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ABSTRACT 

In this paper, we show that Theorem 2.1 [1] (resp. Theorem 2.2 [1]) is a consequence of Corollary 2.1 [1] ( resp. Corol-
lary 2.2 [1]). 
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1. Introduction 

In 2007, Huang and Zhang [2] initiated fixed point the-
ory in cone metric spaces. On the other hand, in 2011, 
Haghi, Rezapour and Shahzad [3] gave a lemma and 
showed that some fixed point generalizations are not real 
generalizations. In this note, we show that Theorem 2.1 
[1] and Theorem 2.2 [1] are so. 

Following [2], let  be a real Banach space and E   
be the zero vector in , and .  is called cone 
iff 

E P E P

1)  is closed, nonempty and P  P  , 

2)  for all ax by P  ,x y P  and nonnegative real 
numbers , ,a b

3)    P P    . 

For a given cone , we define a partial ordering  
with respect to P  by 

P 
x y  iff y x P . x y .   (resp

x y� ds for ) stan x y  and x y  (r y xesp.   
 e  int P es the interior of P . In 

 paper we always assume that P s solid, i.e., 
int P

the
 int P

), wh noter  de
 i

 . It is clear that x y�  leads to x y  but 
the reverse need not to be true. 

The cone  is called normal if there exists a number 
 such that for all 

P
0K  ,x y E , x y    implies 

x K y . 
The least positive number satisfying above is called 

the normal constant of . P
Definition 1.1 [2]. Let X  be a nonempty set. A func-

tion  is called cone metric iff :d X X E 
(M1) ,  ,d x y 
(M2)    , ,d x y d y x    iff x y , 

(M3)    , ,d x y d y x , 

(M4)     , ,d x y d x z d z y , , 

for all , ,x y z X .  ,X d  is said to be a cone metric 
space. 

Lemma 1.1 [3]. Let X  be a nonempty and 
:f X X . Then there exists a subset  such 

that 
Y X

   f Y f X  and :f Y X  is one-to-one. 
Definition 1.2 [4]. Let  ,X d  be a cone metric space 

and , :f g X X  be mappings. Then,  is called 
a coincidence point of 

z X
f  and g  iff    f z g z . 

Definition 1.3 [4]. Let  ,X d  be a cone metric space. 
The mappings , :f g X X  are weakly compatible iff 
for every coincidence point  of z X f  and g , 

     f g x  g g x . 
Theorem 1.1 (Theorem 2.1 [1]). Let  ,X d

1, 2,3, 4,5
 be a 

cone metric space and let   be 
constants with 

0ia 
2 3 4 5a a

 i 
11a a a  

, :
  . Suppose that 

the mappings f g X X  satisfy the condition 

         
         
         

1

2 3

4 5

, ,

, ,

, ,

d f x f y a d g x g y

a d f x g x a d f y g y

a d g x f y a d f x g y

 

 


 

for all ,x y X . 
If the range of g  contains the range of f  and 
 g X  is a complete subspace, then f  and g  have a 

unique point of coincidence in X . Moreover, if f  and 
g  are weakly compatible, then f  and g  have a 
unique fixed point. 

Theorem 1.2 (Corollary 2.1 [1]). Let  , X d  be a 
complete cone metric space and let  i = (1,2,3,4,5) 0ia 
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be constants with . Suppose that 
the mapping 

1 2 3 4 5 1a a a a a    
:f X X

    
     

1 2

3 4

, ,

, ,

y a d x y a d x

y a d x f y a d



 


 satisfies the condition 

 x f

y f

  
  5

,

,

d f f x

a d y f x
 

for all ,x y X . 
Then f  has a unique fixed point x  in X . 
Theorem 1.3 (Theorem 2.2 [1]). Let  , X d

, :
 be a 

cone metric space and let the mappings f g X X  
satisfy the condition 

  ,x  f y ud f   ,, for all x y X , 

where 

              

  

x g y

g y

2

      

, , , ,

, ,

d f x g x d f

d f y g x    

, ,

1
,

u d g y g y

d f x
h



  

 0,1  , h  . 
If the range of g  contains the range of f  and 
 g X  is a complete subspace, then f  and g  have a 

unique point of coincidence in X . Moreover, if f  
and g  are weakly compatible, then f  and g  have a 
unique fixed point. 

Theorem 1.4 (Corollary 2.2 [1]). Let  , X d  be a 
complete cone metric space and let the mapping 

:f X X  satisfies the condition 

  ,x  f y ud f   ,, for all x y X , 

where 

       

     

, , , ,

, ,

y d f x x d f y

x y d f y x    

, ,

1
,

u y

h





d x

d f

2

 

 0,1  , h  . 
Then f  has a unique fixed point x  in X . 

2. Main Result 

In this section, we show that that Theorem 1.1 (resp. 
Theorem 1.3) is a consequence of Theorem 1.2 (resp. 
Theorem 1.4). 

Theorem 2.1. Theorem 1.1 is a consequence of Theo-
rem 1.2. 

Proof. By Lemma 1.1, there exists  such that Y X
   g Y g X  and :g Y X  is one-to-one. Define a 

map    Y h g:h g Y g  by  for each   x  f x
 x g Y . Since g  is one-to-one on , then  is 

well-defined. Also, for arbitrary 
Y h

,x y X ,  

           
           

           

1

2 3

4 5

, ,

, ,

, ,

d h g x h g y a d g x g y

a d h g x g x a d h g y g y

a d g x h g y a d h g x g y

 

 


 

where  0ia   1,2,3,4,5i   are constants with 

1 2 3 4 5 1a a a a a     . 

From the completeness of    g Y g X , there exists 

0x X  such that  

      0 0h g x g x f x  0  

by Theorem 1.2. Hence, f  and g  have a point of coin- 
cidence which is also unique. Since f  and g  are 
weakly compatible, then f  and g  have a unique com- 
mon fixed point. 

Theorem 2.2. Theorem 1.3 is a consequence of Theo-
rem 1.4. 
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