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ABSTRACT 

In this work a complete approach for estimation of the spatial resolution for the gamma camera imaging based on the [1] is 
analyzed considering where the body distance is detected (close or far way). The organ of interest most of the times is 
not well defined, so in that case it is appropriate to use elliptical camera detection instead of circular. The image recon-
struction is presented which allows spatially varying amounts of local smoothing. An inhomogeneous Markov random 
field (M.r.f.) model is described which allows spatially varying degrees of smoothing in the reconstructions and a 
re-parameterization is proposed which implicitly introduces a local correlation structure in the smoothing parameters 
using a modified maximum likelihood estimation (MLE) denoted as one step late (OSL) introduced by [2]. 
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1. Introduction 

Procedures using Bayesian approaches incorporate in- 
formation regarding the nature of the true image in terms 
of prior models. Previously, various authors [3-5] had 
adopted maximum likelihood approaches with only mo- 
derate success. The prior model and data likelihood are 
combined to give the posterior distributions on which 
estimation is based. The most common choice of prior 
distribution promotes local smoothness, using random 
field models defined as Gibbs distributions. The incorpo- 
ration of prior information into the reconstruction was 
first suggested by [6-9]. This approach was subsequently 
used by many authors to produce much improved recon-
structions. Procedures including prior models usually 
assume that any prior parameters are known. In practice, 
the choice of these parameters are often determined by 
“trial and error”. When the prior parameters are con- 
stant across the image, a homogeneous Markov random 
field model is defined [10]. Bayesian approaches have 
been used by [11-13]. Estimation of the model could be 
achieved applying Markov Chains Monte Carlo (MCMC) 
techniques like Gibbs Sampler or Metropolis Algorithms 

[14-18].  
In many applications, the form of the likelihood is de- 

termined by physical considerations, though there may be 
unknown parameters. For example, in medical imaging 
involving radioactive emissions a Poisson model is gen- 
erally accepted and in other applications a Gaussian 
model may be appropriate. The next choice is the form of 
the prior distribution. In many cases, there is no single 
obvious choice of the form of this distribution. If a vague 
description of the prior information is given, such as “the 
truth should be smooth”, then there are many apparently 
appropriate choices. The exact choice, however, may 
change the final detail of the image reconstructions. A 
common choice in image applications is a homogeneous 
Gibbs distribution. This, however, is made with little 
comment and model checking is rarely considered. A 
more realistic model may say that there are homogenous 
regions. This may suggest an edge-site model such as 
that suggested by [8]. A more usual approach is to select 
a prior which does not overly bias true discontinuities 
inhomogeneous image, for example using edge-preserv- 
ing or implicit-discontinuity priors [2,19,20]. 
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The use of sub-regions suggests that different smooth- 
ing parameters are needed. An obvious generalization is 
to allow separate parameters for each pixel, which de- 
fines an inhomogeneous model [21-23]. This extension 
allows variable amounts of spatial smoothing across the 
image. Controlling the local spatial variation, the features 
appear much clearer especially in cases where jumps and 
constant regions occur. The procedure is based on cali- 
bration equations describing the relationship between 
distance s and the smoothing parameter β. The proce- 
dures represent a substantial advance for general image 
and spatial analysis. 

2. Mathematical Modeling for SPECT 

Medical techniques play an important role in clinical 
diagnosis, allowing the study and treatment of diseases. 
In addition, over the last decade improvements in medi- 
cal imaging devices have helped in the investigation of 
clinical problems, explanation of the functional process 
of organs and study of the human body. Single photon 
emission computed tomography involves the use of ra- 
dioisotopes such as technitium 19Tcm, where a single-ray 
with energy level 140 keV is emitted per nuclear disinte- 
gration. It is based on the measurement of a set of projec- 
tions taken at equally spaced angles around the body. 
Both scanner and camera systems are used to collect the 
projection data of emission densities. 

