

r p p

  
     

 
 

By the translation invariance of Q, it is easily to show 
that 

     , , ,Q f f Q f f Q f f           

So making us of Prop. 2 again 

   1 1, .p pp L L L LL
Q f f C f f f f           (17) 

By (12), it gives 

 11 1 1 10
,

t

t t sLL L L L
f G G Q f f ds         

1 1
0

t

L L
C f ds                    (18) 

that is 

 11 ,
LL

f C T                (19) 

Plugging (19) into (17), gives 

   , p pp L LL
Q f f C f f       .     (20) 

By (20) and (16), 

    1
, p p pr

a a

L L LL
Q f f C f f f    

    

  1
p p p

a a a

L L L
C f f f  

           (21) 

Combining (15), (21) and (13), we deduce 

   1
1

2
0

pp p p p

t a a a

LL L L L
f C t s f f f ds            

(22) 

According to the Lemma 3, one has 

   
1 1

2 2
0 0

.pp p

t t a

LL L
f C t s ds C t s f ds             

(23) 

By Gronwall type inequality we obtain the desired re-
sult. 

Next using the basic theory of parabolic equation and 
the a priori estimate above, we have the following theo-
rem. 

Theorem 5. Given 0  . Let  1, 3pW R , 1 p    
and satisfy (5). Then for any 0 T    the Cauchy 
problem (1) and (4) exists a unique mild solution f  
such that 

       1, 3 30, ; 0,pf C T W R C T R
   

 
4. 2, pW  Estimate and 0C  Approximation 
 
In this section we shall make 2, pW estimate on f  and 
deduce the explicit estimate on the viscosity approxima-
tion. 

Theorem 6. Given 0  , 2 p   . Then for any 
 2, 3pW R   satisfying (5) the mild solution f  of 

the Cauchy problem (1) and (4) belongs to  

    2, 30, ; pC W R . 

Proof By the equation of (1), one has 

     ,f f Q f f
t    
     


.         (24) 

Thus  

   3

11
sgnp

p p

tL R

d
f f f f dv

p dt    
       

      3

1
sgn ,

p

R
f f f Q f f dv   

        

1 2I I                                 (25) 

Next we estimate 1I and 2I  respectively. 
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1

1 sgn
p

R
I f f f dv         

   3

22
1

p

R
p f f dv               (26) 

and 

   3

1

2 sgn ,
p

R
I f f Q f f dv   

     

     3

2
1 ,

p

R
p f f Q f f dv   

        

     3

2 2

2 21 ,
p p

R
p f f Q f f f dv 

 

         

(27) 
By Young’s inequality, for any 0  , 

   3

22

2 1
p

R
I p f f dv        

 3

2 21
,

4
p

R

p
Q f f f dv  


         (28) 

Employing Young’s inequality again, the second term 
of the above formulation can be estimated by 

    
3 3

1 21
,

2 4

p p

R R

p pp
Q f f dv f dv

p p   
 

     

(29) 
Taking 

4

  , and plugging (28), (29) and (26) into (25), it 
gives 
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4
p

p p

L R

pd
f f f dv

p dt   

 
      

      
3 3

2 1 1 2
,

p p

R R

p p p
Q f f dv f dv

p p   
  

      

(30) 
By (20) and Gronwall’s lemma, and the Schauder the- 

ory, we conclude the desired result. 
Now, we consider whether the mild solution of the 

Cauchy problem (1) and (4) converges to the solution of 
(3) and (4) in 0C -norm as 0  . The following 
theorem is our main result. 

Theorem 7. Let 2 2, 3( )pC W R    and satisfying 
(5), 2 p   . For any 0T  and 0  , set f  is 
the mild solution of the viscosity equation 

    3

3
0

, 0,

|

t

t

f f Q f f in T R

f in R

   







    



        (31) 

and f  is the solution of  

    3

3
0

, 0,

|

t

t

f Q f f in T R

f in R

  



              (32) 

Then, 

   
0

, , ktf t f t Ae               (33) 

where A  and k  are constants independent of  . 
Furthermore, for any 0   

 
0

,f t f                     (34) 

if 

1
0 min log ,t T

k A




      
  

 

Proof By the theorem above and the result of spatially 
homogenous Boltzmann equation, we know that  

   2, 3, , pf t v f W R  . 

Let w f f  , then 

   , ,w f Q f f Q f f
t   

   


 

Therefore, 

   

    

| | sgn sgn

, , .

w w f w
t

Q f f Q f f



 


   




            (35) 

Noting that  

   
0

, ,Q f f Q f f    

   
0

, ,Q f f f Q f f f       

 110 LL
C f f f f                   (36) 

By the estimate on 1L
f  in Section 2, we know the 

estimate (36) is uniform in  . Therefore 

    0
, ,Q f f Q f f C w              (37) 

Next, we estimate 
2

f . Indeed, by (6) for any multi- 

indices  , 2  , we have 

   30 0
,

R
D f G t D v d 

       

    30 0
, , ,

t

R
G t s D Q f f s v dsd

        

1 2I I                                 (38) 

noting that  3 , 1
R

G t v dv  , 1 2
I  . Making use of  

Leibniz formula, for 2   

   
| | 2

, ,D Q f f Q D f D f   
   










 
  

 
       (39) 

Thus 

 1 1,1

2

2 20

t

L W
I C f f f ds    .            (40) 

Noting that 

 11 10
,

t

LL L
f Q f f ds        

So, 

22 20

t
f C f ds CT              (41) 

By Gronwall’s inequality we can deduce the bound of 

2
f  and the bound is independent of  . 
Together these estimate with (35) we have 

   0 2 0
3 , ,w f Q f f Q f f

t   
  


 

0
C C w                     (42) 

Therefore, 

 
0

ktw t Ae  

This finishes the proof of Theorem 7. 
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