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ABSTRACT 

Many operations carried out by official statistical institutes use large-scale surveys obtained by stratified random sam-
pling without replacement. Variables commonly examined in this type of surveys are binary, categorical and continuous, 
and hence, the estimates of interest involve estimates of proportions, totals and means. The problem of approximating 
the sampling relative error of this kind of estimates is studied in this paper. Some new jackknife methods are proposed 
and compared with plug-in and bootstrap methods. An extensive simulation study is carried out to compare the behavior 
of all the methods considered in this paper. 
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1. Introduction 

Many of the operations carried out by official statistics 
institutions are based on surveys performed on a finite 
population using stratified random sampling without 
replacement. These surveys provide information on three 
types of variables: binary, categorical with more than two 
modalities, and continuous quantitative variables. Usual- 
ly, most of the variables are binary, i.e. they yield two 
possible responses commonly coded with 1 and 0, and 
the aim is to estimate  1p P . A typical example is 
the variable indicating the presence or absence of a 
particular characteristic of interest in the study popu- 
lation, e.g. if a person is employed or unemployed, a 
household has Internet access or not, etc. In the case of 
categorical variables with more than two possible re- 
sponses, say i , the aim is to estimate 
the proportion of each of the answers, 

, 1, , , 2I I A i
 p P Ai i . For 

continuous quantitative variables, X , the objective is to 
estimate the mean of the variable, .  E X 

Stratified sampling is an appropriate method when 
several homogeneous and mutually exclusive strata or 
subpopulations are identified in the population. Stratifi- 
cation can contribute to improve the representativeness 
of the sample by reducing sampling error. The bigger the 
differences between the strata, the greater the gain in 
accuracy. Moreover, some strata can be occasionally 
small in size but big in importance in the study. In these 
cases, an exhaustive sampling is recommended, i.e. all 
the individuals of these strata will be part of the sample. 

These strata are called self-represented. 
Once that a population quantity  , such as a mean or 

a proportion, has been estimated, it is important to obtain 
an accurate estimate of the sampling error to assess the 
reliability of our estimator ˆ ˆ . The sampling error of   
can be presented in absolute terms, using the standard 
deviation of ̂ , namely 

   ˆ ˆVar ,absE  

   
 

 

or in relative terms, using the variation coefficient of the 
estimator given by 

ˆVar
ˆ .

ˆrelE
E


  



This work addresses the problem of estimating sam- 
pling errors in surveys carried out by stratified sampling 
from finite populations. Some new proposals to obtain 
sampling relative error estimates are introduced and vari- 
ous methods based on plug-in, jackknife and bootstrap 
techniques are compared. This research originated from 
the collaboration with the Galician Official Statistical 
Institute (IGE), the agency in charge of the official statis- 
tics in the Autonomous Community of Galicia, a region 
in the Northwest of Spain. Specifically, IGE was in- 
terested in assessing different criteria to approximate the 
sampling relative error for a variety of statistics produced 
by the Annual Company Survey (ACS), which is con- 
ducted by IGE in Galicia. 
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About 200 variables are recorded in the Galician ACS, 
a survey including nearly 4000 companies in a total 
population of 65,000. The sample is obtained by strati- 
fied random sampling, with strata having different 
weights and some of them being self-represented. The 
strata are constructed by regarding the combination of 
three variables: the level of research performed in the 
company, the size of the company, measured in terms of 
the number of paid employees, and the main activity of 
the company. 

The rest of this work is divided into the following 
sections. Notation used some basic concepts are intro- 
duced in Section 2. Section 3 describes the different 
jackknife procedures used to estimate the relative error of 
the estimators. The bootstrap methods of the error esti- 
mation are described in Section 4. Some results from a 
broad simulation study carried out to compare the be- 
haviour of all the methods studied are presented in 
Section 5. Finally, the main conclusions of the work are 
established in Section 6. 

2. Notation and Basic Concepts 

From now on,  and i  will denote the population 
size, the number of strata and the population size of the 
i-th stratum, , respectively. Given a variable 
of interest, 

,N L N

1, ,i L
X , ijx  is the j-th element of the i-th 

population stratum, with i . When 
the variable in study is quantitative (continuous or dis- 
crete), it will make sense to speak about the population 
mean, 

1, , , 1, ,j N i L 

1 1

1 iN

i j 1

,
L L

i
ij i

i

N
x x

N N 


 
 

            (2.1) 

and the population total, 

1 1

iNL L

ij
i j i 1 1

,
L

i i i
i

x N N x x 


  
  

      (2.2) 

being 
1

1 iN

i i
ji

jx x
N 


1

iN

i ij
j

 and x x


  . 

Let i , 1, ,, 1, ,ijX j n i L   be a stratified ran- 
dom sample without replacement of X , of size  

1

L

i
i

n n


  in,  being the sample size within the i -th  

stratum. Denoting by i i iF N n  the elevation factors 
of each stratum, the unbiased estimators of the mean   
and the total   are obtained as follows. 

1 1

1

ˆ

1
,

in
i

ij
i ji

L

i i
i

N

1

1 1L L

i i i
i

X F n X
N 




N n

F X
N


 




 



 


    (2.3) 

and 

1 1 1

ˆ ˆ ,
L L L

i i i i i i i
i i i

N N X F n X F X    
  

        (2.4) 

where 
1

1
=

in

i ij
ji 1

in

i ij
j

X X
n


 X and X



 
N n

1F

. 

Note that, by definition, i i  for the strata self- 
represented in the sample, and hence the elevation factor 
of these strata is i . 