In a typical SPECT imaging system, a patient is in- 
jected with or inhales an appropriate radiopharmaceutical 
that is known to become concentrated in the organ of 
interest. Before use, a radiopharmaceutical is labeled 
with suitable radioisotope. Photon emission therefore 
occurs in the organ at a rate varying spatially according 
to the local concentration of the radioactivity. The char- 
acteristics of a photon travel can be classified by the fol- 
lowing effects: 1) the radioactive process produces pho- 
tons randomly, 2) The scattering and collimator geome- 
try effects cause the detector to exhibit a depth-depend- 
ent response function (collimator effect), 3) A large pro- 
portion of emitted photons are not counted because they 
are absorbed or scattered below detectable energy limits 
(attenuation effect). 

The imaging process begins with the gamma camera 
directly above and facing the patient. Every 20 - 30 sec- 
onds the camera rotates a few degrees around the body. 
The process is repeated until the camera returns to the 
original position, directly above the patient. Typically for 
a gamma camera SPECT system, a data set consists of 64 
projects each containing 64 × 64 image pixels and ac- 
quires at 64 discrete angles covering 360˚ around the 
patient. These multiple 2D projections of the 3D radio- 
pharmaceutical distribution can be recorded and stored 
on the computer. The majority of photon emissions are 
never recorded by the system since their path is not to- 

wards the camera. In order to determine the direction of 
the photons reaching the camera, a collimator is used 
which consists of small tubes with circular, triangular, 
square or hexagonal cross-sectional shape. Only photons 
which pass directly through the collimator are recorded. 
Hence the photons can be classified into non-detected 
and detected. The non-detected include absorbed photons 
and photons rejected by the collimator; the detected in- 
clude those photons which pass directly through the col- 
limator and those which are first scattered. The physical 
and operational details of the gamma camera are de- 
scribed in the monograph of [1]. 

Figure 1 demonstrates the basic component of a ga- 
mma camera and the various paths that an emitted photon 
can take: 1) photon emitted away from the camera, 2) 
photon emitted and scattered away from the camera, 3) 
photon absorbed inside the organ, 4) photon emitted 
away from the camera but scattered through the collima- 
tor, 5) photon emitted directly through the collimator, 6) 
photon directed towards camera, but at an angle pre- 
venting it from passing through collimator. 

The method of data collection means that the 3D ob- 
ject is divided up into multiple 2D projections and each 
projection is represented by a set of discrete 1D profile. 
Each point on the profile represents the linear sum, in the 
absence of attenuation, of the emissions along the line of 
view of the detectors through the collimator. A common 
way of displaying the data is by taking all 1D profiles 
corresponding to a cross sectional slice through the ob- 
ject. This type of representation has been referred to as a 
sinogram, where the horizontal axis represents camera 
angles and the vertical the detectors along each 1D cross- 
sectional profile. The use of proper statistical modelling 
of the radioactive processes underlying the collection of 
 

 

Figure 1. Detection of photons in the gamma camera. 
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data leads to improved reconstructions. A wide range of 
medical techniques, such as PET and SPECT, use appro- 
priate algorithms to improve the reconstructions. Model- 
ling of the physical factors like attenuation, scatter and 
absorption between the camera device and the organ of 
interest was studied by [20]. Experiments were designed 
to measure these factors and reconstruction performed 
from phantom and with real patient data. Extension of 
their process was the work of [24] who estimate the pa- 
rameters of the proposed model using maximum likeli- 
hood.  

Let the true spatial distribution of radioisotope be de- 
noted as x, and x(u) denote the isotope concentration at 
spatial location u  R3. The data, which are an array of 
detected photons collected by the gamma camera, are 
described by the random variables  ,t y y t T  , where t 
denotes a single detector tube. Since each photon is de- 
tected in at most one tube and emissions from u are as- 
sumed to be random, then the generally accepted model 
states that the pixel values in the recorded image, y, fol- 
low a Poisson distribution. The recorded counts are thus  
independent Poisson random variables with  

