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ABSTRACT 

The key of effective development for the fractured reservoir is to describe the distribution of the fracture and build the 
fracture geological model. To acquire more optimal exploration and development of the oilfield, objective geologic 
model of reservoir fractures is needed for further knowledge of the spatial distribution condition of fractures. Adopting 
well-logging and seismic techniques can be expensive and usually yield multiple solutions, yet resolution will disturb 
the seismic method, making it difficult to acquire accurate and sound fracture parameters from seismic data. In this pa- 
per, the theoretical foundation for support vector machine, fractal geometry, combined the various information in geol- 
ogy, logging, well core, seism and field outcrop about the fracture and calculate the parameters of the fracture (fracture 
density and fractal dimension), and the good foundation is established for fractured reservoir description of discrete 
fracture network model. Based on analysis of conventional prediction methods of development indices and factor in- 
fluencing the parameters of the fracture, a support vector machine method is established to predict the parameters of the 
fracture. The new support vector machine method is based on time series analysis to select the kernel function. Trains 
and tests the support vector machine network with historical data to construct the support vector regression prediction 
model. A case was fit into the model to test and analyse its reliability, the results suggested that the model had a high 
prediction performance, and could be well applied to the prediction of fracture parameters. 
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1. Introduction 

A considerable part of proven reserves in the world 
comes from fractured reservoirs, which occupied a large 
proportion of the oil and gas output among nations. In 
China, fractured reservoirs have quite a substantial oil 
and gas reserves. Strong anisotropy is one important fea- 
ture that fractured reservoirs have, the rich cracks and 
pores in this kind of reservoir offer various shapes to the 
reservoir space, making the exploitation rather difficult. 
The existence of rich cracks in the reservoir affects the 
efficiency of oil exploration in a significant way. On one 
hand, with a large amount of cracks in the reservoir to 
help boost the seepage flow, the oil recovery efficiency 
can be increased efficaciously, which is good. But on the 
other hand, abundant cracks in reservoirs usually cause 
water flooding, lowering the oil recovery efficiency. It’s 
undeniable that an important reason to the loss of the 
exploitable reserves in fractured reservoirs is that the  

distribution method of the cracks is too complex for peo- 
ple to grasp. Learning this, we can gather that a good and 
thorough study on the features of the cracks—aiming at 
accurate description and predicting of the features—is of 
crucial importance to the efficient exploitation of fracture 
reservoirs [1].  

So far, however, there is no sound system available to 
be used to accurately describe fractured reservoirs and to 
build models of them. After comparing plenty mathe- 
matical models of this sort, the discrete fracture network 
(DFN) model is found most suited to describe fractured 
reservoirs, be numerical simulated, and mirror the ani- 
sotropy of the reservoirs. The building of a DFN model is 
complicated, it starts from calculating the characteristic 
parameters of the cracks from previously measured data, 
and then comes out with a characteristics distribution 
function, and forms a fracture network in the end. In the 
predicting of the parameters of the fractures, most re- 
searchers adopted data from logging and seismic tech- 
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nique. But as is known to all, logging and seismic tech- 
nique have their drawbacks such as high cost, low reso- 
lution ratio and multiple solutions. Due to this, relying 
solely on these two methods we can neither get fracture 
parameters efficiently nor build the fracture network mo- 
del accurately. In this paper, a support vector regression 
machine method is presented to solve the problem log- 
ging and seismic techniques have in describing fractures. 
And in order to meet the challenge of choosing proper 
SVR kernel function and parameters, a new SVR kernel 
function selecting method based on the characteristics of 
time series analysis is presented as well. The correlation 
between the fracture characteristic parameters and their 
influencing factors, the prediction accuracy of the model 
and its reliability are all considered in this method. It 
integrates the seismic and logging environment, their 
data, the data analysts’ knowledge and the processing re- 
sults of the input data. For those well sections that have 
core and imaging logging data, fracture dip, azimuth, 
fracture density and fractal dimension value can be cal- 
culated, and the results of these calculations can be ap- 
plied to areas without these data to establish a support 
vector regression machine network and calculate the well 
point fracture density and the fractal dimension value of 
it. 

