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ABSTRACT 

The mixed spin-3/2 and spin-2 Ising ferrimagnetic system with different single-ion anisotropies in the absence of an 
external magnetic field is studied within the mean-field theory based on Bogoliubov inequality for the Gibbs free en-
ergy. Second-order critical lines are obtained in the temperature-anisotropy plane. Tricritical line separating second- 
order and first-order lines is found. Finally, the existence and dependence of a compensation points on single-ion ani-
sotropies is also investigated for the system. As a result, this mixed-spin model exhibits one, two or three compensation 
temperature depending on the values of the anisotropies. 
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1. Introduction 

During the past several decades, both experimental and 
theoretical studies have accumulated in the area of mo- 
lecular-based magnetic materials [1-3]. These materials 
include bimetallic molecular-based magnetic materials in 
which two kinds of magnetic atoms alternate regularly 
and exhibit ferrimagnetic properties and therefore they 
are well interpreted by the use of mixed-spin Ising sys- 
tems which have less translational symmetry than their 
single-spin counterparts since they consist of two inter- 
penetrating unequivalent sublattices. For this reason, in 
recent years, there have been many theoretical studies of 
the mixed-spin systems.  

One of the earliest and simplest of these models to be 
studied was the mixed spin Ising system consisting of 
spin-1/2 and spin-S (S > 1/2) in a uniaxial crystal field. 
The model for different values of S (S > 1/2) has been 
investigated by acting on honeycomb lattice [4-6], as 
well as on Bethe lattice [7,8], mean field approximation 
[9], effective field theory with correlations [10-14], clus- 
ter variational theory [8], renormalization-group techni- 
que [15] and Monte-Carlo simulation [16-18]. The mixed- 
spin Ising systems consisting of higher spins are not 
without interest. Indeed, the magnetic properties of mix- 
ed spin-1 and spin-3/2 Ising ferromagnetic system with 
different single-ion anisotropies have been investigated 

with the use of an effective field theory [19,20], mean 
field theory [21], a cluster variational method [22] and 
Monte Carlo simulation [23].  

Recently, the investigations have been extended to 
high order mixed spin ferrimagnetic systems (mixed spin- 
3/2 and spin-2 ferrimagnetic system and mixed spin-3/2 
and spin-5/2) in order to construct their phase diagrams 
in the temperature-anisotropy plane and to consider mag- 
netic properties of these systems. 

Bobak and Dely investigated the effect of single-ion 
anisotropy on the phase diagram of the mixed spin-3/2 
and spin-2 Ising system by the use of a mean-field theory 
based on the Bogoliubov inequality for the free energy 
[24].  

Albayrac also studied the mixed spin-3/2 and spin-2 
Ising system with two different crystal-field interactions 
on Bethe lattice by using the exact recursion equations 
[25]. Bayram Deviren et al. have used the effective field 
theory to study the magnetic properties of the ferrimag- 
netic mixed spin-3/2 and spin-2 Ising model with crystal 
field in a longitudinal magnetic field on a honeycomb 
and a square lattice [26]. 

In this paper, we therefore apply the mean-field theory 
based on Bogoliubov inequality for the Gibbs free energy 
to study the effects of two different single-ion anisot- 
ropies in the phase diagram and in the compensation 
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temperatures of the mixed spin-3/2 and spin-2 Ising 
ferrimagnetic system. The existence of the compensation 
temperatures in ferrimagnets has an interesting applica-
tion such as the magneto-optical recording [27].  

The outline of this work is as follows. In Section 2 we 
define the model and present the mean-field theory based 
on Bogoliubov inequality for the Gibbs free energy. We 
also have described Landau expansion of the free energy 
in the ordered parameter. In Section 3 we discuss the 
phase diagrams and compensation temperature for vari-
ous values of the single ion anisotropies. Finally, In Sec-
tion 4 we present our conclusions. 