ˆˆThe unbiasedness property of   and   as esti- 
mators of   and  , respectively, follows from its con- 
struction as convex linear combinations of sample means 
(see (2.3) and (2.4)). So, from (2.1) and (2.2) follows  

   
1 1

1

1 1
ˆ

,

L L

i i i i i i
i i

L
i

i
i

E F n E X F n x
N N

N
x

N





 
 




 

 

 


 

and 

   ˆ ˆ .E NE N     

 

 

Some simple calculations, although long (see, for ex- 
ample, [1]), yield the variance of these estimators. Spe- 
cifically, 

 

2 2 2
2

1

2
2

1

1
ˆVar

1

L
i i

i i i
i i i

L
i i i

i
i i

N n
F n

N nN

N N n

nN

 

















     

        (2.5) 

and 

2

1

ˆ ˆVar Var ,
L

i i i
i

i i

N N n
N

n
  




 

2

  (2.6) 

i  being the variance of the finite population in the 
i-th stratum, given as 

 22

1

1
.

1

iN

i ij i
ji

x x
N

 


 
 

2

 

Replacing the population variances i , in (2.5) and 
(2.6) by the corresponding sample variances corrected by 
their degrees of freedom, 

 22

1

1
,

1

in

i ij i
ji

S X X
n 



 
 

ˆ

 

we obtain plug-in estimators for the variance of   and 
̂ . Specifically, 

    2
2

1

1
ˆVar

L
i i i

PI i
i i

N N n
S

nN





 

    

 

2

1

ˆVar .
L

i i i
PI i

i i

N N n
S

n





          (2.7) 

In the particular case of a binary variable we have 
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 2 1 ,
1i i i

i

2 2

1

1

1

iN
i i

i ij
ji i

N N
x x p p

N
 

N N
 



 
    

  

that is estimated using 

 2 1 ,
1 1

i i
i i i

i

X P P
n

 
 

p
i P

2

2 2

1

1 in

i ij
ji i

n n
S X

n N 


 
  

 
  

where i  denotes the true proportion of ones in the 
-th stratum and i  the corresponding sampling pro- 

portion. Using the new expressions for i  and iS  in 
(2.6) and (2.7), respectively, we obtain the variance of 

2

̂  and its plug-in estimator for binary variables, which 
are reduced to 

   
   

     

1 ,

1 .

i
i i

i
i i

n
p p

n
P P





ˆ

2

1

1

ˆVar
1

ˆVar
1

L
i i

i i i

L
i i

PI

i i

N N

n N

N N

n






















 

Going back to the general case in (2.5), it is deduced 
that the absolute and relative sampling errors of estimator 
  take the form 

     

 

     

1 2

2

ˆ ˆ ,

i i i
i

i

rel

n

E E





 
  
 

 

1

1 2

2

1

1
ˆ ˆVar

1
ˆ ,

1

L

abs
i

abs

L
i i i

rel i
i i

N N
E

N n

E
N

N N n

n

 



 






 



 
  
 





 

Hence, the plug-in estimators of these errors are 

   

 

,
1

,

1ˆ ˆ

1 ˆ ˆ

L

abs PI
i

abs PI

N N

N n

E
N












1 2

2

,

i i i
i

i

n
E S

 
  
            (2.8) 

     , ,
ˆˆ ˆ ,rel PIE

1 2

2

1

1ˆ
L

i i i
rel PI i

i i

N N n
E S

n
   

 

 
  (2.9) 

As N   and ˆ ˆN  ˆ, the relative errors of   
and ̂  as well as of their estimations are the same. 
Hence, the rest of the study will focus on the estimation 
of the relative error of parameter  , the population total. 

3. Jackknife Estimation 

The jackknife method is a general estimation procedure 
introduced by [2] that has been widely used to estimate 
the bias and the standard error of a statistic. It is well 
known that the jackknife technique leads to a reduction 
in the bias. Furthermore, the jackknife method is basi- 
cally a resampling procedure, and hence one can estimate 
the accuracy of an estimator without assuming previous 

hypotheses on the distribution of the population. 
ˆLet   be an estimator of a parameter   based on 

the sample 1 2 nX , , ,X X
ˆ

, then the jackknife estimator 
of the variance of   is defined as  

       2

1

1ˆ ˆ ˆVar ,
n

JACK i
i

n

n
   




 

ˆ

 

where  i  is the jackknife pseudovalue, that is the 
estimator calculated using the whole sample except for 
the i-th observation, 1 1 1i i, , , , , nX X X   

ˆ
  , and X    

is the mean of the jackknife pseudovalues,  

   
1

1ˆ ˆ
n

i
in

 


  . 

In a stratified sampling, the jackknife pseudovalues 
can be constructed following one of the two possible 
criteria: either removing a sample value at each iteration 
or removing a stratum at each iteration. Application of 
these criteria leads to two different jackknife estimators 
for the variance of ˆ̂  and  . Moreover, according to 
(2.4), ̂  can be expressed as a linear combination of 
independent statistics  iX  , each one being separately 
constructed from the subsample of each stratum. 
Consequently, the variance of ̂  can be calculated as a 
linear combination of variances of statistics constructed 
at stratum level. If these variances are previously esti- 
mated by jackknife in each stratum, then there will be a 
third way of using the jackknife to approximate the 
variance of ̂ . Each of the three jackknife proposals are 
described more in detail below. 

3.1. Jackknife Leaving One Sample Value out 

Each jackknife pseudovalue is constructed by removing a 
single data value from the overall sample  
X , 1, , , 1, ,ij ij n i L  

rs

. Thus, the pseudovalue ob- 
tained when eliminating the s-th observation of the r-th 
stratum, X , takes the form 

 
     1

1,

ˆ ˆ ,
L

s s
i i r r r r r rrs

i i r

F X F X F X F X    
 

       

 

1,

in
s

i ij
j j s

where 
1

r
r

r

N
F

n
  X and 


X

 

 

 

. 