2. Basic Theory of Support Vector  
Regression and Its Improvement 

2.1. Support Vector Regression Principles 

Support Vector Machine (SVM) was first widely used in 
the field of pattern recognition. After the mathematician 
Vapnik introduced    no sensitive loss function into 
the support vector machine, SVM systems was expanded 
to solve the problem of regression estimation of nonlin- 
ear systems that have very excellent learning perform- 
ance. A new prediction method called support vector 
regression (SVR) was produced. The idea of the method 
is to obtain a better model generalization ability by map 
the input variables from the primal space to higher di- 
mensional feature space, and through nonlinear mapping 
 x  to construct a linear decision-making (regression) 

function. This method controls the learning accuracy and 
the reliability of sample well, and the linear regression 
will finally complete [2]. 

General regression problem can be described by the 
following mathematical model: 

      1 1, , , , ,
l

l lT x y x y x y           (1) 

where T represents the training sample set, n
ix x R  , 

, . iy y R  1, ,i l 
T is independent and identically distributed data sets 

selected based on probability distribution  of x 
× y. Assuming the loss function is  which is 

given value. In the case of the expected risk  

 ,p x y
, ,y f


c x

     , , d ,R f c x y f p x y   is the minimum value, ob- 
tained regression function    Tf x w x   b . Where 
 x  is a non-linear mapping, it mapped the data x to a 

high dimensional feature space and w is weight vector. 
Support vector regression (SVR) is a powerful tech- 

nique for solving the regression problem. 

2.2. The Improvement of Support Vector  
Regression 

The selection of the parameters of SVR model decides its 
generalization performance. In a SVR model it contains 
two sorts of parameters: the basic parameters and kernel 
function related parameters. Most scholars have adopted 
empirical function method, Bayesian method and Cross- 
validation method to calculate C and prediction error   
[3]. Yet presently there’s no ideal method in choosing 
kernel function through way of theoretical basis, but only 
by repeatedly modifying the model itself [4,5], which 
means the polynomial kernel function, radial basis func- 
tion (RBF), Sigmoid kernel function have to be tested, 
their accuracy of predicting be compared, and then the 
one with the best accuracy is chosen to be the ultimate 
kernel function. The drawback of this method is that the 
whole process could be time-consuming and frustrating, 
yet the input information will not be efficiently used. 

In this paper, a new kernel function selecting method- 
Time series analysis method is proposed. In this method, 
the SVR kernel function could be selected on the basis of 
the statistical analysis of a data set. Considering the basic 
idea of SVR and the characteristics of its kernel function, 
     ,i j i jk x x x x   should be used to replace the 

non-lineal mapping  x

:k X X R

 in order to compute the pre- 
diction indices. 

Considering this, to select the kernel function on the 
basis of the time-series graph of prediction indices makes 
sense, and it ensures that the computed values of the pre- 
diction indices conform to the trend of the historical data. 
Suppose that    is the kernel function,   
is the feature mapping of k, and k gives a pseudo-distance 
to input space      : ,kX x x x x    , which 
stands for the measure of similarity between x and x . In 
addition, it’s feasible and effective to select the kernel 
function by analyzing and comparing the characteristics 
of the data sample set in the regression problem. If the 
time-series graph appears to have a trend variation, then 
a linear kernel function or a polynomial kernel function 
will fit to be the SVR kernel function; if the time-series 
graph appears to move or vary in a periodic or seasonal 
way, then a Sigmoid kernel function will fit to be the 
SVR kernel function; if the time-series graph appears to 
move in an irregular or random way, an RBF kernel 
function will fit to be the SVR kernel function. 
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3. Fractal Geometry of the Fracture Size 

The self-similarity of non-continuity of objects and dif- 
ferent scales can be quantitatively described based on 
fractal geometry. Fractal geometry has been widely used 
in various aspects of fracture characteristics description 
such as the description of crack length, opening degree of 
clustering of fractures, fracture branching and growth. 
For interval with core and imaging log data, fractal the- 
ory can be used to calculate the fractal dimension values 
to describe the fracture characteristics [6]. Self-similarity 
describe both the part and whole of object has the same 
complex structure, and which use the fractal dimension 
to describe the complex degree. Scientist Falque by re- 
search on various types of fractal phenomena, definition 
of fractal dimension is as follows:  

Rad D

C
N

Rad
                 (2) 

which Rad  is characteristic number, Rad is geometrical 
magnitude, D is fractal dimension, and C is constant [7]. 

