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ABSTRACT 

In this paper, an incremental learning model called Resource Allocating Network with Long-Term Memory (RAN-LTM) 
is extended such that the learning is conducted with some autonomy for the following functions: 1) data collection for 
initial learning, 2) data normalization, 3) addition of radial basis functions (RBFs), and 4) determination of RBF cen-
ters and widths. The proposed learning algorithm called Autonomous Learning algorithm for Resource Allocating 
Network (AL-RAN) is divided into the two learning phases: initial learning phase and incremental learning phase. And 
the former is further divided into the autonomous data collection and the initial network learning. In the initial learning 
phase, training data are first collected until the class separability is converged or has a significant difference between 
normalized and unnormalized data. Then, an initial structure of AL-RAN is autonomously determined by selecting a 
moderate number of RBF centers from the collected data and by defining as large RBF widths as possible within a 
proper range. After the initial learning, the incremental learning of AL-RAN is conducted in a sequential way whenever 
a new training data is given. In the experiments, we evaluate AL-RAN using five benchmark data sets. From the ex-
perimental results, we confirm that the above autonomous functions work well and the efficiency in terms of network 
structure and learning time is improved without sacrificing the recognition accuracy as compared with the previous 
version of AL-RAN. 
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1. Introduction 

In general, when a learning model is applied to 
real-world problems, it does not always work well un-
less a human supervisor participates initial settings 
such as choosing proper parameters and selecting the 
data preprocessing (e.g., feature extraction / selection 
and data normalization) depending on given problems. 
This dependence on human supervision is one of the 
highest barriers to wide deployment of artificial learn-
ing systems. Therefore, removing or alleviating human 
intervention in artificial learning systems is a crucial 
challenge. In fact, there have been proposed several 
approaches to autonomous learning [1-5].  

On the other hand, the radial basis function network 
(RBFN) is one of the most popular models that has 
been applied to many applications such as pattern rec-
ognition and time-series prediction [6]. Although 
RBFN has mainly been used as batch learning, the sig-

nificance of its extension to incremental learning is 
growing from a practical point of view [7,8]. Espe-
cially, one-pass incremental learning [9] is an impor-
tant concept for large-scale high-dimensional data. In 
this type of learning, the learner is required to acquire 
knowledge with a single presentation of training data 
(i.e., training data are never presented repeatedly for 
retraining purposes), and the learning must be carried 
out by keeping minimum information on past training 
data. Developing a stable one-pass incremental learn-
ing algorithm for RBFN will give a great impact to 
many practical applications.  

In order to construct a high-performance classi-
fier/predictor using RBFN, the RBF centers and widths 
should be determined properly such that the input re-
gions of all training data are fully supported by fewer 
RBFs. For this purpose, there have been proposed var-
ious methods to choose RBF centers and widths in 
batch learning settings [10,11]. However, as far as we 
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know, there is no online version of such an automated 
learning algorithm. This is because the distribution of 
training data is generally unknown in incremental 
learning environments where the data are only given in 
a sequential way. Besides, it is well known that the 
classifier performance could be affected by data pre-
processing; especially, it could depend on whether data 
are normalized or not. As mentioned earlier, in most of 
the incremental learning algorithms, the parameter set-
ting and the selection of a preprocessing method is 
conducted by an external supervisor on a trial and error 
basis when a learning algorithm is applied to a par-
ticular problem. However, in incremental learning, this 
would sometimes be difficult for the supervisor if only 
a small number of training data are given in the begin-
ning. Therefore, it is important to develop autonomous 
incremental learning algorithms so that a system can 
learn on its own without external help [12].  

For this purpose, we have proposed an autonomous 
learning algorithm for RBFN called Autonomous 
Learning algorithm for Resource Allocating Network 
(AL-RAN) [13]. AL-RAN is a one-pass incremental 
learning model which consists of the following auto-
nomous functions: 1) data collection for initial learning, 
2) data normalization, 3) addition of radial basis func-
tions (RBFs), and 4) determination of RBF centers and 
widths. The first function enables AL-RAN to decide 
the necessity of data normalization from incoming 
training data, and if it is needed, the data scaling is 
autonomously carried out in an online fashion. And the 
third and fourth functions allow AL-RAN to free from 
tuning proper RBF centers and widths before the 
learning is started. In this AL-RAN model [13], train-
ing data are first collected until both the mean and 
standard deviation are converged. Then, the average 
recognition accuracies for normalized and unnormal-
ized data are evaluated using the leave-one-out 
cross-validation method. If the time evolution in rec-
ognition accuracy becomes smaller than a threshold, 
the data collection is stopped and the necessity of data 
normalization is judged whether the accuracy for un-
normalized data is significantly higher than that for 
normalized data. A problem in this algorithm is that the 
mean and standard deviation of collected data can 
largely be fluctuated over time depending on training 
sequences. Furthermore, evaluating the recognition 
accuracy at every learning stage would incur large 
computation costs.  