2. Model and Formulation 

The model we investigate is the mixed spin-3/2 and 
spin-2 Ising ferrimagnetic system described by the Ham-
iltonian 

   
2 22 2

, 1 1

N N
A B A B

i j A i B j
i j i j

H J S S D S D S
 

      ,   (1) 

where the first summation is carried out only over nearest 
neighbour pairs of spins on different sublattices and 
 0J J 

A
iS

 is the nearest-neighbour exchange interaction. 
In this system, sites of the sublattice A are occupied by 
spins , which take the values ,  and 0 while 
those of the sublattice B are occupied by spins 

1 2
B
jS ,  

which take the values 1 2  and 3 2 . DA is the crys-
tal field interaction constant of spin-2 ions and DB is that 
of spin-3/2 ions. In order to treat the model approxi-
mately we employ a variational method based on the 
Bogoliubov inequality for the Gibbs free energy which is 
given by: 

   0 0 0 0
G H G H H H     ,       (2) 

where  G H  is the true free energy of the system de-
scribed by the Hamiltonian (1),  is the average 
free energy of a trial Hamiltonian 0

 0G H
H  and 

0
 de-

notes a thermal average over the ensemble defined by 

0H .  
To obtain the MFA, we assume the trial Hamiltonian 

in the form 
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where A  and B  are the two variational parameters 
related the molecular fields acting on the two different 
spins, respectively. Already at this stage it is clear that 
the use of the trial Hamiltonian (3) naturally leads to the 
mean-field approximation for the present model. Because 
of the simplicity of 0H , it is easy to evaluate the expres-
sions in Equation (3) and we finally obtain 
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                (4) 

 
where: 1 Bk T  , N is the total number of sites of the 
lattice and z is the number of the nearest neighbors of 

every ion in the lattice.  and Am Bm  are the sublattice 
magnetizations per site which defined by 
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Now, by minimizing the free energy (4) with respect 

to A  and B , we determine these parameters in the 
form 

,A B BzJm zJmA   ,           (7) 

The mean field properties of the present system are 
then given by Equations (4)-(7). As the set of Equations 
(5)-(7) have in general several solutions for the pair 
 ,A Bm m , and the pair chosen is that which minimizes 

the free energy in Equation (4). So, analysis of the phase 
diagrams must be performed numerically. Nevertheless, 
some parts of the phase diagrams must be discussed ana- 
lytically. For instance, close to the second-order phase 
transition from the ordered state  0, 0A Bm m   to 
the paramagnetic one  0A Bm m , the sublattice 
magnetizations A  and m Bm  are very small in the 
neighborhood of second-order transition point, so, we 
may expand Equations (4)-(6) to obtain a Landau-like 
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expansion in the form 

 2 4 6 8
0 ,A A A Ag g am bm cm O m          (8) 

where the coefficients a
 
and b are given by 
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For simplicity, the coefficient c is not given here. In 
this way, we can obtain second-order phase transition 
lines when a = 0 and b > 0; and tricritical points when a 
= b = 0 and c < 0. It should be noted that the coefficients 
a and b are even functions of J. Therefore, the critical 
behaviour is the same for both ferromagnetic (J > 0) and 
ferrimagnetic (J < 0) systems. On the other hand, in the 
ferrimagnetic case the signs of sublattice magnetizations 
are different, and there may be compensation tempera-
ture  k k cT T T  at which the total magnetization per 
site M is equal to zero, although  and 0Am  0Bm  . 
We are here interested in studying the phase diagrams 
and the compensation temperature, if it exists, in the sys-
tem which can be determined from the equation  

1

2 A B M m m              (11) 

3. Results and Discussions 

3.1. The Ground-State Phase Diagram 

Before going into detailed calculation of the phase dia- 
gram of the model at higher temperature, we begin with 
the ground-state structure of the system at zero tempera- 
ture analytically. The ground-state phase diagram is eas- 
ily found from Hamiltonian (1) by comparing the ground- 
state energies of different phases, and is shown in Figure 
1. The ground state energy configurations is the one with 
the lowest energy and each of these configurations for 
the given system parameters correspond to the stable 
states of the model. Hence, at zero temperature, we find 