N

The area perimeter method, the box method, index 
spectrum variorum method are commonly used to deter- 
mine the fractal dimension. One of the main methods is 
box method that uses the graphical method to determine 
the fracture fractal dimension. This method uses core, 
imaging logging and outcrop and seismic data, which by 
examining the fracture trace to determine the fractal di- 
mension. The fracture system is contained in a length of 
(L0) square area, by checking fractures the area is divided 
into 2 2

0L l  boxes which length is l,  is the num- 
ber of boxes intersect with fractures or contains fractures 
(Figure 1), the expression can be obtained from the Equa- 
tion (2): 

 N l

  D

C
N l

l
                 (3) 

Which D is fractal dimension, and C is proportionality 
coefficient. Through drawing logarithmic curve of the 
number of boxes and 1 l , we can get the slope of the 
straight line (Figure 2), and fractal dimension D is fi- 
nally obtained by divide the value by C. 

The above method is used to determine the fracture 
fractal dimension, can accurately generate discrete frac- 
ture network [8]. This paper adopts the method of sup- 
port vector machine (SVM) and the box method to de- 
termine the fractal dimension: First, calculate the fractal 
dimension by using the box method through to the core 
and imaging log data of well point; then predict the frac-
tal dimension combine SVM with other data on different 
wells at the point. 

4. The Establishment of the Support Vector 
Machine Model 

Step 1: Determine the SVR model input parameters and  

 

L

A square of side length L  

Figure 1. Box method for solving fractional dimension. 
 

 

LogN (l) 

Slope = CD 

Log (1/l)  

Figure 2. Fractal dimension & logarithmic coordinates lin- 
ear regression.  
 
output indicators. 

Do the correlation analysis of fracture parameters and 
its influence factors, select indicators that reflect the frac- 
ture characteristics and its influencing factors as support 
vector regression model input parameters and output in- 
dicators. 

Step 2: Build the Support vector regression prediction 
model. 

1) Enter the training sample sets  ,i ix y , ix  is the 
sample I in influencing factors samples, i  is the sam- 
ple I in predictor variables. The obtained data were nor- 
malized before calculation. 

y

2) Determine the parameters C,  , the kernel function 
 ,K x x  of SVR model. 
3) Construct the optimization problems 

    

   

 

(*) 2
, 1

1 1

1

1
min ,

2

,

. . 0,

0 , , 1, 2, ,

l

l

i i j j i j
R i j

l l

i i i i i
i i

l

i i
i

i i

K x x

y

s t

C
i l

l


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
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   

 
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
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



      (4) 
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The first term is Kernel function related item, the sec- 
ond term is Error term , the third term is Samples related 
item. Which i , i

  is Lagrange multiplier; C is pen- 
alty factor, it is a constant, it indicates that the bigger the 
value, the bigger the punishment fitting deviation;   is 
the maximum allowable error of regression. 

4) Solve the optimization problem, get the optimal  

Lagrange multiplier  1 1, , , ,
T

l l       . 

5) Minimize the expected risk  R f  of regression 
function are obtained 

     
1

,
l

i i i
i

f x K x 



   x b         (5) 

which   
i 1

,
l

i i iw K 



  x x , calculate b by follow 

ways: Select between j  and k
  in the open interval 

0,
C

l


 


 , if the election is j , then  

   
1

,
l

j i i i j
i

b y K x x 



     ; else if the election is 

k
 , then    

1

,
l

k i i i k
i

b y K x x  



    . 

6) Substitute test set data generation into the input 
layer to inspect decision function, if it can reach expected 
precision, the fracture characteristics parameters predic- 
tion model is obtained; otherwise, return to step (2) to 
modify parameter values and kernel function. 

Step 3: Step 2 is used to get the characteristic parame- 
ters of fractures forecasting model to forecast character- 
istic parameters. 

Enter the value of the fracture characteristics indica- 
tors influencing factors, the prediction model for the pre- 
diction of the indicators derived above. 