On the other hand we have that  

 

 

1, 1

1,

1

1

1
1

1 1

,
1

i i

i

s
r r r r

n n
r r

rj rj
j j s jr r

n
r r r

rj rs
j j sr r r

r r
r rs

r r r r

r
r rs

r

F X F X

N N
X X

n n

N N N
X X

n n n

N N
X X

n n n n

N
X X

n

 

  

 





 

 


 
    

 
     

 


 

  
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and hence 

 
   .

1 r rsX X 
1ˆ ˆ r
rs

r

N

n
  


 

By averaging all the pseudovalues, we obtain  

 
 

 
   

 

1 1

1 1 1 1

1

1 1
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
   

 


   

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

 


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n





 
 
 

 ˆVar

 

Hence, the jackknife estimator of   is given by  

    

 
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2 2
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
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 
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 
 
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



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
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 
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and the first variant of the jackknife estimator for the 
relative error is 

 
1 22

2 .
1

r
r

r

N
E S

n n

 
  

r

r

, ,1
1

1 1ˆ ˆ
ˆ

L

rel JACK
r

n
 


     (3.1) 

3.2. Jackknife Leaving One Stratum out 

Here we propose to calculate each pseudovalue removing 
all the observations of one stratum. Thus, the -th 
jackknife pseudovalue is based on the original sample 
without the observations of stratum , i.e.  

 
   ˆ .r rF X 

 2ˆ
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ˆ
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 
   

Now, two variants of the jackknife estimator are intro- 
duced by considering different ways of averaging the 
pseudovalues  r . First, we use a weighted mean, 
where each pseudovalue is weighted by the population 
size of the stratum removed in the calculation. Thus, we 
have  
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Then, the jackknife estimator of   takes the 
form 

    
 
 

 

 

Note that, in this case, it seems that a more simplified 
expression cannot be achieved. The jackknife estimator 
of the relative error is then calculated as 
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1ˆ ˆ ˆVar .
ˆ

JACK Arel JACK AE  




 
 

     (3.2) 

An alternative variant of the jackknife leaving a stra- 
tum out is obtained if all the strata contribute with the 
same weight in the estimation, i.e. the pseudovalues are 
directly averaged as follows  
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 ˆVarBUsing   , the jackknife estimator of   be- 
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not admitting a simpler explicit expression either. 
The jackknife estimator of the relative error with this 

criterion is 

  1 2

,2, ,2

1ˆ ˆ ˆVar .
ˆ

JACK Brel JACK BE  




ˆ

     (3.3) 

3.3. Jackknife within Each Stratum 

According to (2.4), the variance of   can be expressed 
as a linear combination of the variances of the sample 
means within each stratum  

   2

1

ˆVar Var .
L

i i
i

N X 


 

ˆ

        (3.4) 

Hence, a new jackknife approximation to the variance 
of   can be obtained by estimating each Var iX   
with the jackknife method and replacing these estimators 
in (3.4). For the jackknife estimator of  Var iX  , the 
pseudovalues are defined as 

     
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Then, the jackknife estimator of the variance of the 
sample mean of the i-th stratum is  
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and using these previous jackknife estimations we obtain 

  
2

2

1

= .
L

i
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S

n
,3 ˆVar JACK   

The corresponding jackknife estimation of the relative 
error is given by 
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       (3.5) 

4. Bootstrap Estimation 

An alternative resampling method often used to estimate 
the variance and the relative sampling error of the esti- 
mators is the bootstrap or self-sufficient estimation me- 
thod. As any resampling procedure, including jackknife, 
the bootstrap takes advantage of not requiring hypotheses 
on the underlying distribution. The bootstrap method was 
introduced by Efron (see [3-5]) and has been widely 
treated in the literature. The basic idea of bootstrap con- 
sists in estimating the underlying population and then 
drawing out a number of resamples from the estimated 
population. By extracting a large number  of these 
resamples (in the order of one or several thousand),  

bootstrap replications of a particular estimator   can be 
obtained and used to approximate the estimator variance 
and relative error. 

ˆAccording to (2.4), the estimator   can be written as 
the sum of the independent random variables 

, 1, ,i iF X i L  

ˆ

. Hence, the bootstrap can be either 
applied to the global population, in order to directly 
estimate the variance of  , or to each of the strata, in 
order to estimate the variance of each statistic i iF X   and 
then approximate the variance of ̂  as the sum of the 
variances of i iF X  . In particular, any bootstrap re- 
sampling plan ensuring the independence among diffe- 
rent strata is valid to be used on the whole sample or 
stratum by stratum, although the latter is indeed more 
efficient computationally. Note also that the statistic 

i iF X   will have zero variance in self-represented strata, 
where the sampling is exhaustive i , and therefore 
it is not necessary to draw out bootstrap resamples in 
these strata. 

 1F 

i

A detailed description of two bootstrap resampling 
procedures to approximate the population total in a fixed 
stratum , with  1, 2, ,i L  , is provided below. 

4.1. Bickel and Freedman Bootstrap Method 

The proposal by Bickel and Freedman (see [6]) consists 
in estimating the underlying population from a mixture 
of two distinct and equal-sized finite populations. 

If iF  is an integer number, then the bootstrap algo- 
rithm proceeds as follows. 

BF.1 The estimated subpopulation for the i-th stratum 
is constructed by grouping iF  identical copies of the 
sample of the stratum, that is the empirical population is 
given by 

1 2

1 1 1
ˆ , , , , , , , , , .

i

i i i

F

i i in i in i inX X X X X X
     
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   

in  1, ,
ii inX X 
ˆ

i

 

BF.2 A bootstrap resample of size , ,  

is selected at random and without replacement from  . 

