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ABSTRACT 

The classical limit of the quantum mechanical Kepler problem is derived by using a simple mathematical procedure 
recently proposed. The method is based both on Bohr’s correspondence principle and the local averages of the quantum 
probability distribution. We illustrate in a clear fashion the difference between Planck’s limit and Bohr’s correspon- 
dence principle. We discuss the confinement effect in macroscopic systems. 
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1. Introduction 

Every new, more accurate physical theory should not 
only correctly describe facts not addressed by older theo- 
ries, but should also reduce to the more constricted ver- 
sion in the appropriate limit. This requirement is met 
exactly in the case of the general theory of relativity, 
which reduces to Newtonian gravitation when applied to 
weak gravitational fields [1]. The quantum-classical rela-
tionship is more subtle, however almost all textbooks on 
quantum mechanics discuss the classical limit through 
the WKB approximation and Ehrenfest’s theorem. How- 
ever, it can be proved that these approaches are not gen- 
erally valid [2-4]. 

The classical limit of a single atom has been a subject 
of interest from the earliest days of quantum theory and it 
has been discussed in a variety of ways, e.g. Brown con- 
structed a wave-packet solution for the hydrogen atom in 
the regime of large principal quantum numbers, which 
follows a classical circular orbit, but this attempt fails to 
reduce in an analytical way to Keplerian elliptic orbits 
[5,6]. On the other hand, it is possible to construct 
SO(4,2)-based coherent states which follow Kepler-like 
orbits [7,8]. In a simpler approach some authors [9-11] 
compare the classical and quantum probability density 
functions for periodic systems, and observe that both 
distributions approach each other in a locally averaged 
sense (coarse-graining) when the quantum numbers be-
come large. Particularly, Rowe [11] studies two sequ- 
ences of the quantum mechanical hydrogenic radial dis-
tribution with constant energy and Edmonds [12] dis-

cusses the asymptotic form of the angular distribution. 
In a previous work [13], we have introduced a simple 

mathematical procedure to connect the classical and 
quantum probability density functions, were reported 
analytical results for the quantum harmonic oscillator and 
the particle in a box. The method is based both on Bohr’s 
correspondence principle and the local averages (coarse- 
graining) of the quantum distribution. In the present work, 
after a brief review of the general procedure, we discuss 
the classical limit of the quantum Kepler problem and 
obtain the exact classical result. 

2. General Procedure 

It is well known that the classical and quantum probabil- 
ity density functions for periodic systems approach each 
other in a locally averaged sense when the principal 
quantum number becomes large, i.e. 
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Note that  is directly related with the standard de-  
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viation , so that   decreases when 

increasing . Equation (1) can be computed analytically 
only for extremely simple systems, such as the infinite 
square well potential [10]. For more complex systems, 
like the harmonic oscillator and the Kepler problem, the 
associated integral are more complicated. 

In our previous paper we introduced a mathematical 
procedure to derive the classical limit of quantum prob- 
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ability distributions. We write the classical and quantum 
distributions as a Fourier expansion, i.e. 
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where  QM
nf p  and  CLf p

n

 

 are the Fourier coeffi-
cients of each expansion respectively. Substituting (2) 
into (1), we find that the Fourier coefficients have a 
similar behavior for large quantum number : 
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-dependent corrections may arise in Equation (3) be-
cause we do not consider the limit on . This im-
plies that even at a macroscopic level x  remains finite, 
i.e. Heisenberg’s theorem is still valid. We represent an 
alternative evaluation of Equation (1). 

3. The Classical Limit 

According to Newtonian physics, the trajectories for 
bound state motion  of a particle in the Cou-   0E 

 lomb field 
k

r
 V r  are ellipses with parametric  

equation: 
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the eccentricity [14]. Then the classical radial probability 
density (CRPD) is given by: 
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which is defined for , with  ,r r r   1r a  . It 
can be shown that Equation (5) is properly normalized. 
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On the other hand, the solutions for the quantum- 
mechanical Kepler problem are well known, i.e.  

nlm nl l , ,r R  ,Y   
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  , where nl  are the 
radial wave functions of the Schrödinger equation and 

 R r

   are the spherical harmonics [2,15]. Then the 
normalized quantum radial probability density (QRPD) is 
given by 

   
 
       

22

2 21 !

2 !

QM
nl nl

l r

r r R r

n l

n n l




  



 




22 1
1e ,l

n lr L r 
 

     (6) 

where 
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 is properly normalized. 