5. Case Study 

According to the SVR algorithm described in the previ- 
ous section, SVR program compiled with MATLAB was 
used in a certain domestic oilfield H5 block, selected 49 
sets of data for the training parameters and 19 sets of data 
selected for comparison samples used to verify the reli- 
ability of the model [9]. The clear flow chart to the proc- 
ess is followed (Figure 3). 

Step 1: Parameter selection: 
Input layer parameters used in the SVM training 

mainly are: 
1) Logging data: acoustic travel time (AC), MINV 

(RLML), micro normal (RNML), gamma ray (GR), re- 
sistivity curve (RT), caliper (CAL), flushed zone resis- 
tivity curve (RXO), litho-density (DEN), shaliness (SH), 
neutron porosity (CNL); 

Start 

Parameter Selection 

Normalized Historical Data 

Solving Optimization Problems 

Tested the decision-making function 

Selected SVR Design Parameters and Kernel Function 

Prediction Model Are Obtained 

Precision 
Unachieved 

 

Predicted D and FDEN 

Precision 
Achieved 

 

Figure 3. The clear flow chart to the process. 
 

2) Seismic data: Instantaneous frequency (f), instanta- 
neous phase (ph), seismic velocity (v), amplitude (Am), 
absorption coefficient (Abs). 

According to the correlation analysis method based on 
fracture attribute parameters and influencing factors, de- 
termined fractal dimension and the impact factor of the 
well point fracture density are: Logging data parameters 
(AC, RLML, RNML, RT, RXO, DEN, SH, CNL) and 
seismic data parameters (f, v, Am). Training sample val- 
ues are shown in Table 1. 

Output parameters are predicted fractal dimension (D) 
and fracture density (FDEN). 

Step 2: Established SVR forecasting models of D and 
FDEN separately: 

1) Normalized historical data of D, FDEN and influ- 
encing factors, and select the top 40 groups of data as the 
training set       1 1, , , , ,

l

l lT x y x y x y  , where 
n

ix x R  , iy y R  40l , ; select the last nine 
samples as the test set, wherein ix  represents the sam- 
ple I of factors set which affected D and FDEN, and  
epresents the sample I of D and FDEN. 

iy
r    
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Table 1. Logging and seismic parameters. 