BF.3 A bootstrap estimate for the population total in 
the i-th stratum, iX 

 , is calculated from the bootstrap 
resample derived in the previous step. 

BF.4 Steps BF.2 and BF.3 are repeated a large number, 
, of times ( or 5000, for example), 

thereby obtaining a set of  bootstrap replicates of the  
B = 1000, 2000B

B
   total estimator,  1 , , B

i iX X 
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Copyright © 2013 SciRes.                                                                                  OJS 



R. CAO  ET  AL. 205

When the elevation factor iF  is not integer, Steps 
BF.1 and BF.2 are modified as follows. 

BF.1’ Consider i i iF K R , being i iK F


, where 


r n 
 1  2ˆ

 denotes the integer part function. Thus,  
, with  and 1 . i i i i i i i i i

Two empirical finite subpopulations i  and i

N K n r  r  R n
̂   

are now considered for the i-th stratum, which are 
formed, respectively, by iK  and   identical co- 
pies of the observed sample, that is  
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BF.2’ Define 1 1
1

i i

i i

r r

n N

  
     

 , , ,n X X 
 1̂

i
 

  
 

. A bootstrap 

resample of size 1 ii i in , is selected randomly 
and without replacement from i  with probability 

i , and from  with probability 1 2ˆ
i i . 

The specific selection of i  ensures that the mean 
and the variance in the resampling of a bootstrap ob- 
servation ijX 

N
 are equal to the expected quantities when 

the size of the bootstrap population is i . Notice that 
the first resampling algorithm is a particular case of the 
previous one. In fact, if iF  is an integer, i.e. Ri = 0, then 

i i i i  and both algorithms 
become identical. 

 1̂ ˆ ,  

 1̂

 1ˆ

0,r K F  , 1i i

4.2. Booth, Butler and Hall Bootstrap Method 

The bootstrap procedure proposed by Booth, Butler and 
Hall (see [7]) is based on completing the population 

i  estimated in Step BF.1’ by adding a random sub- 
sample of the observed sample. In this way, one avoids 
using the two finite bootstrap populations i  and 

i . More precisely, Steps BF.1’ and BF.2’ of the 
Bickel and Freedman algorithm are modified as follows. 

 2̂

i i iBBH.1 As in Step BF.1’, consider F K R  , where 
 i iK F  and r , with . i i i i i

The finite subpopulation estimated for the i-th stratum  
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is given by , where  is constructed   ˆ 

as in Step BF.1’, i.e. 
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and i  is formed by a random subsample of size  
generated without replacement from . 1 

BBH.2 A bootstrap resample of size ,  

is selected at random and without replacement from  . 

The bootstrap estimation of the variance of the statistic 
̂  is now obtained using (2.4) and the bootstrap appro- 
ximations i

  Var


X   calculated with one of the algo- 
rithms previously described. Specifically, 
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the bootstrap relative error is given by 
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       (4.2) 

Note that the bootstrap variance for an exhaustive 
stratum is equal to zero, and hence the sum in (4.2) can 
be restricted to the non-exhaustive strata. Thus, we can 
write 

  
1 2

2

1, 1

1ˆ ˆ Var .
ˆ

i

L

rel i i
i F

E F X

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 

 
  

 
  

This clearly reduces the computational effort because 
no bootstrap resamples are generated from self-repre- 
sented strata. 

5. Simulation Study 

An extensive simulation study was performed to compare 
the estimators of the relative error of the population mean, 

 ˆErel 
ˆ

, described in the previous sections. Spe- 
cifically, the following estimators   were computed: 
the plug-in estimator  ,

ˆ ˆrel PIE   given in (2.9); the  
 , ,1

ˆ ˆrel JACKEjackknife estimators   (leaving out one  

value),  , ,2
ˆ ˆrel JACK AE  , ,2

ˆ ˆrel JACK BE  and   (both leav-  

ing out one stratum), and , ,2rel JACK B  ˆ ˆE   (jackknife in 
each stratum) given in (3.1), (3.2), (3.3) and (3.5), 
respectively; and the bootstrap estimators derived from 
(4.1) using the resampling algorithms by Bickel and 
Freedman (BF estimator) and by Booth, Butler and Hall 
(BBH estimator). 

As the self-represented strata do not affect to the sam- 
pling error, corrected versions of the jackknife estimators 
were also constructed by omitting the pseudovalues 
associated with these strata. These corrected versions are 
referred as the original ones but adding the letter “C”. 
Note that this correction is implicit by construction in the 
case of the plug-in and bootstrap estimators. 

Three different types of response variables were simu- 
lated in our experiments: 

Binary variables. The response is “1” or “0” and the 
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parameter of interest is "1"p P

, ,

, which was chosen 
to take values close to 0.50, 0.30, 0.15 and 0.05. 

Multinomial variables. Variables taking four possible 
results denoted by 1 2 3A A A  and 4A  were considered. 
Here, the parameter of interest is the vector  

 4,1 2 3, ,     1, 2,3, 4i  , with , for . 
Specifically, 

 i iP A
  was selected to take the value 

.  0.12,0.060.58,0.24,

5000N  10L 

400n 

  0.30P p  p

"1 0.5072

400n 
ˆ

Continuous variables. Response variables generated 
from three possible absolutely continuous distributions: 
uniform, normal and exponential. 

Different scenarios of high and low variability be- 
tween the mean responses of the population strata were 
simulated. In all our experiments, the population size was 

 data values, classified in  strata so 
that two of these strata were self-represented in the 
sampling. The first experiments were carried out with a 
sample size . Thus, the ratio between the sample 
and population sizes mimics the one in the Galician ACS 
conducted by IGE and that initially motivated the present 
work. 