 ~ Poisson ,t ty t T 
 t u

 t u

 with and 
 is the mean rate of arrivals at detector t from 

emissions from a point source of unit concentration at u. 
The weights  express the physical factors of ab- 
sorption and scattering inside the body and the geomet- 
rical factors which are defined by the detector system. 
This statistical model for the data is essentially that 
which applies to general emission applications [4] and 
especially for PET applications (see [5,9]). For computa-
tional purposes the body is divided into equal rectangular 
pixels with values denoted by

   dt t u x u u  

 ,sx x s S  , where xs is 
the true concentration of radiopharmaceutical at pixel s. 
The yt are a sample from a Poisson distribution  
with expected values t ts

s
sx  with 1ts

s

   [5,9,  

12,25], which are given by  

~ Poisson ,t ts s
s

y x   
 
 t T            (1) 

where αts corresponds to the conditional probability that 
an emission at s is detected in tube t, and the sum is over 
the set of pixels which specify the body space. The {αts} 
are called weight coefficients and their modelling de- 
pends on the geometry of the gamma camera system, the 
physical shape of the body and the properties of the 
emitted photons. The important factors for modelling the 
weight, ignoring patient effects, are: 1) the proportion of 
radioactivity that has not decayed by the time at which 
data are collected, 2) the proportion of emissions that 
survive attenuation, 3) the angle of view from the centre 
of pixel s into detector t, or the solid angle when the 
third-dimension is considered. The most important of  

these are attenuation and angle of view, which have been 
studied by [20,23,24]. 

3. Bayesian Modelling 

The use of maximum likelihood as a guiding principle in 
the process of reconstruction was studied by [4,8,25]. 
The requirements for the general model are: 
 the data model (likelihood) p(yjx), and 
 the prior model p(x). 

The aim is to specify the posterior density  p x y of 
x given the data y. Based on Bayes’ theorem the poste- 
rior density  p x y  is given by 

     p x y p y x p x             (2) 

In SPECT the prior distribution models any available 
prior information which relates to the true isotope con- 
centration. The concentration could be smooth for some 
areas but between others there may be sharp changes. 
This prior information introduces a penalty which leads 
to smoothness in the resulting reconstruction. The appro- 
priate formula for the prior distribution is a pairwise dif- 
ference, Gibbs prior, with a potential function that in- 
corporates smoothing and scale parameters. [4,8,12,20,25] 
proposed a prior based on the Gibbs distribution with 
form: 

 

    

  ~

1
exp

1
exp , , 0s r

sr
s r

p x

V x
Z

x x
w

Z






   
 

 

       
  



   (3) 

where  Z   is the normalizing constant with  

    exp dZ V x x   . In SPECT the concentration  

could be smooth for some areas but between others there 
may be sharp changes. This prior information introduces 
a penalty which leads to smoothness in the resulting re- 
construction. In the above, V is called the energy function 
and     the potential function; β is a smoothing pa- 
rameter and δ a scale parameter; s ~ r indicates that pixel 
s is a neighbour of pixel r and wsr is a weighting factor. 
Note that the parameter β controls the degree of correla- 
tion between neighbouring pixels and hence the smooth-
ness of the reconstruction. If  

0
 then no spatial 

variation occurs and if  

w

 then spatially unstruc- 
tured variation appears. The form of {wsr} depends on 
the type of neighbourhood system, here a second order 
neighbourhood is used with  if s and r are or- 
thogonal nearest neighbours and 

1sr 
1 2  if s and r are 

diagonal nearest neighbours. The form of the     
function defines a Markov random field with a particu- 
lar neighbourhood structure (say first or second order). 
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The function    is non-negative, symmetric about zero 
and monotonically increasing for positive values and 
decreasing for negative values. 

4. Estimation Algorithm 

For SPECT applications, the joint probability function of 
the data given the isotope concentration is 

 
exp

!

ty

ts s ts s
s s

t

x x

p y
y

     
  
 

t

x       (4) 

which leads to the log-likelihood 

   log log constt ts s ts s
t s s

p y x y a x a x
 


   


 (5) 