AC RLML RNML RT RXO DEN SH CNL f v Am 

38.48 5.29 5 1982 907 2.5983 4.9158 4.44 44.712 3610.48 4.23 

31.28 3.15 3.16 1205 734 2.5945 6.77 2.9602 49.131 2178.38 4.59 

58.48 6.54 5.47 2672 795 2.6035 5.9025 6.3416 36.18 4189.88 5.02 

39.48 6.83 5.41 2695 1064 2.5986 7.5558 5.2538 56.072 2813.78 3.85 

16.18 2.92 2.75 782 1015 2.5936 5.3111 4.28 31.28 3227.08 3.01 

14.08 2.67 2.5 1156 1100 2.5926 4.3169 3.42 27.18 2519.88 0.99 

46.28 7.32 5.64 1608 978 2.6012 7.06 4.9882 54.98 4726.88 4.27 

23.48 4.08 3.87 1225 1127 2.5976 3.98 3.38 41.831 3788.58 2.99 

22.58 4.78 4.68 880 1045 2.5986 7.3378 5.62 44.88 2986.78 4.65 

54.28 3.63 3.71 2365 924 2.5979 5.7 4.8823 33.287 3434.48 5.21 

25.88 3.37 2.56 713 990 2.5997 6.2134 5.28 46.101 3791.38 3.83 

51.08 2.88 2.98 1087 1207 2.5975 4.92 6.14 35.552 2484.18 5.06 

12.78 3.88 1.81 1333 578 2.5938 3.97 4.48 28.08 1.463 2.1 

47.58 7.52 5 2680 542 2.6048 8.7 7.5239 47.843 4868.28 5.22 

53.38 6.11 4.68 1295 1088 2.5987 8.7601 3.18 35.767 3786.48 3.44 

45.88 6.11 4.55 2120 498 2.5948 8.7092 4.5314 36.425 2086.08 4.51 

35.48 5.42 4.71 1962 1348 2.6009 6.6285 6.1 46.088 4436.28 3.4 

43.08 6.01 4.48 1057 1130 2.6005 5.8524 5.55 43.88 3830.18 2.59 

33.88 4.54 3.46 959 497 2.5953 7.19 4.5724 34.744 4104.38 3.4 

29.48 2.8 2.98 969 512 2.5998 6.34 4.21 36.89 2276.48 4.75 

31.58 4.11 3.05 1852 653 2.5979 7.0393 4.14 43.666 3274.58 4.96 

38.78 4.76 3.39 1864 539 2.5996 8.4238 4.0558 42.509 3126.58 5.41 

31.98 7.32 5.64 1673 1295 2.6011 7.1618 6.31 48.541 2498.38 4.42 

55.08 7.54 5.76 2445 758 2.6015 6.18 3.38 40.332 4499.38 4.41 

45.08 3.48 4.05 536 850 2.5971 4.1978 2.74 31.98 3439.88 4.52 

41.28 4.98 4.89 1220 384 2.5956 4.6095 3.36 39.453 3354.68 4.39 

38.79 5.6 5.31 1985 910 2.9083 5.2258 4.75 45.022 3610.79 4.54 

31.59 3.46 3.47 1208 737 2.9045 7.08 3.2702 49.441 2178.69 4.9 

58.79 6.85 5.78 2675 798 2.9135 6.2125 6.6516 36.49 4190.19 5.33 

39.79 7.14 5.72 2698 1067 2.9086 7.8658 5.5638 56.382 2814.09 4.16 

16.49 3.23 3.06 785 1018 2.9036 5.6211 4.59 31.59 3227.39 3.32 

14.39 2.98 2.81 1159 1103 2.9026 4.6269 3.73 27.49 2520.19 1.3 

46.59 7.63 5.95 1611 981 2.9112 7.37 5.2982 55.29 4727.19 4.58 

32.29 4.39 4.18 1676 1130 2.9076 4.29 3.69 42.141 3788.89 3.3 

55.39 5.09 4.99 2448 1048 2.9086 7.6478 5.93 45.19 2987.09 4.96 

45.39 3.94 4.02 539 927 2.9079 6.01 5.1923 33.597 3434.79 5.52 
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Continued  

41.59 3.68 2.87 1223 993 2.9097 6.5234 5.59 46.411 3791.69 4.14 

39.1 3.19 3.29 1988 1210 2.9075 5.23 6.45 35.862 2484.49 5.37 

31.9 4.19 2.12 1211 581 2.9038 4.28 4.79 28.39 1.773 2.41 

59.1 7.83 5.31 2678 545 2.9148 9.01 7.8339 48.153 4868.59 5.53 

40.1 6.42 4.99 2701 1091 2.9087 9.0701 3.49 36.077 3786.79 3.75 

16.8 6.42 4.86 788 501 2.9048 9.0192 4.8414 36.735 2086.39 4.82 

14.7 5.73 5.02 1162 1351 2.9109 6.9385 6.41 46.398 4436.59 3.71 

46.9 6.32 4.79 1614 1133 2.9105 6.1624 5.86 44.19 3830.49 2.9 

32.6 4.85 3.77 1679 500 2.9053 7.5 4.8824 35.054 4104.69 3.71 

31.79 3.11 3.29 1855 515 2.9098 6.65 4.52 37.2 2276.79 5.06 

38.99 4.42 3.36 1867 656 2.9079 7.3493 4.45 43.976 3274.89 5.27 

32.19 5.07 3.7 1676 542 2.9096 8.7338 4.3658 42.819 3126.89 5.72 

55.29 7.63 5.95 2448 1298 2.9111 7.4718 6.62 48.851 2498.69 4.73 

 
Table 2. Support vector machine network forecast results. 