In this paper, to alleviate the above problems, we 
propose to introduce the class separability instead of 
the recognition accuracy in a convergence criterion for 
data collection. The time to stop collecting data is de-
termined by confirming the convergence of the class 

separability or by finding the significant difference in 
the class separability for normalized and unnormalized 
data. In order to determine the initial structure of 
AL-RAN, a two-stage clustering algorithm is per-
formed for the collected data to obtain a moderate 
number of prototypes and their cluster radii. These 
prototypes and radii are set to RBF centers and widths 
in AL-RAN, respectively. Then, the initial learning of 
AL-RAN is performed for the collected data to obtain 
connection weights and memory items in the long-term 
memory. After the above initial learning process, the 
learning is switched to the incremental learning phase 
and the learning is continued forever. 

This paper is organized as follows. In Section 2, we 
first give a brief review of Resource Allocating Net-
work with Long-Term Memory (RAN-LTM) [7,14] 
which gives a classifier model in AL-RAN, and then a 
new autonomous learning algorithm for AL-RAN is 
proposed in Section 3. Then, the performance of 
AL-RAN is evaluated for the five UCI data sets [15] in 
Section 4. Finally, conclusions and further work are 
described in Section 5.  

2. Resource Allocating Network with 
Long-Term Memory 

Neural networks often suffer from well-known catastro-
phic interference [9] in incremental learning environ-
ments. RAN-LTM [7,14] can alleviate this problem. 
RAN-LTM consists of Resource Allocating Network 
(RAN) [8] and Long-Term Memory (LTM). RAN is an 
extended model of RBFN in which RBFs (i.e., hidden 
units) are automatically allocated on an online basis. Let  
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us denote the number of inputs, RBFs, and outputs as I, J, 
K, respectively. The learning algorithm of RAN-LTM is 
shown in Algorithms 1-3.  
  Let the inputs of a training data be x = {x1, …, xI}’. 
Then, the RBF outputs y = {y1, …, yJ}’ are calculated as 
follow:  
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where jRI and j
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jth RBF. Let the weight from the jth RBF to the kth out-
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The data in LTM are called memory items that corre-
spond to representative input-output pairs. These pairs 
are selected from incoming training data, and they are 
learned with newly given training data to suppress for-
getting. As seen in Algorithm 1, a memory item is cre-
ated when an RBF is allocated; that is, a pair of an RBF 
center and the corresponding output is stored in LTM as 
a memory item. 

The learning algorithm of RAN-LTM is divided into 
two phases: the addition of RBFs and the update of con-
nection weights (see Algorithm 1). The procedure in the 
former phase is the same as that in RAN, except that 

memory items are created at the same time. Once RBFs 
are allocated, the centers are fixed afterwards. Therefore, 
the connection weights W={wkj} are only parameters that 
are updated based on the output errors. To minimize the 
errors, the following linear equation is solved [11]:  

DΦW                  (4) 

where D is the matrix whose column vectors correspond 
to the targets. Assume that a class c data (x, c) is given 
and J memory items )~,~( ll cx  (l=1,…,J), where lc~  is 
the class label of the l th memory item, are stored in LTM. 
Then, the target matrix D is formed as follow: 

1
},,,{ ~~  111D 

Jccc . Here, 1c is a K-dimensional target 
vector where the cth element is one and others are zeros. 
Furthermore, )}~(,),~(), xy ( xyx{yΦ 1 J  are defined by 
the RBF outputs y for the training data and memory items. 
Using Singular Value Decomposition (SVD),  is de-
composed as follow:  =UHV’. Then, the weight matrix 
W in Equation (4) is given by the following equation:  

DVHUW  )(              (5) 

where (H’)+ is the pseudo-inverse of H’. 

3. Autonomous Incremental Learning 

3.1. Assumptions and Learning Scheme 

Let us assume that no training data is given to a system 
in the beginning and training data are provided one by 
one. Since we expect a system to learn from incoming 
data with some autonomy, the learning system should 
collect training data on its own in order to determine an 
initial network with proper parameters, and then it should 
be able to improve the recognition accuracy consistently 
through incremental learning. To earn good performance, 
an autonomous learning system should judge whether 
some preprocessing (e.g., data normalization and feature 
extraction) is needed or not. As mentioned in Section 1, 
we consider only the data normalization for autonomous 
preprocessing. After the normalization, collected data are 
used for constructing and learning an initial AL-RAN 
classifier (i.e., RAN-LTM). The period up to this point is 
called initial learning phase.  

