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ABSTRACT 

Let  be a nonempty, proper subset of all refined inertias. Then,  is called a critical set of refined inertias for ire- 

ducible sign patterns of order  if  is sufficient for any sign pattern 

S S

n  S ri A A  to be refined inertially arbitrary. 

If no proper subset of  is a critical set of refined inertias, then  is a minimal critical set of refined inertias for sign 
patterns of order . In this paper, all minimal critical sets of refined inertias for irreducible sign patterns of order 2 are 
identified. As a by-product, a new approach is presented to identify all minimal critical sets of inertias for irreducible 
sign patterns of order 2. 

S S
n
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1. Introduction 

A  sign pattern is a matrix n n ˆ
ijA    


 with en- 

tries from the set  where  (respectively,  , ,0    ) 
denotes a positive (respectively, negative) real number; 
see, e.g., [1]. The set of all real matrices with the same 
sign pattern as the  sign pattern n n Â  is the qualita- 
tive class 

      ˆ sign .ij n ij ijQ A A a M R a        

A subpattern of an  sign pattern n n Â  is a sign 
pattern  obtained by replacing some (possibly empty) 
subset of the nonzero entries of 

B̂
Â  with zeros. If  is 

a subpattern of 
B̂

Â , then Â  is a superpattern of . 
Two square zero-nonzero patterns 

B̂
Â  and  are 

equivalent if one can be obtained from the other by any 
combination of transposition and permutation similarity. 
A sign pattern 

B̂

Â  is reducible if it is permutation simi- 
lar to a pattern of the form  

11 12

22

ˆ ˆ

ˆ0

A A

A

 
  
 

 

where 11 22
ˆ ˆ,A A  are square and non-vacuous. A pattern is 

irreducible if it is not reducible. 
The inertia of a matrix A  is an ordered triple 

 where  and 0n  are the number of 
eigenvalues of 
 0, ,n n n 

part, respectively; see, e.g., [2]. The refined inertia of A  
is the ordered quadruple  , , , 2z pn n n n 

n
 of nonnega- 

tive integers that sum to , where  , , 2z pn n  n n is 
the inertia of A  while zn  is the number of 0 as an ei- 
genvalue of A  and 2 pn  is the number of eigenvalues 
of A  with nonzero pure imaginary eigenvalues; see, 
e.g., [3]. The inertia (respectively, refined inertia) of a  

sign pattern Â  is       ˆi A i A A Q A  ˆ  (respectively,  

      ˆ ˆri A ri A A Q A  ). A  sign pattern n n Â   

is an inertially arbitrary pattern (IAP) if given any or- 
dered triple  0, ,n n n 

n
of nonnegative integers with 

0n n n    , there exists a real matrix  ˆA Q A   
such that    0n, ,n n i A ; see, e.g., [4,5] and the refe-  

rence therein. Similarly, Â  is a refined inertially arbi-  
trary pattern (rIAP) if given any ordered quadruple 
 , , , 2z pn n n n   of nonnegative integers that sum to , 
there exists a real matrix 

n

 ˆA Q A  such that  
   , 2, , z p 

Let  be a nonempty, proper subset of the set of all 
inertias for any 

ri A n n n
S

n ; see, e.g., [3]. 

n n  zero-nonzero (or sign) pattern Â . 
If  ÂS i  is sufficient for Â  to be inertially arbi- 
trary, then  is said to be a critical set of inertias for 
zero-nonzero (or sign) patterns of order  and if no 
proper subset of  is a critical set of inertias, then  
is said to be a minimal critical set of inertias for zero- 

S
n

S S ,n n 

A  with positive, negative and zero real  
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nonzero (or sign) patterns of order ; see, e.g., [6]. 
Critical sets of refined inertias for irreducible zero-non- 
zero patterns are defined in [7]. Similarly, we introduce 
the concept of a critical set of refined inertias for sign 
patterns. Let  be a nonempty, proper subset of all 
refined inertias. Then,  is called a critical set of re- 
fined inertias for sign patterns of order , if the set 

 is sufficient for any sign pattern 

n

S
S

n
 ˆS ri A Â  to be 

refined inertially arbitrary. If no proper subset of  is a 
critical set of refined inertias, then  is a minimal 
critical set of refined inertias for irreducible sign patterns 
of order . We note that all minimal critical sets of in- 
ertias for irreducible sign patterns of order 2 have been 
identified in [6]. But, identifying all minimal critical sets 
of inertias for irreducible zero-nonzero (or sign) patterns 
of order has been posed as an open question in [6]. 
Also open is the minimum cardinality of such a set. The 
concept of critical sets of refined inertias for sign pattern 
is introduced for the first time. In this work, we concen-
trate on the minimal critical sets of refined inertias for 
irreducible sign patterns of order 2. 