Now we study the conditions under which the quan-
tum distribution leads to its classical analogue. The an-
gular behavior can be explored directly. It is apparent 
that when  has its maximum value, , the angu-  

2
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 in the limit  

. So, the QRPD will be confined to this plane 
when  , like in the classical model. On the other 
hand, the emergence of  from  CL r  QM rnl  is not 
evident. The relative fluctuation expectation values in the 
radial variable, calculated in the atomic state , ,n l m
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[15]. We observe that this fluctuation vanishes like   
when  has its maximum value, max . Thus we 
see that in the limit  the radial probability dis-
tribution of the atomic state 

l 1l n 
n 

max max  approximates 
an equatorial circular orbit. In the opposite case, when  
has its minimum value, min , we see that the radial 
probability distribution is broad and corresponds to nar-
row ellipses that have degenerated into straight lines 
through the center of the orbit. Therefore, in accordance 
with Bohr’s correspondence principle, the CRPD emerges 
from the QRPD when  becomes large while l  re-
mains fixed. 

, ,n l l
l

0l 

n

In Figure 1, the radial probability distribution (Equa-
tion (6)) is plotted and, for comparison, we also display 
the classical distribution (Equation (5)). The turning 
points are, of course, determined by equating the classi-
cal and quantum expressions for the energy and angular 
momentum, i.e. 
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respectively [14,15]. The absence of any reasonable 
similarity is very striking in Figure 1(a). This is, of 
course, because at low energy the behavior in the quan-
tum regime is very different. On the other hand, in Fig-
ures 1(b) and (c) we see that the distributions approach 
each other in a locally averaged sense as  increases 
while  remains fiexed. Although these results seem 
pretty, it has not been shown with any other procedure. 

Next we concentrate on the calculation of the classical 
limit. We first we calculate the Fourier coefficients. The 
ssociated integral is rather involved but fortunatetly it a   
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(a)                                                            (b) 

 
(c) 

Figure 1. Comparison of the quantum radial probability density (red line) along with the classical radial probability density 
(blue line). Frame (a) shows the QRPD for the ground state along with the CRPD. Frames (b) and (c) show the QRPD for 

 with  and  with  stationary states along with the CRPD, respectively. n  10 l  7 n  30 l  7
 
has been reported in Ref. [16], i.e.  
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 for  large becomes f

where 1 i
p
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 2 and F  denotes the second Appell  

hypergeometric function. The asymptotic behavior of the 
above equation is not reported in the literature, but we 
now explore some special cases. 

The simplest case results for the maximum angular 
momentum. We first we observe that Equation (9) re-  
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the other hand, from equation (8) we find that 
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so that the asymptotic behavior of the Fourier coeffi- 
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Thus the inverse Fourier transform gives a Dirac’s 
delta function located at , i.e. 

   
max

,QM
nl r r a               (11) 

which is the classical result for a circular orbit. Note that 
Equation (8) implies that the eccentricity   tends to 
zero as  becomes infinite, so that the semimajor axis 

 equals the semiminor axis and coincides with the ra-
dius of the circular orbit. This particular result illustrates 
in a clear fashion the applicability of the simple mathe-
matical formulation of the correspondence principle 
given in Ref. [13]. 

n
a

1l 
The next case we consider is for large angular mo- 

mentum, i.e. . We observe that the second Appell 
hypergeometric function 2F  appearing in Equation (9) 
can be approximated by a Gauss hypergeometric function 
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1 2F  for l  large [17,18], so we find 
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where maxl . Note that Equation (12) is a poly-
nomial function of order l . In order to study the as-
ymptotic behavior of the Equation (12), we first rewrite it 
conveniently as a polynomial series, i.e. 
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The problem is now reduced to computing the asymp- 
totics of the coefficients appearing in the summation. In 
the limiting case that we have considered,  with 

 remaining fixed, a first approximation of Equation (13) 
gives 
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where 0J  and 1J  are the Bessel functions of the first 
kind. We point out that we can calulate higher order ap-
proximations, but for our purposes we consider here only 
the first one. 

The inverse Fourier transform of Equation (14) which 
can be found in Ref.[19] gives 
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which corresponds exactly with the classical radial 
probability density. The higher order corrections involve 
a series depending on successive powers of . 