After the initial learning phase, the incremental learning 
process is evoked. First, the data would be normalized if a 
system judges that the data normalization is preferable. 
Then, the incremental learning is conducted not only by 
updating network weights but also by allocating new 
RBFs and/or by updating the widths of existing RBFs. 
This period is called incremental learning phase. 

3.2. Initial Learning Phase 

3.2.1. Autonomous Data Collection and Normalization 
In order to judge the necessity of data normalization, an 
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autonomous learning system should collect training data. 
However, collecting too many training data leads to inef-
ficiency in the computation and memory costs, and it 
also results in loosing the online learning property be-
cause the autonomous system cannot make any predic-
tion until such a large amount of data are collected. 
Therefore, it is important for a learning system to esti-
mate a sufficient number of data for making a proper 
decision on the data normalization. 

a) Previous Method: In the previous work [13], we 
proposed a heuristic method to determine the time to stop 
the data collection based on the following two criteria: 
the statistics of a data distribution (e.g., mean and stan-
dard deviation) and the difference between the recogni-
tion accuracies for normalized and unnormalized data 
(i.e., raw data). First, training data are collected until 
both the mean and standard deviation are converged. 
Then, the average recognition accuracy for normalized 
data Rnor and that for raw data Rraw are evaluated using 
the leave-one-out method. If the difference between the 
two recognition accuracies becomes smaller than a thre-
shold r (i.e., | Rnor - Rraw | < r), the data collection is 
terminated and the necessity of data normalization is 
judged; otherwise, more training data are collected until 
the above condition is satisfied. After satisfying the con-
vergence condition, a system checks the significant dif-
ference between Rraw and Rnor. If Rnor is not significantly 
lower than Rraw, the collected data are normalized such 
that they are subject to a normal distribution N (0,1), and 
all the data given in future are also normalized in the 
same way. Otherwise, the data normalization is not ap-
plied not only to the collected data but also to training 
data given in future.  
A problem of the above method is that the mean and 

standard deviation of collected data can largely be fluc-
tuated over time depending on training sequences. If 
training data are uniformly drawn from a true distribu-
tion, a relatively small number of training data would be 
sufficient to judge the convergence even with the above 
simple statistics. However, if training data are given 
based on a biased distribution, the mean and standard 
deviation of data would converge very slowly. Therefore, 
relying on only such simple statistics would result in 
increasing the average number of collected data.  

A way to alleviate this problem is to introduce another 
stopping criterion. Recall that the purpose of the data 
collection is to judge the necessity of data normalization. 
Even though the data distribution does not converge, the 
data collection could be stopped when a system identifies 
a significant difference in the recognition accuracy for 
normalized and raw data. A straightforward way to im-
plement this idea is to apply the cross-validation method 
at every learning stage. Obviously, however, large com-

putation costs are required for this. An alternative way is 
to adopt the class separability of data to estimate the 
recognition accuracy. 

b) Proposed Method: Assume that n training data 
, where xi and ci, respectively corresponds to 

the ith input and the class label, are collected so far. Let 
us further assume that the training data belong to either 
of C classes and the class c data set is denoted as 
Xc=  (c=1,…,C), where xciRI is the ith data of 
class c and nc is the number of class c data. Then, the 
whole input data set is denoted as . For the 
collected data, the following between-class scatter matrix 
SB and the within-class scatter matrix SW are defined:  
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where cx  and x  are the mean vectors of the class c 
data and all data, respectively. The class separability Pn 
for n training data is defined as follow:  

}{tr 1
BWnP SS .             (8) 

This class separability Pn can be an alternative meas-
ure for the mean and standard deviation adopted in the 
previous work [13] because Pn includes the mean cx  
and the total variance is defined by SB and SW. Therefore, 
Pn never converges unless both mean and standard de-
viation converge. 

In this paper, we propose a new heuristic algorithm 
based on the class separability Pn, which could stop the 
data collection with a moderate number of training data. 
Here, let us define the following difference Pn between 
the class separability of unnormalized (raw) data Pn

raw 
and that of normalized data Pn
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As a convergence criterion, we define the following 
average time-difference for Pn :  
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In the previous work, the difference between the rec-
ognition accuracies for normalized and raw data was 
adopted. This can be replaced with the difference Pn in 
Equation (9). Thus, let us define another measure to ter-
minate the data collection as follow:  
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Algorithm 4 shows the main procedures of the proposed  
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data collection. As seen in Algorithm 4, the class separa-
bility is calculated for both raw and normalized data, and 
the average time-difference Pn is checked if it is smaller 
than 2s. The reason why a large threshold 2s is used 
here is to carry out a rough convergence check. After 
satisfying this condition, the second measure nP  is 
checked if there is a significant difference between the 
class separability for normalized and raw data. Therefore, 
the data collection is terminated not only when the aver-
age time-difference of the class separability nP  con-
verges but also when the average difference in the class 
separability for normalized and raw data nP  becomes 
significant.  