Our first results come from an experiment with binary 
response. The specific parameter values used to generate 
the population and the sample are shown in Table 1. 

Table 1 summarizes the main features of the experi- 
ment. Thus, for instance, stratum L1 is formed by 1200 
observations taking two possible values, “0” and “1”, 
that have been randomly generated from Bernoulli trials 
with 1 . Note that all the values i  
are around 0.5, but there is a high variability between 
them. The overall population consists of 5000 observa- 
tions and satisfies that  and 

. 

"1"

 ˆE 
 "

1000

p P  
0.05135 

M 
rel

Under this population design,  samples of 
size  were generated, and hence 1000 estimates 
  were obtained with each studied method. In the case 
of the bootstrap procedures, a set of  bootstrap 
replicates was considered to compute each estimator. The 
behaviour of each estimation procedure was examined by 
using the following values: 

1000B 

  1

1

ˆ ˆ
M

r
r

E Mi)  



   (iv)      2
ˆ ˆ ˆ= Bias VarMSE       

ii)    ˆ ˆBias E      (v) ˆ ˆRMSE MSE  

   

 

iii) ˆ ˆVarsd         (vi) ˆ ˆ ˆ
PIEffic MSE MSE    

 
 ˆEfficThe quantity   measures the efficiency of 

each estimator ̂  with respect to the plug-in estimator, 
 ˆPI ˆ 1Effic  . Thus,   means that the considered 

estimator ̂  presents better behavior than the plug-in 
estimator in terms of mean squared error. Results from 
our first experiment are shown in Table 2, where 
different scales have been used to obtain a more intuitive 
comparison. 

Similar experiments were carried out using different  

1

L

i
i

n n


 , where the new sample size in the  sample sizes 

i-th stratum, i 1, , L n kn, was determined by i i  , 
with i  being the sample size of the first experiment 
(see Table 1) and k = 0.25, 0.30, 2, 3 and 4. Excluded 
from this rule are the two self-represented strata for 
which obviously 

n

i in N   in all cases. The values of 
 ˆRMSE  ˆEffic  and   obtained with these new 

sample sizes are presented in Tables 3 and 4, respec- 
tively. 

New trials of our first experiment were run with diffe- 
rent values of parameter . Table 5 presents 
results of 

 "1"p P
 ˆRMSE   obtained for different values of 

. p
Tables 2-5 provide a sample of the results obtained in 

our extensive numerical study with binary response. 
Some interesting conclusions derived from this study are 
stated below. 
 The plug-in method gave good results and was often 

the most efficient procedure. Moreover, it has the 
advantage of being computationally fast. It is also 
observed that its efficiency improves with increasing 
sample size. 

 
 iN , sample size in , elevation factor Table 1. Parameters in the first experiment with binary response: population size 

 iF  ip P "1"  for the i-th stratum , 1, ,10Li i  .  and 

 Stratum  

 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 Total 

iN  1200 1000 800 600 450 350 300 240 40 20 5000 

in  

i

65 50 80 32 46 18 28 21 40 20 400 

F  18.46 20 10 18.75 9.78 19.44 10.71 11.43 1 1  

ip  0.30 0.60 0.68 0.40 0.45 0.55 0.50 0.75 0.50 0.69  
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Table 2. Results for the experiment with binary response conducted under parameters in Table 1. Total population para- 
meters:   .0 5072"1" p P  and ˆ .0 05135   1000MrelE . Results based on 400n  trials with sample size  . 

 Measure  ˆE    ˆBias    ˆsd    ˆRMSE    ˆMSE    ˆEffic   

Method Scale 110  210  210  210  310 1   

Plug-in 0.5148 0.0127 0.2597 0.2600 0.0068 1.0000 

Jackknife 1 0.5382 0.2472 0.2472 0.3692 0.0136 1.4198 

Jackknife 1.C 0.5380 0.2450 0.2741 0.3677 0.0135 1.4140 

Jackknife 2A 0.6042 0.9064 1.3101 1.5931 0.2538 6.1268 

Jackknife 2A.C 0.6132 0.9963 1.3224 1.6557 0.2741 6.3676 

Jackknife 2B 1.4605 9.4694 2.8553 9.8906 9.7283 38.0378 

Jackknife 2B.C 1.4547 9.4121 2.8302 9.8356 9.6740 37.8263 

Jackknife 3 0.5301 0.1662 0.2821 0.3274 0.0107 1.2592 

Jackknife 3.C 0.5299 0.1641 0.2820 0.3263 0.0106 1.2548 

Bootstrap BF 0.5199 0.0635 0.2777 0.2849 0.0081 1.0957 

Bootstrap BBH 0.5131 0.0047 0.2707 0.2707 0.0073 1.0412 

 
 ˆ 210SERMTable 3. Values of 

n n n

 for different sample sizes. 

Method 145  230  400  740n   1080n 1420n   

Plug-in 1.1840 0.5366 0.2600 0.127 0.075 0.0052 

Jackknife 1 1.5743 0.7060 0.3692 0.298 0.329 0.0380 

Jackknife 1.C 1.5737 0.7051 0.3677 0.296 0.325 0.0376 

Jackknife 2A 4.3400 2.0697 1.5931 2.572 3.177 0.3616 

Jackknife 2A.C 4.2781 2.0474 1.6557 2.660 3.267 0.3707 

Jackknife 2B 8.5497 9.0836 9.8906 10.957 11.401 1.1773 

Jackknife 2B.C 8.4640 9.0140 9.8356 10.912 11.359 1.1732 

Jackknife 3 1.2161 0.6026 0.3274 0.280 0.318 0.0366 

Jackknife 3.C 1.2158 0.6021 0.3263 0.277 0.315 40.0362 

Bootstrap BF 1.2351 0.5643 0.2849 0.160 0.171 0.0157 

Bootstrap BBH 1.2605 0.5715 0.2707 0.137 0.090 0.0072 

 
 ˆEfficTable 4. Results of   for different sample sizes. 