The aim is to maximises p y x  with respect to x. 
The EM-algorithm is a general approach to iterative op- 
timisation of likelihoods where the data can be formu- 
lated in an incomplete/complete specification. In SPECT, 
the data are described as incomplete whereas the com- 
plete data are needed to estimate the isotope concentra- 
tion. The EM-procedure introduces the missing data zts 
which are defined as the number of photons that are 
emitted from pixel s and detected in detector t. The com- 
plete data includes the missing data zts and the incom- 
plete data yt. Starting from a positive solution, the algo- 
rithm iterates until convergence, although the rate of 
converge is slow. Considering the unsatisfactory results 
of the maximum likelihood estimation, [3,13,21,23,25] 
shows that the noise in the reconstructions occurs when 
climbing the likelihood hill towards the maximum, a re- 
sult which agrees with the experiments presented by [4,5]. 
An extension of their work was the iterative algorithm 
suggested by [2] which includes a penalty function con-
trolling the smoothness of the reconstruction. The pen-
alty function is related to the prior model and combined 
with the likelihood to form the penalised likelihood. The 
resulting estimation algorithm is a modification of the 
EM-algorithm, called the One Step Late or OSL-algo- 
rithm [2]. The inclusion of the prior distribution  p x  
leads to maximum a posteriori estimation (MAP estima-
tion). The aim is to maximise the log-posterior density 
p x y  with form 

 
   

   

log

log log const.

log constt ts s ts s
t s s

p x y

p y x x

y a x a x V x

  

    
 

   

s

  (6) 

The OSL-approach is successful in overcoming the 
noise effects of the EM algorithm. The rate of conver- 
gences is slower. ML deteriorates, but MAP stays stable 
near the optimum solution. 

5. Relationship between β Values and  
Distances 

Figure 2 shows reconstructions using different β values 
for small and large distances. From the visual compari- 
son it is clear that for small distances the reconstructions 
are closer to the truth as well as for small β values. 
Measure for comparison has been considered the Root 
Square Error (RSE) between reconstruct and truth, num- 
ber of iterations for the convergences of the algorithm 
and CPU execution time.  

The amount of smoothing in the reconstructions shown 
in Figures 2(b) and (c) is very similar. To achieve the 
level of smoothing in Figure 3(a) but using s = 40 cm 
would require a substantial reduction in β. Similarly a 
substantial increase in β would be needed to reproduce 
the smooth reconstruction showing in Figure 3(b) for s = 
15 cm. This suggests that a relationship between β and s 
exists.  

Summarising these results the conclusions are: 
 When the camera is close to the body the reconstruc- 

tions are better compared to the results when the 
camera distance is far from the body. The running 
times, the number of iterations and the RSE increase 
as the distance increases. 

 When the β value is smaller, the RSE is decreased 
compared to large β values. The β value controls the 
smoothness of the reconstructed image, so small β 
values give better reconstruction. 

 A relationship between β and camera distance exists. 
The optimal β values will be found for different dis- 

tances and a model fitted between β and distance. The 
optimal value of β is the value which minimises the RSE 
measure. 

Figure 3(a) shows the RSE for different β values and 
different camera distances. For each value of s the RSE 
initially decreases as β increases, then rapidly increases. 
The optimal value, βopt, can be found as the minimum of 
RSE. The concentration of minimum values occurs when 
β is small. This result agrees with other authors (Green, 
1990; Weir and Green, 1994) who have suggested that 
satisfactory reconstructions require small β. The optimal 
β values are presented in Figure 3(b) and Table 1, along 
with fitted values. As the distance increases the βopt value 
gets smaller. These results are based on data simulated 
using the approximate solid angle formula; results using 
the exact solid angle formula are identical.  

After some experiments with models from different 
families, the best fit model between distance (s) and op- 
timal β value is given by [23]: 

2 1expl l                  (7) 

with 1 20.0625, 6.25l l   with an R2 value of 96%. The 
estimated values based on this model are given in Table 
1. Comparing the optimal values and the estimated val- 
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ues it is clear that the estimated values are very close for 
all distances. 

5.1. Circular Rotation 

Experiments based on the elliptical rotation system will 
be presented using data from the artificial truth. For the 
artificial truth representation, two circles are considered 
which represent a solid inner cylinder placed centrally 
within a larger hollow cylinder. The radius of the inner 
circle is r2 = 8 cm and the radius of the outside circle is r1 
= 12 cm (Figures 4(a) and (b)). 

This “truth” is similar to the phantom used by [21,23] 
and represents a simplified 3d model of the left ventricu- 
lar myocardium with homogeneous uptake of Tl-201.  