 

Figure 1. Ground-state phase diagram of a mixed spin-3/2 
and spin-2 Ising ferrimagnetic system with the coordination 
number z and different single-ion anisotropies DA and DB. 
The six phases: ordered O1, O2, O3, O4 and disordered D1, 
D2 are separated by lines of first-order transitions. 
 
four phases with Different values of  
 , , ,A B A Bm m q q , namely the ordered phases. 

These ordered phase are  1 2,3 2,4,9 4O    (or  
 2, 3 2,4,9 4  as well),  2 1,3 2,1,9 4O    (or  
 1, 3 2,4,9 4  as well),  3 2,1 2,4,1 4O    (or  
 2, 1 2,4,1 4  as well),  4 1, 1 2,1,1 4O    (or  
 1,1 2,1,1 4  as well), and disordered phases  

 1 0,0,0,9 4D    2 0,0,0,1 4D  , where the parame-
ter  and Aq Bq  are defined by:  

   2 2
,A B

A i B jq S q S  . 

3.2. The Finite Temperature Phase Diagrams 

For the finite temperature phase diagrams, we have con- 
fined our calculations only to the second-order phase 
including the tricritical points. The resulting phase dia- 
gram in the  ,A BD z J k T z J  plane, for selected 
values of  BD z J  is shown in Figure 2. 

In this Figure, the solid lines are used to represent the 
second-order transitions, while the dashed curve repre- 
sents the positions of tricritical points (The critical points 
at which the phase transitions change from second to 
first-order). The second-order phase transition lines are 
obtained from Equations (9) and (10) by setting a = 0 
and b > 0 and the tricritical points are obtained from 
Equations (9) and (10) by setting a = b= 0. In particular, 
the values of the transition temperature in the absence of 
anisotropies (i.e. for  0A BD D   are B ck T z J   
1.5812. Furthermore, from Figure 2, we note that in re- 
gions of high temperatures, for all positive and negative 
values of  BD z J , and for any value of  AD z J , 
the phase diagram shows only second-order phase transi- 
tions. We also found that for values of   1.85BD z J   
all the second-order lines end in the same tricritical point  
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Figure 2. Phase diagram in the (DA, T) plane for the mixed- 
spin Ising ferrimagnet with the coordination number z, 
when the value of DA/z|J| is changed. The solid lines indicate 
second-order phase transitions and the dashed line repre-
sents the positions of tricritical points. 
 
given by   1.3955AD z J    and 0.6782B ck T z J  . 
However, for values of   1.15BD z J   , all the sec-
ond-order lines end in the same tricritical point given by 
  0.466AD z J    and 0.2264B ck T z J  . Addition-
ally, the diagram shows that when the coordinates 
 3,A B cD z J k T z J   of the tricritical point are 
 1.3955,0.6782  the mixed spin Ising system behaves 
like a two level system since the spin-3/2 behaves like 

3 2B
jS   . On the other hand, for B , the co-

ordinates 
D  

 ,D z J k T z JA B c  of the tricritical point 
are  . In this case, the states 0.466 0,0.2264 3 2B

jS    
are suppressed and the system becomes equivalent to a 
mixed spin-1/2 and spin-2 Ising model. For this reason, 
the coordinates of the tricritical point in the limit of large 
positive BD  are three times higher than those for large 
negative BD . 

In Figure 3, it is shown the phase diagram of 

B ck T z J  versus BD z J  for various values of AD z J . 
For 0.4660AD z J    the phase diagrams are topo-
logically equivalent to phase diagram for the spin-3/2 
Blume-Capel model which does not include any tricriti-
cal point. From Figure 3, one can observe the variation 
of the tricritical temperature with BD z J . The Tricriti-
cal temperature 3B ck T z J  decreases from its constant 
value 3 0.6782B ck T z J   for large positive BD z J  
to another constant value 3 0.2264B ck T z J   for large 
negative BD z J . 