After terminating the data collection, the recognition 
accuracy for raw data Rraw and that for normalized data 
Rnor are evaluated using the leave-one-out method. If Rraw 
is significantly higher than Rnor, the collected data are 
used for learning RAN-LTM without normalization, and 
the data normalization is not also carried out for future 
training data. Otherwise, the normalized data are used for 
learning RAN-LTM, and the normalization is always 
applied to incoming data. Note that the cross-validation 
is carried out only once. In the following, for a notational 
convenience, let us express either normalized or raw data 
by . X

3.2.2. Initial Learning of AL-RAN 
Training data  collected in the 
previous stage are used for the initial learning of 
AL-RAN, which is divided into the following two proc-

esses: determining an initial network structure and com-
puting initial weights.  

C
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First, RBF centers are selected from X, and then prop-
er RBF widths are determined such that the RBF re-
sponse fields cover all class regions with a moderate 
number of RBF centers. It is well known that in order to 
maximize the generalization performance, the number of 
RBFs should be as small as possible; therefore, an RBF 
width should be set as large as possible under the condi-
tion that output errors are kept small. For this purpose, 
we propose an autonomous algorithm (Algorithm 5) to 
determine RBF centers and widths. The proposed algo-
rithm consists of the following two stages: (1) rough se-
lection of cluster centers (prototype candidates) and (2) 
selection of prototypes and determination of cluster radii.  

In the first stage, the following procedures are carried 
out for every class c. First, the minimum distance dci

* 
between the ith data xci and other data xcj (j≠i) is calcu-
lated as follow:  

cjci
ij

cid xx 


min* .             (12) 

Then, the minimum distances dci
* are averaged over all 

the class c data and the average value cd  is calculated. 
Since cd  corresponds to the expected distance to the 
nearest neighbors within a class c region, the rough se-
lection is performed such that a prototype candidate ycj 
represents several collected data within a cluster region 
whose radius should be set larger than cd . In order to 
ensure that at least two data are represented by a proto-
type in the rough selection, the radius is set to cd2  here. 
As seen in Algorithm 5, the first prototype candidate yc1 
is randomly selected from the collected data Xc= , 
and yc1 is put into the prototype candidate set Yc. Then, a 
cluster region is defined such that yc1 is set to the center 
and the radius is set to 

cn
icix 1}{ 

cd2 . Then, all the data within the 
region are represented by yc1, and they are removed from 
Xc. The above procedures are continued until Xc becomes 
empty.  

In the second stage, prototype candidates  are 
further selected to obtain prototypes by merging their 
cluster regions. As seen in Algorithm 5, the following 
procedures are carried out for every class c. First, a pro-
totype candidate yci’ is randomly selected, and the dis-
tance  to the nearest prototype of another class is 
calculated. Then, yci’ and dci

* are respectively defined as 
the first prototype pc1 and the cluster radius rc1. And all 
the data within the cluster are removed from Yc. Such 
procedures are continued until Yc gets empty. 

C
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*
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At the final stage of the initial learning, the structure 
of AL-RAN is initialized by creating RBFs and by com-
puting weights. As seen in Algorithm 6, every pair of 
prototype and the radius  is set to C

c
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RBF center j and RBF width j (j=1,…, J), respectively. 
Here, J is the total number of RBFs (i.e., 

1c

C

cJ m  
). 

Then, the connection weights Wj from the jth RBF to the 
outputs are computed as follow: Wj =1c - z(j) (j=1,…,J).  

After initializing AL-RAN, all of the collected training 
data 1 1  are given to AL-RAN one by one, 
and AL-RAN is learned based on the same incremental 

learning algorithm described in the next subsection (see 
Algorithm 7).  

{{ } }cn C
ci i cx  X

3.3. Incremental Learning Phase 

In the incremental learning phase, the learning algorithm 
of AL-RAN is basically the same as that of RAN-LTM 
[7] except that RBF widths are automatically determined 
or adjusted in an online fashion. Let us explain how RBF 
widths are determined from incoming data. In pattern 
recognition problems, when an RBF center is near a class 
boundary, the RBF width is generally set to a small value 
in order to avoid serious overlaps between different 
classes. On the other hand, when an RBF center is lo-
cated far from a class boundary, the width should be as 
large as possible to reduce the number of RBFs. How-
ever, since only a part of training data are usually pro-
vided at early learning stages, no valid information on 
class boundaries is generally given; thus, setting too 
large values to RBF widths could cause serious overlaps 
to other class regions at later learning stages, resulting in 
the catastrophic forgetting.  