For this rotation system, two distances are defined: the 
minor-axis radius (rx) and the major-axis radius (ry). 
Throughout ry is fixed at 40cm and results of the exami- 
nation of the reconstructions for different distances, rx = 
15, 25, 35 cm, are presented. In the following figures, rx 

 

 
(a)                              (b) 

 
(c)                              (d) 

β = 2                              β = 20 

(a) s = 15 (723 iterations/RSE = 240.52); (b) s = 15 (293 iterations/RSE = 
420.30); (c) s = 40 (904 iterations/RSE = 377.36); (d) s = 40 (349 itera-
tions/RSE = 694.67). 

Figure 2. Reconstructions for different distances using β = 2 
and β = 20. 
 

 
(a)                           (b) 

Figure 3. Relationship between distances and βopt values. 

 
(a)                            (b) 

Figure 4. (a) Description of artificial truth; (b) 2-dimen-
sional representation. 
 

Table 1. Optimal and fitted β values. 

Distances βopt βest 

s = 15 2.5 2.36 

s = 20 1.5 1.72 

s = 25 1.2 1.26 

s = 30 1.0 0.92 

s = 35 0.8 0.67 

s = 40 0.5 0.49 

 
is shown in the horizontal direction and ry in the vertical 
direction. 
The reconstructions for the two β values (2 and 20) are 
displayed in Figure 5 and the resulting comparison mea- 
sures for the different distances are given in Table 2. It is 
clear that as the distance rx increases the reconstructions 
become smoother. The smoothness has the effect of in- 
creasing the RSE, number of iterations and running time 
for both choices of β. For the small β value  2   and  
camera distance close to the body , the re-   15xr  cm

construction is close to the truth with sharp boundaries. 
However, the amount of smoothing is larger in the areas 
where the camera is closest to the body (that is the sides 
of the ring). The algorithm needs 839 iterations to reach 
the final reconstruction, with RSE quite small (314.76). 
As the distance increases the boundaries become less 
sharp, and the differences in smoothing disappear. 

For the larger β  20   the reconstruction is 
smoother especially at the sides of the ring. This has the 
effect of increasing the RSE to 588.10, and decreasing 
the number of iterations to 312. The same pattern of re- 
sults, as for β = 2, is obtained as rx increases. The result- 
ing reconstructions lead to the same conclusion as in the 
circular rotation and hence a different choice of β is 
needed for different distances. 

To investigate the relationship between distance and β, 
an optimal value for β could be found, as in the circular 
rotation. For the elliptical rotation the process to find the 
optimal value is harder because of the dimension of the 
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Table 2. Comparison of the measures for different distances 
using β = 2 and β = 20. 

δ = 100 

β = 2 β = 20 
Measures 

rx = 15 rx = 25 rx = 35 rx = 15 rx = 25 rx = 35

RSE 314.76 328.05 357.30 588.10 632.10 627.59

Iter. no 839 867 878 312 338 355 

Time 
(min) 

8.24 9.20 10.52 3.10 3.33 4.15 

 

 

 
(a)                      (b) 

 

 
(c)                        (d) 

 

 
(e)                         (f) 

β = 2                      β = 20 

(a) s = 15 (839 iterations/RSE = 314.76); (b) s = 15 (312 iterations/RSE = 
588.10); (c) s = 25 (867 iterations/RSE = 328.05); (d) s = 25 (338 itera-
tions/RSE = 632.10); (e) s = 35 (878 iterations/RSE = 357.30); (f) s = 35 
(355 iterations/RSE = 672.59). 

Figure 5. Reconstructions for different distances using β = 2 
and β = 20. 
 
problem. The optimisation for β could be done by mini- 
mising the RSE for all combinations of the two distances 
 ; x yr r . A 3D graph would be needed with x-axis repre- 
senting the vertical distance, y-axis the horizontal dis- 
tance and z-axis the values of β that minimise the RSE. 
As can be imagined, this process needs a lot of computa- 
tional time and would depend on the form of artificial 
truth. A reasonable approximation is to use the relation- 
ship from the circular rotation. The choice of β could be 
done using the relationship between only one distances rx 

or ry. For the first choice, rx, the related areas are cor-
rectly smoothed but those related to ry are over-smoothed. 
Conversely using ry, the related areas are correctly 
smoothed but the areas related to rx are under-smoothed. 
An appropriate choice of βopt is likely to be between the 
two β values. One approach is to use the β value corre- 
sponding to the average of the distances, alternatively the 
average of the two β values. These procedures mean that 
some areas are over-smoothed relative to an ideal β value 
and others are under-smoothed. 