S
S

n

3

2 2

Our work is organized as follows. Section 2 describes 
some preliminary results on the refined inertias of sign 
patterns. The minimal critical sets of refined inertias for 
irreducible sign patterns of order 2 are identified in Sec- 
tion 3. In Section 4, as a by-product, an alternative proof 
is given to identify all minimal critical sets of inertias for 

 irreducible sign patterns. Some concluding re- 
marks are given in Section 5.  

2. Preliminaries 

Recall that a sign pattern ˆ
ijA   
 , ,

 has its associated  

digraph  with vertex set  and for all 
 and , a positive (resp., negative ) arc from  to  

if and only if ij

D Aˆ 
i

1,2 n
i j j

    (resp., ij   ). A (directed) 
simple cycle (or a k-cycle)  of length k is a sequence of 
k arcs  1 2 2 3 1k  such that these vertices 
are distinct; see, e.g., [1]. The sign positive (or negative) 
of a simple cycle in a sign pattern ˆ

 , ,i  , i , , i , ii i

A  is the actual 
product of the entries in the cycle, following the obvious 
rules that multiplication is commutative and associative, 
and (+)(+) = +,(+)(−) = −. 

Lemma 2.1. let Â  be an irreducible sign pattern of 
order 2. Then the following are equivalent: 

(1) Â  is spectrally arbitrary; 
(2) Â  is inertially arbitrary; 

(3) Up to equivalence, ; Â
  

    
ˆ ˆ(4) Associated digraph of , A D A , has two loops of 

opposite sign and a negative 2-cycle. 
Proof. The equivalences of  follow 

from Proposition 3 in [6]. The equivalence of 
  

 
1 2 3 

 3 4  

can be verified directly. 
It is known that there are seven refined inertias for 

2 2  sign patterns. To identify all minimal critical sets 
of refined inertias for irreducible sign patterns of order 2, 
the following three sign patterns are necessary to be in- 
vestigated. 

Lemma 2.2. Let .M
  

    
 Then, M  allows the  

only refined inertias (0, 1, 1, 0), (0, 2, 0, 0) and (1, 1, 0, 
0). 

Proof. Since M  requires every realization with a 
negative trace, the refined inertias (2, 0, 0, 0), (0, 0, 2, 0), 
(0, 0, 0, 2) and (1, 0, 1, 0) cannot be allowed by M . For 
the remaining refined inertias, consider realizations of  

1 1 1 1 2 1 2
, , ,

1 1 1 2 1 2 1
M

       
           

 with refined iner-  

tias (0, 1, 1, 0), (0, 2, 0, 0) and (1, 1, 0, 0), respectively. It 
follows that M  allows the only refined inertias (0, 1, 1, 
0), (0, 2, 0, 0), (1, 1, 0, 0). 

Lemma 2.3. Let .N
  

    
 Then,  allows all  N

refined inertias except (0, 1, 1, 0), (0, 2, 0, 0), (0, 0, 2, 0) 
and (0, 0, 0, 2). 

Proof. Since  requires every realization with a 
positive trace, the refined inertias (0, 1, 1, 0), (0, 2, 0, 0), 
(0, 0, 2, 0) and (0, 0, 0, 2) cannot be allowed by . 
Consider the following realizations of , 

N

N
N

1 1 2 1 1
,

1 2 1 1 1

  
  
  







 P




 and  with refined inertias (2,  
1 1

4 1

 

 

0, 0, 0), (1, 0, 1, 0) and (1, 1, 0, 0), respectively. It fol- 
lows that  allows all refined inertias except (0, 1, 1, 
0), (0, 2, 0, 0), (0, 0, 2, 0) and (0, 0, 0, 2).  

N

Lemma 2.4. Let  Then,  allows the  
0

.
0

P
 

  
refined inertia (0, 0, 0, 2). 

Proof. Lemma 2.4 follows from the fact that a realiza-  

tion of , has (0, 0, 0, 2) as its refined inertia. 
0 1

,
1 0

P
 


3. Minimal Critical Sets of Refined Inertias  
for Irreducible Sign Patterns of Order 2  

We are now to identify all minimal critical sets of refined 
inertias for irreducible sign patterns of order 2. 

Theorem 3.1. The set {(0, 0, 2, 0)} is the only minimal 
critical set with a single refined inertia for 2 2  ire- 
ducible sign patterns. 