To avoid this, we adopt a safe strategy to determine 
the width of a newly created RBF. That is, the width of 
the J th RBF J  is given by the distance to the closest 
RBF center  as follow:  *j

μ

Jj
Jj

J μμ 


min .               (13) 

In some cases, the closest RBF may have a large width 
that seriously overlaps with the support region of the new 
RBF. Therefore, the width of the closest RBF *j

  is 
also resized as follow:  

 * *min ,J *j j j
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The incremental learning algorithm of AL-RAN is sum-
marized in Algorithm 7. 

autonomous learning model. However, these parameters 
are relatively independent of given problems because 
normalized convergence criterions are adopted (see 
Equations (9-11)). Therefore, it is not difficult to set 
them properly. 

3.4. Summary of Learning Algorithm and    
Intrinsic Parameters 

The learning algorithm of AL-RAN is summarized in 
Algorithm 8. The initial learning phase is shown in Lines 
2-5, and the remaining part corresponds to the incre-
mental learning phase that could be repeated forever. 
Therefore, we can say that the proposed AL-RAN model 
is categorized into a lifelong learning model.  

3.5. Discussions on Learning Convergence 

Let us discuss the learning stability of AL-RAN by di-
viding the learning algorithm into the three parts: 1) the 
initial learning phase (Algorithms 4-6), 2) incremental 
learning of individual training data (Algorithm 7), and 3) 
the main flow of the incremental learning phase (Algo-
rithm 8).  

Here, it should be noted that the inputs of Algorithm 8 
are the parameters s, r, and  that are used in the auto-
nomous data collection (see Algorithm 4). Although 
these parameters should be determined in advance, they 
are essentially different from so-called network parame-
ters such as the number of RBFs and RBF widths which 
should be properly set depending on given problems. The 
above parameters mainly determine the behavior of an 
autonomous learning system.  

As seen in Algorithm 4, the autonomous data collec-
tion process would not stop if the two conditions at Line 
15 are not satisfied forever. That is to say, the data col-
lection could continue forever if the class separability of 
collected data does not converge or significant difference 
between the class separabilities for normalized and raw 
data is not detected. This can happen when the threshold 
s is too small and r is set too large. These thresholds 
are called intrinsic parameters whose values are sup-
posed to be set properly by an external supervisor. As 
long as these parameters are set properly, the data collec-
tion would stop after a finite number of data are collected. 
However, it might not be easy even for a supervisor to 
set it properly under actual environments where the dis-
tribution of training data is dynamically changed over 
time. Therefore, at the current version of AL-RAN, a 
perfect convergence for the initial learning phase is not 
theoretically guaranteed. However, as will be demon-
strated later, the data collection always stops in our ex-
periments (see Table 3). If the data collection stops, it 
means that the number of collected data is finite. Then, 
the other parts in the initial learning phase would termi-
nate with finite operations (see Algorithms 5 and 6).  

As described in Section 3.2.1, the threshold s gives an 
upper bound to judge the convergence of the class sepa-
rability; thus, if s is set small, a strict convergence crite-
rion is applied, resulting in collecting many training data 
to make a decision. On the other hand, the threshold r 
gives a lower bound of the separability difference be-
tween normalized and raw data. Therefore, if r is set 
small, this leads to a loose convergence criterion for the 
data collection. The parameter  determines the period to 
monitor the degree of satisfying the convergence criteria. 
If  is set small, a nearsighted convergence decision 
would be made, resulting in a loose convergence crite-
rion. Hence, we can say that these parameters determine 
the behavioral property of an autonomous learning sys-
tem. Let us call s, r, and  intrinsic parameters.  

In the current version of AL-RAN, such intrinsic pa-
rameters should be set in advance by an external super-
visor. In this sense, the proposed AL-RAN is not a fully  

As seen in Algorithm 7, the learning algorithm of 
AL-RAN does not include iterative calculations that can 
continue forever. The weights are obtained with the ma-
trix computation in Equation (5). In the augmentation of 
hidden units (RBFs), at most one hidden unit is created 
per training data. Therefore, the convergence of incre-
mental learning for individual training data is ensured 
from the algorithmic point of view.  

 

 

Since we assume general incremental learning envi-
ronments, the main routine of the incremental learning 
phase would continue forever. If we restrict the learning 
under a stationary environment, it would be possible to 
show a mathematical proof for the learning convergence. 
However, we assume not only stationary environments 
but also nonstationary environments where the data dis-
tribution could be dynamically changed over time. There-
fore, we cannot discuss learning stability for the main 
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Table 1. Evaluated UCI Data sets. “Norm.” means the preference of data normalization: + means that data should be 
normalized. 