5.2. Elliptical Rotation 

The elliptical rotation system is based on two distances, 
one which corresponds to the camera close to the body 
and the other to the camera far from the body. The effect 
of this is that the spatial resolution varies across the re- 
construction. By visual comparison it was clear that in 
the regions where the camera was close to the body, the 
reconstruction was close to the truth with sharp bounda- 
ries. Alternatively, for the regions where the camera was 
far away, the reconstruction was smoother. This has the 
effect that uniform regions are reconstructed as non- 
uniform, which agrees with a remark of [21,23]. The 
method which is proposed in this section balances the 
distances in such a way that the resulting reconstruction 
will be closer to the truth.  

The truth could be divided into four regions, where 
two regions correspond to the small distances and the 
other two to the large distances. Based on this, the image 
model was split into nine regions, as represented in Fig-
ure 6. Each region has a different β value which controls 
the amount of smoothing within the region. The areas 
where the camera is closest, A1, take the value of β cor- 
responding to the distance rx and the areas where the 
camera is furthest away, A2, take the value of β corre- 
sponding the distance ry; the remain five regions take the 
average of the β values for A1 and A2. This method will 
uses inhomogeneous Markov random fields structure 
[6,7,10,26] and it is referred to as the block-β method.  

The methods was applied to data obtained using dis- 
tances 15xr   and 40yr  , the resulting reconstruc- 
tion is given in Figure 7 and summary measures in Ta-
ble 3. The β values for region A1 is 2.5, for A2 is 0.5 and 
for the remaining regions 1.5. The reconstruction from 

 

 

Figure 6. Classification of the regions for different β values. 
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Table 3. Comparison of block-β method and single β. 

Measures block β βopt = 2.5 βopt = 0.5 

RSE 294.37 330.60 320.47 

Iter. no 1308 741 1795 

Time (min) 19.01 6.55 8.00 

 

 

 
(a)                       (b) 

 

 
(c)                       (d) 

(a) Truth; (b) block method (RSE = 294.37); (c) βopt = 2.5 (RSE = 330.60); 
(d) βopt = 0.5 (RSE = 320.47). 

Figure 7. Reconstructions for block-β method and for single 
β. 
 
the block-β method is compared to the reconstructions 
using the optimal value for distances 15 cm  2.5   
and 40 cm .  0.5 

Comparison of the reconstructions shows that the 
block method performs better with RSE equal to 294.37 
compared to 330.60 and 320.47. The algorithm needs 
1308 iterations to reach the final reconstruction which is 
between the other two values, as expected. The running 
time is more than twice that of the other two, however 
this is likely to be due to the implementation of the algo- 
rithm. 

6. Conclusions 

This work studies the relationship between choice of β 
and camera distance. From experimental results using 
circular camera rotation, it was clear that a relationship 
between β value and distances exists. Optimal β values 
were found for different distances and a model was fitted 
to these values. The optimal β values were found by 
minimising the RSE. 

The second part of the work looks at the elliptical 
camera rotation system, where major and minor axis dis- 
tances are defined. From experiments the same relation- 

ship between β and distance was apparent. For single β 
the variation of distance effects the reconstructions, es- 
pecially in the region where the camera is closest to and 
furthest from the body; the RSE measure is bigger and 
the algorithm needs more iterations to converge. An op- 
timisation procedure could be used as for circular rota- 
tion, but due to excessive computational time, the me- 
thod seemed inappropriate. Instead the relationship from 
the circular system was used to choose a β value using a 
single distance. Comparison of the RSE suggests that the 
reconstructions are reasonably close to the truth, but the 
shape of the ring is distorted. To counteract this distor- 
tion, the block β method was proposed. The main idea of 
the method is to balance the effects of the variation of the 
distances by changing the amount of smoothing. The 
image model was split into subregions based on distance 
to the camera. The subregions take the optimal β values 
which are given by the fitting model from the circular 
camera rotation system. As a result of this method, the 
shape of the ring appears closer to the truth. 
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