4. Discussion 

When a theory succeeds in describing physical reality in 
a better way then its predecessor, as is the case of relativ-
ity compared with Newton’s theory, and both share an 
essential physical framework, a purely mathematical re- 
duction of the more general theory to the restricted one is 
generally possible. Even in the case of the special theory 
of relativity, Bacry and Levy-Leblond [20] have shown 
that the low velocity limit of Lorentz transformations for 
space-like intervals  2 1x x c t t   display non- 

Galilean features, as the time-ordering of two such inde-
pendent events may be reversed for some observers. The 
quantum-classical relation is more subtle, given that the 
conceptual frameworks of these theories are fundamen-
tally different. The question that naturally arises is the 
way in which quantum theory reduces to classical theory 
when applied to a macroscopic system. Zurek, for exam- 
ple, studies the role that the enviroment has on producing 
the effect of decoherence [21]. 

In the classical regime, the probability distribution 
 CL r

E

 QM r

V

 becomes entirely confined between two turning 
points and as  is kept constant, momentum is also 
confined within a finite interval. Such a state is no longer 
describable by a wave function [22]. The quantum-me- 
chanical case is radically different. On the one hand, the 
probability distribution  is distributed in all 
space, so the probability that the particle is in the volume 

 is given by 

    3d .QM

V
V r  r             (16) 

On the other hand, it is impossible to define quantum 
turning points (as in the classical sense) because of Hei- 
senberg’s theorem works. These facts make these theo-
ries seem conceptually incompatible. 

It is well known, however, that the probability distri-
butions,  CL r and QM r

0




0

, approach each other in a 
locally averaged sense, when some appropriate quantum 
numbers become large [9-11]. Although this result seems 
simple, there is no simple mathematical procedure to 
prove this assertion. In a previous work [13], we intro-
duced a mathematical procedure to prove that the quan-
tum probability distribution leads to the classical one 
when applied to the high energy regime. Our method is 
based on both the Bohr’s correspondence principle and 
the local averages of the quantum probability distribution. 
Note that we do not need to consider the limit where 

. There exist higher order corrections which can 
be expressed as powers of . The classical result for the 
probability distribution is recovered as the -indepen- 
dent zeroth order term. In this approach Heisenberg’s 
theorem applies even at the macroscopic level. This is 
philosophically more satisfactory than actually using the 

 limit and provides corrections that are associated 
in principle with the classical-quantum borderline. 

As can be seen from Figure 1 and other cases like the 
harmonic oscillator, as the principal quantum number is 
increased,  QM r  becomes spatially confined in a 
couple of points, then becomes a rapidly oscillatory 
function inside this region while the outside is strongly 
suppressed. We therefore observe macroscopically a mo-
tion bounded by this couple of points, identified as the 
classical turning points and the probability of finding the 
particle outside this region, i.e. Equation (16), tends to 
zero as the energy increases, so that it becomes forbidden 
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in this regime. When we use our procedure, the oscilla- 
tory behavior of the quantum distribution is averaged out 
and becomes a smooth function in the macroscopically 
accessible region. The function cancels outside this re- 
gion and the turning points look like infinite walls, akin 
to the macroscopic behavior. 

5. Conclusions 

Since the birth of quantum mechanics, prevails the belief 
that is the general theory, and that classical mechanics 
must be deducible from it; however there is not a satis- 
factory demonstration of this belief. The answer to that 
question took the form of the heuristic principle, known 
as the correspondence principle. Although the impor- 
tance of correspondence principle is largely undisputed, 
there is far less agreement concerning how it should be 
defined. The approaches discussed in almost all text-
books (as WKB approximation and Ehrenfest’s theorem) 
are not generally valid. No doubt that the classical limit 
is not a simple problem. 

In a previous paper we introduced a simple procedure 
to connect the classical and quantum probability distribu-
tions for the harmonic oscillator case and we argue its 
general validity. We now report analytical results for the 
Kepler problem. It is noteworthy that these results cannot 
be achieved by any other procedure. The main result of 
this paper is the emergence of semi-classical Bohr’s cir- 
cular orbits from purely quantum mechanical data. 

We consider our approach demonstrates that quantum 
mechanics is applicable in every scale of nature, and that 
the macroscopic world is a consequence of its asymptotic 
behavior in the high energy regime. Even though our 
approach gives the correct classical results for periodic 
quantum systems, it is far from the general solution to the 
classical limit problem. There are still related open prob- 
lems needed for a general mathematical formulation of 
the classical limit problem, as the study of the unbound 
systems. We are currently exploring residual effects of 
quantum transitions at macrocopic level [23]. 
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