Data Set #Attrib #Class #Train #Test Norm. 
Vowel-context 10 11 485 485 － 

Vehicle 18 4 423 423 + 
Segmentation 10 11 1,155 1,155 + 

Thyroid 21 3 3,600 3,600 + 
Breast-cancer 31 2 284 285 + 

 
Table 2. The number of collected data and decision accuracy [%] for data normalization. 

 
(a) Vowel-context 

   s 
   0.005 0.01 0.02 0.05 

#Collected Data 64.6±15.7 43.2±11.7 31.2±7.1 22.8±5.0 0.1 
Accuracy [%] 76 70 64 42 

#Collected Data 65.8±15.2 47.1±13.7 34.0±9.0 25.9±6.5 
0.25 

Accuracy [%] 80 66 64 46 
#Collected Data 99.0±25.0 64.2±16.2 43.2±11.7 27.4±6.3 

0.5 
Accuracy [%] 84 76 70 48 

#Collected Data 99.0±25.0 64.6±15.7 43.2±11.7 27.4±6.3 

r 

1.0 
Accuracy [%] 84 76 70 48 

 
(b) Thyroid 

   s 
   0.005 0.01 0.02 0.05 

#Collected Data 39.2±19.6 25.9±11.7 17.4±7.3 12.8±5.2 0.1 
Accuracy [%] 88 94 88 84 

#Collected Data 39.2±19.6 25.9±11.7 17.6±7.8 12.8±5.3 
0.25 

Accuracy [%] 88 94 88 84 
#Collected Data 41.4±22.7 29.7±18.1 19.9±9.9 13.9±6.0 

0.5 
Accuracy [%] 92 96 90 84 

#Collected Data 62.7±29.5 39.2±19.6 25.9±11.7 15.4±5.9 

r 

1.0 
Accuracy [%] 90 88 94 82 

 
routine of the incremental learning phase under such 
general learning environments. 

4. Experiments 

4.1. Experimental Setup 

Five data sets are selected from UCI Machine Learning 
Repository [15] to evaluate the performance of AL-RAN. 
Table 1 shows the information on the data sets. Al-
though training and test data are separately provided in 
some data, they are merged and randomly divided into 
two subsets to conduct the two-fold cross-validation. 
Since the performance generally depends on the se-
quence of cross-validation round (i.e., fifty sequences in 
total) are trained and the average performance is evalu-
ated for the test data. We assume that training data are 
given one by one in a random order. The column 
``Norm.'' in Table 1 shows the preference of data nor-
malization: + means that the recognition accuracy is 
higher when the data is normalized. This preference was 
preliminary examined by evaluating the test performance 
of an RBF network which is learned with all the training 
data in a batch mode. Note that this preference is not 

informed to AL-RAN. 
The performance evaluation of AL-RAN is conducted 

through the comparison with the previous AL-RAN [13] 
and RAN-LTM. Let us denote the new and previous 
AL-RANs as AL-RAN(new) and AL-RAN(old), respec-
tively. Here, we adopt the following performance meas-
ures: 1) decision accuracy for data normalization, 2) the 
number of collected training data, 3) learning time, 4) the 
number of RBFs, and 5) final test recognition accuracy. 
The first measure is adopted to evaluate the autonomous 
data collection and the autonomous decision of data 
normalization in the initial learning phase. The decision 
accuracy is defined as the rate that the decision of the 
data normalization is matched with the preference in 
Table 1. Needless to say, the performance of the initial 
learning phase would be better if a higher decision accu-
racy is obtained by collecting a smaller number of train-
ing data. The second through fourth scales are adopted to 
evaluate the efficiency in terms of learning time and 
network structure. The fifth scale is adopted to evaluate 
the total performance of the proposed autonomous 
learning scheme. 
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Table 3. Performance evaluations for (a) the proposed AL-RAN, (b) the previous AL-RAN, and (c) non-autonomous learning 
model RAN-LTM. The two values in each cell are an average value and the standard deviation in the form of x±y. 