3.3. Compensation Temperatures  

A compensation temperature of the system can be evalu- 
ated by requiring the condition  in the coupled 
Equations (4) and (5). 

0M 

Now, let us investigate whether the present mixed-spin  

 

Figure 3. Phase diagram in the (DB, T) plane for the mixed- 
spin Ising ferrimagnet with the coordination number z, 
when the value of DA/z|J| is changed. The solid lines indicate 
second-order phase transitions and the dashed line repre-
sents the positions of tricritical points. 
 
Ising ferrimagnetic system may exhibit a compensation 
point (or points) at 0T   when the single-ion anisot-
ropies are changed. The variation of the compensation 
temperature  as a function of kT AD z J  for different 
values of BD z J  

As seen from Figures 4(a) and (b), all the curves 
emerge from the point 

is shown in Figure 4.  

0.5AD z J    at T = 0 K and 
exhibit some characteristic behaviours when the value of 

BD z J  is controlled. 
By selecting the appropriate values of BD z J  and. 

as BD z J  is reduced, the range of AD z J  over 
which the compensation points occurs gradually becomes 
small, but the compensation temperature still reaches the 
corresponding transition line. 

When the values of 0.4BD z J    are selected 
(Figure 4(a)) the curves increase monotonically with 

AD z J  to terminate at the corresponding phase 
boundaries (solid lines). 

As shown in Figure 4(b), in a restricted region of 

BD z J , close to 0.5BD z J   , the compensation 
temperature curves exhibit bulges, which implies the 
occurrence of two and three compensation points in the 
system.  

Typical sublattice magnetization curves, with one com- 
pensation point, two compensation points and three com- 
pensation points are shown in Figures 5(a)-(c), respec- 
tively, for selected values of AD z J  and BD z J . It 
is easy to see that these compensation points in the mag- 
netization curves are in agreement with the compensation 
points given in Figure 4. 

4. Conclusion 

In this paper, we have determined the global phase dia-  
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(a) 

 
(b) 

Figure 4. Dependence of the compensation temperature 
(dotted curves) on the single-ion anisotropy. DA/z|J| in a 
mixed-spin Ising ferrimagnet with the coordination number 
z, when the value of DB/z|J| is changed. (a) The curves show 
the positions of one compensation points only; (b) The curves 
show the positions of one, two and three compensation 
points. The solid curves represent the second-order transi- 
tions. 
 
grams of the mixed spin-3/2 and spin-2 Ising ferrimag- 
netic system with different single-ion anisotropies acting 
on the spin-3/2 and spin-2 by using mean-field approxi- 
mation. In the phase diagrams, the critical temperature 
lines versus single-ion anisotropies are shown. The sys- 
tem presents tricritical behaviour, i.e., the second-order 
phase transition line is separated from the first-order 
transition line by a tricritical point. We also observed that 
this mixed-spin ferrimagnetic system may exhibit one, 
two or three compensation points. The theoretical predic- 
tion of the possibility of compensation points and the 
design and preparation of materials with such unusual 
behaviour will certainly open a new area of research on  

 
(a) 

 
 

(b) 

 
(c) 

Figure 5. Thermal variations of the total magnetization |M| 
for the mixed-spin Ising ferrimagnet with the coordination 
number z. (a) When the value of DB/z|J| = 1.0 and DA/z|J| = 
−0.35 (to show one compensation point); (b) When the value 
of DB/z|J| = −0.48 and DA/z|J| = −0.495 (to show two com- 
pensation points); (c) When the value of DB/z|J| = −0.45 and 
DA/z|J| = −0.4939 (to show three compensation points). 
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such materials. 
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