Proof. Lemma 2.2 indicates that {(0, 2, 0, 0), {(1, 1, 0, 
0)} and {(0, 1, 1, 0)} cannot be a minimal critical set of 
refined inertias. Lemma 2.3 indicates that {(2, 0, 0, 0)} 
and {(1, 0, 1, 0)} cannot be a minimal critical set of re- 
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fined inertias. Lemma 2.4 indicates that {(0, 0, 0, 2)} 
cannot be a minimal critical set of refined inertias. So, it 
suffices to show that the set {(0, 0, 2, 0)} is a minimal 
critical sets of refined inertias. 

If {(0, 0, 2, 0)} is allowed by an arbitrary irreducible 
sign pattern Â  of order 2, then all the main diagonal 
entries of Â  must be nonzero. Since Â  allows a re- 
alization with a zero trace, the two diagonal entries of Â  
are of opposite sign. That is to say, the associated  
graph  ˆD A  of ˆ

di-
A , has a positive loop and a negative 

loop. For Â  
a

allows a realization with zero determinant, 
 ˆD A  ha  negative 2-cycle. It follows from Lemma 

t ˆ
s 

2.1 tha A  is refined inertially arbitrary.  
Theorem 3.2. The refined inertia sets {(0, 0, 0, 2), (1, 

0, 1, 0)}, {(0, 0, 0, 2), (0, 1, 1, 0)}, {(0, 0, 0, 2), (2, 0, 0, 
0)}, {(0, 0, 0, 2), (0, 2, 0, 0)}, {(0, 0, 0, 2), (1, 1, 0, 0)}, 
{(1, 0, 1, 0), (0, 1, 1, 0)}, {(1, 0, 1, 0), (0, 2, 0, 0)}, {(1, 0, 
1, 0), (2, 0, 0, 0)} and {(2, 0, 0, 0), (0, 2, 0, 0)} are 
minimal critical sets of refined inertias for irreducible 
sign patterns of order 2. 

Proof. Let Â  be an arbitrary irreducible sign pattern 
of order 2. If { , 0, 0, 2), (1, 0, 1, 0)}  ˆri A , then ˆ(0 A  
allows a realization with a positive trace and a realization 
with zero trace. It follows that  ˆD A  has a positive 
loop and a negative loop. Since Â  allows a realization 
with zero determinant,  ˆD A  has a negative 2-cycle. 
By Lemma 2.1, Â  is ref nertially arbitrary and {(0, 
0, 0, 2), (1, 0, 1, 0)} is a minimal critical set of refined 
inertias for 2 2  irreducible sign patterns. Similarly, 
we can show efined inertias {(0, 0, 0, 2), (0, 1, 0)}, 
{(0, 0, 0, 2), (2, 0, 0, 0)}, {(0, 0, 0, 2), (0, 2, 0, 0)}, {(1, 0, 
1, 0), (0, 1, 1, 0)}, {(1, 0, 1, 0), (0, 2, 0, 0)}, {(1, 0, 1, 0), 
(2, 0, 0, 0)} and {(2, 0, 0, 0), (0, 2, 0, 0)} are minimal 
critical sets of refined inertias for 2 2  irreducible sign 
patterns. 

For the

ined i

the r

 refined inertia set {(0, 0, 0, 2), (1, 1, 0, 0)} 
 ˆri A we claim that the diagonal entries of ˆ , A  must 

ro. In fact, assume that there exists at least a 
zero diagonal entry of ˆ
be nonze

A . Then sign pattern Â  requires 
nonsingularity. It is contradicted that Â  allows two re- 
alizations with a positive and negativ determinant, re- 
spectively. So, the diagonal entries of ˆ

e 
A  must be non- 

zero. And the fact that the diagonal entr s of ˆie A  are of 
opposite sign follows from that Â  allows a realization 
with a zero trace.  ˆD A  has a negative simple cycle of 
length 2 follows hat the inertia (0, 0, 0, 2) 

 ˆri A . 
we id

fro

tify all 

m t

minNext en imal ed in- 
er

m 3.3  0, 0, 2), (1, 0, 
1,

critical sets of refin
tias for 2 2  irreducible sign patterns. 
Theore . The sets {(0, 0, 2, 0)}, {(0,
 0)}, {(0, 0, 0, 2), (0, 1, 1, 0)}, {(0, 0, 0, 2), (2, 0, 0, 0)}, 

{(0, 0, 0, 2), (0, 2, 0, 0)}, {(0, 0, 0, 2), (1, 1, 0, 0)}, {(1, 0, 
1, 0), (0, 1, 1, 0)}, {(1, 0, 1, 0), (0, 2, 0, 0)}, {(1, 0, 1, 0), 
(2, 0, 0, 0)} and {(2, 0, 0, 0), (0, 2, 0, 0)} are the only 

minimal critical sets of refined inertias for 2 2  irre- 
ducible sign patterns. 