 

(a) AL-RAN(new) 

 
Decision 

Accur. [%] 
#Collected 
Train. Data 

Time [sec.] for 
Init. Learning 

Time [sec.] for 
Incre. Learning 

#RBFs at Final 
Learning Stage 

Final Recog. 
Accur. [%] 

Vowel-context 76 64.2±16.2 0.34±0.14 12.0±2.0 179.3±8.3 96.8±0.9 
Vehicle 82 77.9±37.6 0.51±0.42 7.8±1.3 177.9±11.4 75.0±3.1 

Segmentation 70 113.2±61.1 0.92±0.84 21.2±4.4 166.9±14.9 94.2±0.8 
Thyroid 96 29.7±18.1 0.21±0.09 431.6±382.3 336.5±112.0 93.6±2.8 

Breast-cancer 98 21.4±10.1 0.07±0.04 0.31±0.25 38.1±12.1 94.4±2.4 

 

(b) AL-RAN(old) 

 
Decision 

Accur. [%] 
#Collected 
Train. Data 

Time [sec.] for 
Init. Learning 

Time [sec.] for 
Incre. Learning 

#RBFs at Final 
Learning Stage 

Final Recog. 
Accur. [%] 

Vowel-context 82 91.4±9.2 1.13±0.48 12.8±1.8 186.7±9.0 97.1±0.9 
Vehicle 94 72.8±11.3 0.77±0.36 8.7±1.2 185.4±9.1 75.9±2.5 

Segmentation 78 82.0±11.3 0.98±0.50 31.4±9.1 191.2±21.5 94.2±0.9 
Thyroid 90 85.0±13.1 1.36±1.83 728.6±624.4 387.6±103.7 94.1±2.7 

Breast-cancer 100 40.8±10.1 0.31±0.13 0.50±0.19 47.5±7.3 95.2±1.4 

 

(c) RAN-LTM 

 
Decision 

Accur. [%] 
#Collected 
Train. Data 

Time [sec.] for 
Init. Learning 

Time [sec.] for 
Incre. Learning 

#RBFs at Final 
Learning Stage 

Final Recog. 
Accur. [%] 

Vowel-context － － － 25.1±2.1 203.9±5.7 98.1±0.6 
Vehicle － － － 9.8±1.3 161.5±5.1 76.3±1.8 

Segmentation － － － 115.5±11.0 290.4±5.5 94.2±0.8 
Thyroid － － － 3877.1±563.7 653.0±25.2 91.8±1.4 

Breast-cancer － － － 2.25±0.17 113.6±3.4 96.2±1.0 

 

4.2. Effects of Intrinsic Parameters 

Before evaluating the performance of AL-RAN, let us 
examine how the intrinsic parameters affect the behavior 
of AL-RAN. As described in Section 3-4,  and r have a 
similar effect on the model behavior. Hence, we only 
study the influence of s and r for simplicity. In the fol-
lowing experiments,  is fixed at 5. 

Tables 2 (a) and (b) show the number of collected 
data and the decision accuracy in the initial learning 
phase for (a) Vowel-context data and (b) Thyroid data. 
As seen in Tables 2 (a) and (b), when s is getting small, 
the number of collected data is increasing and the deci-
sion accuracy for data normalization becomes high. The 
same is true when r is getting large. Although this is not 
a surprising result, an interesting interpretation is that 
these intrinsic parameters control the discretion of a sys-
tem. That is, a system with a smaller s would be more 
discreet to make a decision, while a system with a 
smaller r would become more optimistic.  

4.3. Performance Evaluation 

Table 3 shows the decision accuracy for data normaliza-
tion, the number of collected data in the initial learning 
phase, the time required for initial learning and incre-

mental learning, the number of RBFs, and the test recog-
nition accuracy after all the learning is completed. The 
parameters used in the experiments are r = 0.5 and s = 
0.01. For a comparative purpose, we also evaluate two 
incremental learning models. The one is the previous 
AL-RAN model (AL-RAN(old)) which adopts different 
convergence criteria on the data collection and a differ-
ent method to initialize AL-RAN in the initial learning 
phase (see [13] for details). The other is RAN-LTM in 
which a fixed RBF width is given and the data normali-
zation is determined based on the preference shown in 
Table 1; that is, the learning of RAN-LTM is not auto-
nomously carried out. 

As seen in Tables 3 (a) and (b), the number of col-
lected training data in AL-RAN(new) is significantly 
decreased as compared with AL-RAN(old) except for 
Vehicle and Segmentation data. If the number of col-
lected data is small, the incremental learning could start 
early; that is, the proposed AL-RAN(new) can start clas-
sification and incremental learning at earlier learning 
stages than the previous model. The time needed for the 
initial learning of the proposed AL-RAN(new) is also 
significantly shorter than that of AL-RAN(old). Even 
though the number of collected data is increased in 
AL-RAN(new) for Vehicle and Segmentation data, the 
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time for initial leaning is shortened. This is because the 
convergence for data collection is checked based on the 
class separability whose computation costs are smaller 
than those for the cross-validation in AL-RAN(old).  