Method 145n n n n n 1420n  230  400  740  1080   

Plug-in 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Jackknife 1 1.3296 1.3156 1.4198 2.3526 4.3525 7.3621 

Jackknife 1.C 1.3290 1.3141 1.4140 2.3306 4.3041 7.2785 

Jackknife 2A 3.6656 3.8572 6.1268 20.2704 42.0836 70.0182 

Jackknife 2A.C 3.6133 3.8156 6.3678 20.9679 43.2797 7107821 

Jackknife 2B 7.2211 16.9287 38.0378 86.3640 151.0166 227.9469 

Jackknife 2B.C 7.1487 16.7990 37.8263 86.0093 150.4603 227.1530 

Jackknife 3 1.0271 1.1230 1.2592 2.2079 4.2156 7.0899 

Jackknife 3.C 1.0269 1.1220 1.2548 2.1869 4.1686 7.0090 

Bootstrap BF 1.0432 1.0516 1.0957 1.2631 2.2631 3.0474 

Bootstrap BBH 1.0646 1.0707 1.0412 1.0806 1.1895 1.3961 
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  ˆ 210SERMTable 5. Results of   for different values of "1"p P

0.050p  0.148p

. 

Method    0.298p   0.507p   

Plug-in 0.2812 0.9716 0.4892 0.2600 

Jackknife 1 0.3426 1.2228 0.6364 0.3692 

Jackknife 1.C 0.3415 1.2171 0.6337 0.3677 

Jackknife 2A 0.7920 7.0413 3.5333 1.5931 

Jackknife 2A.C 0.7720 6.9848 3.4795 1.6557 

Jackknife 2B 1.8147 6.4254 6.1898 9.8906 

Jackknife 2B.C 1.7825 6.3505 6.1220 9.8356 

Jackknife 3 0.3062 1.1173 0.5958 0.3274 

Jackknife 3.C 0.3052 1.1127 0.5934 0.3263 

Bootstrap BF 0.3132 1.0505 0.5259 0.2849 

Bootstrap BBH 0.29184 1.0212 0.5065 0.2707 

 
 Both bootstrap methods (BF and BBH) yield com- 

petitive results. The BBH bootstrap presents better 
behaviour than the BF bootstrap, especially for large 
sample sizes. For moderate or small sample sizes 
(less than 10% of the population size), the bootstrap 
methods behave similarly to the plug-in method in 
terms of efficiency, although with a higher computa- 
tional cost (that, in any case, results to be acceptable). 

 Results in Table 5 allows us to conclude that prior 
comments are valid for binary variables regardless of 
the specific value taken by  "1" . In particular, 
it is observed that RMSE  takes the smallest values 
when p  is close to 0 or 0.5. 

p P

, ,

Next step in our simulation study is addressed to 
analyze the case of multiple response. Specifically, it is 
assumed that there are four mutually exclusive and 
exhaustive results for the response variable, let us say 

1 2 3

 The jackknife 3 estimator (based on applying jack- 
knife to each stratum) behaved similarly to the boot- 
strap estimators for small sample sizes 

A A A 4 and A . As in the case of binary response, a 
population of n 400  

and worsened with increasing n . Jackknife 1 esti- 
mator (based on leaving out one sample datum) was 
competitive although yielded worse results than the 
jackknife 3 with small sample sizes. Both variants of 
the jackknife 2 estimator (based on leaving out one 
stratum) yielded much worse results for all the con- 
sidered sample sizes. Therefore, it is not advisable to 
use the jackknife 2 estimators. In general, the worse 
behaviour of the jackknife-based estimators seems to 
be mainly due to the bias of the estimation, although 
for the jackknife 2 estimators poor results are also 
observed in terms of standard deviation. 

5000N   observations divided in L = 10 
strata was simulated. Data forming the -th stratum 
were randomly generated from a multinomial distribution 
with parameter 

j

 3, , ,1 2 4
j j j j j j

i    , where   de- 
notes the probability of event iA  in the -th stratum, j

  , 1, 2,3, 4j jP A i  i i . Different values of j  were 
selected to set up scenarios with high and low variability 
of the responses between strata. In all cases, the overall 
population, which is formed by bringing together all 
strata, presents the theoretical parameter vector  

   1 2 3 4, , , 0.58,0.24,0.12,0.06     , where  
  , 1,2,3,4i iP A i  

1000M
. 

 No substantial differences were observed between 
using the jackknife procedures and their corrected 
versions (.C), based on cancelling the exhaustive 
strata. Just a slight advantage for the corrected ver- 
sions is observed. 

 Similar conclusions are valid for the two scenarios of 
high and low variability of the response between 
different strata. In general, the plug-in estimator is the 
most efficient in both situations, although the diffe- 
rences between the plug-in and the other methods are 
smaller in the case of low variability. 

 For small sample sizes  145n  , both two bootstrap 
methods and jackknife 3 led to a greater efficiency 
than the plug-in method. 

A total of   samples of size  were 
randomly selected and each of them was used to con- 
struct an estimator 

400n 

̂  of the relative error in the sam-  

 1 2 3 4
ˆ ˆ ˆ ˆ ˆ, , ,pling of     . Again, two strata were con-  

sidered to be exhaustive in the sampling. The theoretical 
error for the simulated population is 

 0.05,0.09,0.15,0.21
ˆ , 1, ,r M 

 ˆ , 1,2,3, 4i 
 ˆ

. The set of estimates obtained 
with each of the studied methods  r  is 
then used to calculate the mean squared error and the 
efficiency of each procedure with respect to the plug-in 
method. Both quantities were simultaneously obtained 
for each estimated marginal component i  
and jointly for the estimated vector  . In particular, 
the global  ˆRMSE   is given by 
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       
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ˆ .
t

r r

  


 
1

1
ˆ ˆ ˆ

M

r

RMSE MSE
M 

 


     

Results from this new simulation are shown in Tables 
6 and 7. 