AC RLML RNML RT RXO DEN SH CNL f v Am D FDEN 

50.51 7.45 4.837 1668 1007 2.89 3.252 6.679 31.80 2117 5.41 2.36 2.66 

60.81 6.71 1.875 2926 246 2.89 6.0867 1.304 59.67 4055 5.21 2.42 6.96 

54.11 6.48 4.75 1481 700 2.8 4.1072 5.187 43.14 4336 5.41 2.31 6.55 

51.41 4.73 4.81 2910 1158 2.79 10.0177 2.639 57.17 4726 5.21 2.8 6.1 

58.21 6.1 2.712 2248 187 2.79 9.1951 1.862 23.13 2179 5.51 2.21 5.5 

48.11 5.48 2.789 2147 1017 2.83 5.9685 7.239 21.92 2771 4.71 2.44 2.82 

50.71 6.41 5.303 3988 1462 2.85 8.2533 5.871 60.11 4722 5.41 2.98 7.88 

61.51 3.57 4.854 1124 995 2.86 2.4643 9.724 49.21 2405 5.11 2.11 2.34 

57.31 5.26 5.774 3380 962 2.86 6.4609 9.934 31.65 3097 4.61 2.51 5.41 

44.01 4.29 1.945 898 1370 2.89 2.8428 6.372 41.46 2586 5.01 2.36 3.11 

55.11 3.11 2.516 2765 279 2.81 3.1396 9.483 28.46 3635 4.61 2.28 2.75 

50.39 7.33 4.717 1665 1004 2.77 3.132 6.559 31.68 2117 5.29 2.31 2.58 

60.69 6.59 1.755 2923 243 2.77 5.9667 1.184 59.55 4055 5.09 2.19 7.05 

53.99 6.36 4.63 1478 697 2.68 3.9872 5.067 43.02 4336 5.29 2.72 6.55 

51.29 4.61 4.69 2907 1155 2.67 9.8977 2.519 57.05 4725 5.09 2.66 5.56 

58.09 5.98 2.592 2245 184 2.67 9.0751 1.742 23.01 2179 5.39 2.31 4.11 

47.99 5.36 2.669 2144 1014 2.71 5.8485 7.119 21.8 2771 4.59 2.36 2.55 

50.59 6.29 5.183 3985 1459 2.73 8.1333 5.751 59.99 4722 5.29 3.12 7.54 

61.39 3.45 4.734 1121 992 2.74 2.3443 9.604 49.09 2405 4.99 2.22 2.38 
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2) Selected SVR design parameters and kernel func- 

tion. 

 

This example used the empirical formula method:  

 max 3 , 3y yC y y     and 
ln

3
n

n
  , taking     

0.012,  [10]. Select the kernel function using 
characteristic analysis of time series. The time series of 
D and FDEN are random variation, so Radial Basis 
Function (RBF) kernel function was selected, Wherein 
the parameter . 

39.23C 

2 0.05
3) Optimized problem (1) and solved the optimal solu-  

tion  1 1, , , ,
T

l l        using programmed soft-  

ware, then obtained b  and constructed a decision func-  

tion      
1

,
l

i i i
i

f x K x 



  x b , where the corre-  
Figure 5. Observed data of FDEN with predicted results 
comparison chart. sponding sample which i i    is not equal to zero is 

support vector.  
in this paper we propose to describe the crack size using 
fractal geometry, combine box method and support vec- 
tor machine, and compute fracture density, fractal di- 
mension of wells that lack core and imaging logging data. 
To cope with the trouble that the selecting method of 
kernel function can not be deduced through theoretical 
basis but only by repeatedly testing and modifying, a 
new method of SVR kernel function selecting method is 
proposed. The correlation between the fracture charac- 
teristic parameters and their influencing factors, the pre- 
diction accuracy of the model and its reliability are all 
considered in this new method. It can put up with the 
drawbacks of generally used predicting methods, and can 
be applied to predict fracture characteristic parameters 
that are under control of several factors. The case study 
of this method shows high prediction accuracy, which 
suggests that SVR is suitable for logging and seismic 
data description. The new method we proposed is also 
applicable to prediction of indices that have the charac- 
teristics of time-series in other areas. 

4) Tested the decision-making function using a test set 
of data, support vector machine prediction model are 
obtained if reached the desired accuracy, if not, modify 
and adjust the design parameters and kernel function. 

Step 3: Predicted D and FDEN: 
Entered the influencing factors predictive value of D 

and FDEN separately, predicted D and FDEN using the 
prediction model previously obtained, prediction samples 
are shown in Table 2. Prediction accuracy of D in sup- 
port vector machine model is 94.81%, and prediction 
accuracy of FDEN is 95.65%, High precision proved that 
the model has good extension potential. Comparative 
analysis of measured and predicted values are shown in 
Figures 4 and 5. 

6. Conclusion 

Since the core and imaging logging data is very limited,  
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