Proof. By Theorems 3.1 and 3.2, the refined inertia 
sets stated in Theorem 3.3 are minimal critical sets of 
refined inertias for 2 2  irreducible sign patterns. To 
show there exists no o  minimal critical sets of refined 
inertias, it suffices to show that the remaining nine re- 
fined inertia sets with cardinality 2, {(1, 0, 1, 0), (2, 0, 0, 
0)}, {(1, 0, 1, 0), (1, 1, 0, 0)}, {(2, 0, 0, 0), (1, 1, 0, 0)}, 
{(0, 1, 1, 0), (0, 2, 0, 0)}, {(0, 1, 1, 0), (1, 1, 0, 0)}, {(1, 1, 
0, 0), (0, 2, 0, 0)} and the two refined inertia sets with 
cardinality 3, {(1, 0, 1, 0), (2, 0, 0, 0), (1, 1, 0, 0)} and 
{(0, 1, 1, 0), (0, 2, 0, 0), (1, 1, 0, 0)} are not critical sets 
of refined inertias. By Lemma 2.3, {(1, 0, 1, 0), (2, 0, 0, 
0)}, {(1, 0, 1, 0), (1, 1, 0, 0)}, {(2, 0, 0, 0), (1, 1, 0, 0)} 
and {(1, 0, 1, 0), (2, 0, 0, 0)}, (1, 1, 0, 0)} are not critical 
sets of refined inertias. By Lemma 2.2, {(0, 1, 1, 0), (0, 2, 
0, 0)}, {(0, 1, 1, 0), (1, 1, 0, 0)}, {(1, 1, 0, 0), (0, 2, 0, 0)} 
and {(0, 1, 1, 0), (0, 2, 0, 0)}, (1, 1, 0, 0)} are not critical 
sets of refined inertias.  

The following theorem

ther

 follows directly for Theorem 
3.

orem 3.4. Let 
3.  
The Â  be a irreducible sign pattern of 

or wder 2. Then the follo ing are equivalent: 
1) Â  is refined inertially arbitrary; 
2) Â  allows (0, 0, 2, 0); 
3) Â  allows (0, 0, 0, 2) and (1, 0, 1, 0); 
4) Â  allows (0, 0, 0, 2) and (0, 1, 1, 0); 
5) Â  allows (0, 0, 0, 2) and (2, 0, 0, 0); 
6)  allows (0, 0, 0, 2) and (0, 2, 0, 0); Â

ˆ7) A  allows (0, 0, 0, 2) and (1, 1, 0, 0); 
8) Â  allows (1, 0, 1, 0) and (0, 1, 1, 0); 
9) Â  allows (1, 0, 1, 0) and (0, 2, 0, 0); 
10) ˆ A  allows (1, 0, 1, 0) and (2, 0, 0, 0); 
11) Â  allows (2, 0, 0, 0) and (0, 2, 0, 0). 

4. Minimal Critical Sets of Inertias for  

In

Irreducible Sign Patterns of Order 2 

 [6], all minimal critical sets of inertias for 2 2  ir- 
h

 {(2, 0, 0), (0, 0, 2)}, {(0, 2, 0), 
(0

hat an irreducible  sign pattern:  
l

{(

reducible sign patterns, which are restated here as T eo- 
rem 4.1, have been identified. In this section, we present 
an alternative proof in terms of critial sets of refined in-
ertias, as a by-product.  

Theorem 4.1. The sets
, 0, 2)}, {(2, 0, 0), (0, 1, 1)}, {(0, 2, 0), (1, 0, 1)}, {(1, 1, 

0), (0, 0, 2)}, {(1, 0, 1), (0, 0, 2)}, {(0, 1, 1), (0, 0, 2)}, 
{(2, 0, 0), (0, 2, 0)} and {(1, 0, 1), (0, 1, 1)} are the only 
minimal critical sets of inertias for 2 2  irreducible 
sign patterns.  

Proof. Note t 2 2
allows {(0, 0, 2), (2, 0, 0)} if and on y if it allows  
2, 0, 0, 0), (0, 0, 2, 0)} or {(2, 0, 0, 0), (0, 0, 0, 2)}, 
allows {(0, 0, 2), (0, 2, 0)} if and only if it allows  
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{(

{(
} if and only if it allows  

{(
} if and only if it allows  

{(

{(

{(  

{(
} if and only if it allows  

{(
 inertia sets above are critical 

se

5. Concluding Remarks  

 critical sets of refined

e
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