The experimental results for the five UCI data sets 
demonstrate that although the decision accuracy for data 
normalization is relatively lower than the previous 
AL-RAN model, the number of collected data is de-
creased and the time for the initial learning is also short-
en. From the fact that the test recognition accuracy of the 
proposed AL-RAN is not degraded significantly after all 
incremental learning is completed, the degradation in the 
decision accuracy for the data normalization is not a 
critical problem. Therefore, we can conclude that the 
proposed AL-RAN can estimate a moderate number of 
training data to conduct an efficient learning. Further-
more, the introduction of a two-stage clustering for se-
lecting RBF centers and widths results in a smaller net-
work structure, which contributes to fast incremental 
learning. Finally, the recognition performance of 
AL-RAN is fairly good compared with RAN-LTM, in 
which proper network parameters and the data normali-
zation method are determined by an external supervisor. 
From the experimental results, we can conclude that the 
autonomous learning in AL-RAN works very well.  

On the other hand, the decision accuracy for data 
normalization is slightly degraded in AL-RAN(new). 
Although this may cause different performance degrada-
tion, as long as we can see the results in Table 3 (a) and 
(b), the test accuracy of AL-RAN(new) is not degraded 
significantly after all incremental learning is completed. 
This means that the learning of AL-RAN(new) can 
compensate the misjudgment in the data normalization 
process; therefore, the degradation in the decision accu-
racy does not harm seriously to the final test performance. 
The above results also suggest that the online learning 
property of the proposed AL-RAN(new) is improved 
without sacrificing the test recognition performance.  

As seen in Tables 3 (a) and (b), the number of RBFs 
in AL-RAN(new) is decreased as compared with 
AL-RAN(old). This result mainly comes from the dif-
ference in how to construct an initial AL-RAN. Since a 
two-stage clustering is applied to selecting RBF centers 
and widths in AL-RAN(new), a smaller number of RBFs 
are selected after the initial learning phase. This results 
in a compact structure in AL-RAN(new) and contributes 
to fast incremental learning. As seen in Table 3 (c), the 
number of RBFs in RAN-LTM could be significantly 
larger than that of AL-RAN depending on the data sets. 
This is because the RBF width is fixed with a predeter-
mined value1 even for an RBF whose center is located 
far from decision boundaries. Therefore, we can say that 
an autonomous determination of RBF widths works well. 

There still remain several open problems in AL-RAN. 
Although the robustness of the convergence condition in 
the data collection is improved by considering not only 
the convergence on the average time-difference of the 
class separability but also the significant difference in the 
class separability for normalized and raw data, there still 
be no guarantee to stop the data collection at the moder-
ate number of data. If training data are given based on a 
strongly biased distribution, many training data might be 
collected, and then a learning system would have to wait 
for long time until incremental learning is started. 
Therefore, it might be effective to change the thresholds 
s and r (see the 15th line in Algorithm 4) over time 
during the initial learning phase. The proposed learning 
algorithm works in real time if the dimensions of data are 
not too high. For high-dimensional data (e.g., image data 
and DNA microarray data), however, the real-time 
learning might not be ensured. To overcome this problem, 
a dimensional reduction technique (e.g., feature selection 
and extraction methods) is usually adopted as preproc-
essing. For this purpose, we have developed incremental 
version of LDA [16] and PCA [7]. Therefore, in order to 
ensure real-time learning, it is useful to combine such 
incremental feature extraction methods with the pro-
posed AL-RAN for high-dimensional data. Since the 
decision on data normalization is not perfect (see Table 
3), it is better to switch to a preferable normalization 
method even during the incremental learning phase. 
However, there is one problem to do that. Since the 
knowledge is encoded in connection weights and RBF 
centers, it is not easy to learn new knowledge with keep-
ing old knowledge if the current and past data are trans-

5. Conclusions 

In this paper, we propose a new version of the autono-
mous incremental learning algorithm called AL-RAN. 
AL-RAN consists of the autonomous data normalization 
and the autonomous scaling of RBF widths which enable 
a system to learn without external human intervention. 
There are three intrinsic parameters s, r, and  in the 
convergence criteria, which should be determined by an 
external supervisor. However, it should be noted that 
these thresholds are independent of given problems be-
cause normalized convergence criteria are adopted in the 
data collection. In the current version of AL-RAN, these 
parameters should be determined from the aspect of what 
type of autonomous systems the supervisor wants to cre-
ate. An interesting approach to making AL-RAN fully 
autonomous is to introduce an evolutionary computation 
algorithm to find optimal intrinsic parameters.  

                                                           
1 The RBF width was determined such that RAN-LTM has 
similar recognition accuracy against AL-RAN. 
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formed with different normalization methods. If this 
problem is solved, it is expected that the idea of online 
normalization would work well to improve the final clas-
sification accuracy. Finally, the current version of 
AL-RAN cannot handle missing values. This function is 
also solicited for a real autonomous learning algorithm. 
The above problems are left as our future work.  
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