Results from Tables 6 and 7 show that the conclusions 
derived from simulations with binary response are 
equally valid for the case of multiple response. 

Finally, we focus on the case of continuous response 
variables. Thus, new experiments were carried out to 
examine the performance of the different estimation pro- 
cedures with responses generated from uniform, normal 
and exponential distributions. The simulation plan was 

designed by following the same outline as in previous 
experiments. 

For instance, some experiments with normal and ex- 
ponential responses were carried out considering the 
features summarized in Table 8. Note that these para- 
meters lead to a situation of high variability between data 
from different strata. Some outcomes derived from these 
experiments are presented in Tables 9 and 10, for the 
Gaussian case, and in Tables 11 and 12, for the ex- 
ponential case. Here, the target parameter in the overall 
population,  ˆErel  0.0177, took the value  

0.05365
 for 

the Gaussian response, and  



, for the ex- 
ponential response. 

 
Table 6. Results of ˆ 210RMSE 

1000M  400n

 for the experiment with multiple response and high response variability between strata. 

Results based on  trials with sample size  . 

 1
ˆRMSE  2

ˆRMSE  3
ˆRMSE  4

ˆRMSE  ˆRMSE        Method   

Plug-in 0.2556 0.5974 1.3419 2.8867 3.2490 

Jackknife 1 0.3344 0.7827 1.7149 3.5292 4.0150 

Jackknife 1.C 0.3333 0.7799 1.7121 3.5243 4.0089 

Jackknife 2A 2.8069 5.8041 8.7689 12.2577 16.3924 

Jackknife 2A.C 2.7814 5.7443 8.7550 12.2467 16.3924 

Jackknife 2B 1.7803 3.7279 5.4087 9.3790 11.5882 

Jackknife 2B.C 1.7725 3.7293 5.3482 9.1843 11.4002 

Jackknife 3 0.3157 0.7037 1.6276 3.2936 3.7539 

Jackknife 3.C 0.3147 0.7014 1.6250 3.2890 3.7482 

Bootstrap BF 0.2716 0.6176 1.3581 3.0913 3.4432 

Bootstrap BBH 0.2556 0.5993 1.3701 3.2010 3.5424 

 
 ˆEfficTable 7. Results of   for the experiment with multiple response and high response variability between strata. 

Results based on  trials with sample size 1000M  n 400

145n  230n  400n

. 

Method     740n   1080n  1420n   

Plug-in 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Jackknife 1 1.1427 1.1322 1.2358 1.6634 2.4630 3.4143 

Jackknife 1.C 1.1523 1.1315 1.2339 1.6572 2.4503 3.3943 

Jackknife 2A 2.0393 3.2180 5.0454 6.6219 7.4788 7.1866 

Jackknife 2A.C 2.0346 3.2084 5.0327 6.6123 7.4769 7.1893 

Jackknife 2B 1.5625 2.1351 3.5667 6.5472 10.5012 13.8590 

Jackknife 2B.C 1.5410 2.1142 3.5088 6.3559 10.1349 13.3493 

Jackknife 3 0.9652 1.0451 1.1554 1.6130 2.3709 3.3767 

Jackknife 3.C 0.9818 1.0442 1.1536 1.6071 2.3587 3.3573 

Bootstrap BF 1.0101 0.9744 1.0598 1.1614 1.5541 1.8045 

Bootstrap BBH 1.0056 1.0889 1.0903 1.0709 1.1188 1.1535 
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Table 8. Main features for experiments with normal and exponential responses: population size , sample size  iN   in

 Li

 and 

distribution parameters for the -th stratum . i

 Stratum  

 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 Total 

iN  1200 1000 800 600 450 350 300 240 40 20 5000 

in

i

 65 50 80 32 46 18 28 21 40 20 400 

Normal 

  50 55 46 45 56 44 57 55 46 50  

i  10 22 15 10 9 20 21 19 11 12  

Exponential 

i  0.10 0.11 0.09 0.10 0.11 0.10 0.11 0.09 0.10 0.08  

 
Table 9. Results from the experiment with Gaussian response conducted according to parameters in Table 8 and based on 

 trials with sample size . = 1000M 400n 

 Measure  ˆE    ˆBias    ˆsd    ˆRMSE    ˆMSE    ˆEffic   

Method Scale 110  210  210  210  310 1   

Plug-in 1.7691 −0.0086 0.1081 0.1085 0.0012 1.0000 

Jackknife 1 1.8541 0.0756 0.1117 0.1349 0.0018 1.2441 

Jackknife 1.C 1.8531 0.0753 0.1117 0.1348 0.0018 1.2425 

Jackknife 2A 1.5536 −0.2441 0.3690 0.4425 0.0196 4.0799 

Jackknife 2A.C 1.5360 −0.2418 0.3675 0.4399 0.0194 4.0563 

Jackknife 2B 4.1834 2.4056 0.8390 2.5478 0.6491 23.4929 

Jackknife 2B.C 4.1350 2.3573 0.8122 2.5021 0.6261 23.0715 

Jackknife 3 1.8265 0.0487 0.1070 0.1175 0.0014 1.0837 

Jackknife 3.C 1.8261 0.0484 0.1070 0.1174 0.0014 1.0826 

Bootstrap BF 1.7781 0.0003 0.1062 0.1062 0.0011 0.9793 

Bootstrap BBF 1.7714 −0.0064 0.1078 0.1080 0.0012 0.9959 

 
 ˆEfficTable 10. Results of   for Gaussian response and different sample sizes.  

Method n = 145 n = 230 n = 400 n = 740 n = 1080 n = 1420 

Plug-in 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Jackknife 1 1.2080 1.1241 1.2441 1.9405 3.3611 5.6684 

Jackknife 1.C 1.2079 1.2237 1.2425 1.9327 3.3438 5.6372 

Jackknife 2A 3.9205 4.5127 4.0799 7.5143 16.6298 31.3715 

Jackknife 2A.C 3.9042 4.4950 4.0563 7.5016 16.6140 31.3358 

Jackknife 2B 4.4365 10.2989 23.4929 54.3585 93.2693 145.4229 

Jackknife 2B.C 4.3642 10.1115 23.0715 53.5200 91.8624 143.3255 

Jackknife 3 0.9942 1.0336 1.0837 1.8723 3.2635 5.5708 

Jackknife 3.C 0.9943 1.0335 1.0826 1.8648 3.2468 5.5406 

Bootstrap BF 1.0140 0.9996 0.9793 1.0183 1.8710 2.0230 

Bootstrap BBH 1.0409 1.0193 0.9959 1.0675 1.1031 1.2344 
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Table 11. Results from the experiment with Exponential response conducted according to parameters in Table 8 and based 
on M = 1000 trials with sample size n = 400. 

 Measure  ˆE    ˆBias    ˆsd    ˆSERM    ˆMSE    ˆEffic   

Method Scale 110  210  210  210  1 310    

Plug-in 5.3474 −0.0179 0.2894 0.2899 0.08410 1.0000 

Jackknife 1 5.5928 0.2275 0.2915 0.3698 0.1368 1.2756 

Jackknife 1.C 5.5928 0.2252 0.2917 0.3685 0.1358 1.2710 

Jackknife 2A 2.4534 −2.9119 0.8971 3.0470 9.2841 10.5098 

Jackknife 2A.C 2.4865 −2.8788 0.9022 3.0168 9.1013 10.40556 

Jackknife 2B 6.4268 1.0615 2.1040 2.3566 5.5537 8.1284 

Jackknife 2B.C 6.3898 1.0245 2.0803 2.3402 5.4766 8.0719 

Jackknife 3 5.5246 0.1593 0.3012 0.3407 0.1161 1.1751 

Jackknife 3.C 5.5224 0.1571 0.3013 0.3398 0.1154 1.1719 

Bootstrap BF 5.3963 0.0310 0.2991 0.3007 0.0904 1.0371 

Bootstrap BBH 5.3442 −0.0211 0.2921 0.2928 0.0857 1.0100 

 
 ˆEfficTable 12. Results of   for exponential response and different sample sizes. 

Method 145n n n 230  400  740n   1080n 1420n   

Plug-in 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Jackknife 1 1.1165 1.1730 1.2756 2.2765 4.0523 6.4474 

Jackknife 1.C 1.1162 1.1720 1.2710 2.2561 4.0078 6.3742 

Jackknife 2A 5.5146 8.1224 10.5098 12.4363 13.3740 12.6355 

Jackknife 2A.C 5.4883 8.0736 10.4056 12.2327 13.0697 12.2639 

Jackknife 2B 2.8584 4.8487 8.1284 15.7562 26.8622 38.1192 

Jackknife 2B.C 2.8457 4.8210 8.0719 15.7186 26.8389 38.1956 

Jackknife 3 0.9698 1.0215 1.1751 2.1765 3.9274 6.3672 

Jackknife 3.C 0.9700 1.0215 1.1719 2.1572 3.8847 6.2964 

Bootstrap BF 1.0320 1.0097 1.0371 1.2404 2.0056 2.8627 

Bootstrap BBH 1.0358 1.0717 1.0100 1.0406 1.1994 1.2663 

 
Results in Tables 9-12 allow us to confirm that the 

different analyzed estimation procedures behaved as in 
the previous experiments. Moreover, an analogous beha- 
viour was also observed with uniform response and with 
scenarios of low variability between strata. In short, the 
conclusions derived from our numerical study with bin- 
ary or multinomial response can be extended to the case 
of continuous response variables, regardless of the gene- 
rating probability distribution. 

amined in this type of surveys are binary, categorical and 
continuous, and hence, the estimates of interest involve 
estimates of proportions, totals and means. In this setting, 
several procedures to approximate the sampling relative 
error of this kind of estimates are proposed. Different 
estimation techniques are considered, including the natu- 
ral estimation of plug-in type and more sophisticated 
methods based on jackknife and bootstrap methodologies. 
The behaviour of the different procedures proposed is 
examined and compared by means of an extensive simu- 
lation study. In general, the plug-in method presents 
good behaviour in all the analyzed situations, with the 
additional advantage of having a low computational cost. 
For small sample sizes, the jackknife estimator denoted 
by “jackknife 3”, which is based on the prior application 
of the jackknife technique to each stratum, and the two 
bootstrap methods considered (particularly the bootstrap 
proposed by Booth, Butler and Hall) yield results similar  

6. Final Conclusion 

The present work deals with the problem of estimating 
the sampling relative error of point estimates derived 
from large sample surveys. It is specifically assumed that 
the survey’s sampling design is the stratified random 
sampling without replacement, because this design is 
often considered in many surveys conducted by different 
official statistics institutions. Variables commonly ex-  
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as those obtained with the plug-in estimator, and in some 
cases, even better. However, the estimators obtained with 
these methods have a higher (although acceptable) com- 
putational cost. 
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