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ABSTRACT 

In this paper, the Laplace transform definition is implemented without resorting to Adomian decomposition nor Homo-
topy perturbation methods. We show that the said transform can be simply calculated by differentiation of the original 
function. Various analytic consequent results are given. The simplicity and efficacy of the method are illustrated 
through many examples with shown Maple graphs, and transform tables are provided. Finally, a new infinite series rep- 
resentation related to Laplace transforms of trigonometric functions is proposed. 
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1. Introduction 

Integral transforms methods have been used to a great 
advantage in solving differential equations. Limitations 
of Fourier series technique, were overcome by the exten- 
sive coverage of the Fourier transform to functions 
 f t , which need not be periodic [1]. The complex vari- 

able in the Fourier transform is substituted by a single 
variable s  to obtain the well known Laplace transform 
[1-8], a favorite tool in solving initial value problems 
(IVPs). The integral equation defined by Léonard Euler 
was first named as Laplace by Spitzer in 1878. However 
the very first Laplace transform applications were estab- 
lished by Bateman in 1910 to solve Rutherford’s radio- 
active decay, and Bernstein in 1920 with theta functions. 
For a real function  f t  with variable  the 
Laplace transform, designated by the operator, , 
giving rise to a function in 

 0, ,t 
L

s ,  F s , in the right half 
complex plane, is defined by, 

       
0

e d ; Restf t F s f t t s
      L 0.  

While we completely focus on the Laplace transform, 
in this paper, many of the ideas herein stem from recent 
work on the Sumudu transform, and studies and observa- 
tions connecting the Laplace transform with the Sumudu 
transform through the Laplace-Sumudu Duality (LSD) 
for  and the Bilateral Laplace Sumudu Dua- 
lity (BLSD) for t  [9-16]. Indeed, considering the 

 0, ,t 


s -multiplied two-sided Laplace transform, 
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by making the parameter change s with 1 u  in the equ- 
ation above we get the two-sided Sumudu transform,  
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Here, the constants 1  and 2  may be finite (or) in- 
finite, and are based on the exponential boundedness 
nature required on  f t  in the domain set  
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
  

While Analyses about the properties of the Sumudu 
transform, transform tables, and many of its physical 
applications can be found in [9-12,14,16], investigations, 
applications, and transform tables stemming from the 
Natural transform can be found in [17-21]. This new 
integral transform combines both (one sided) Sumudu 
and (one sided) Laplace transforms by, *Corresponding author. 
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       20
e d ; Re 0, 0,stf t f ut t s u .

        

Obviously, taking, , in the Natural transform, 
leads to the Laplace transform, and taking, , results 
in one sided Sumudu transform. We note that while the 
Natural can be bilateral like both Sumudu and Bilateral 
Laplace, when the variable  is chosen positive in the 
definition, both 

1u 



1s 

t
Re s  and the variable, , must be 

positive as well, as as this ought to correct a related one 
sided Natural Transform defintion misprint appearing in 
our papers [17,18]. 

u

The gist and essence of this work is solving the 
Laplace integral equation once by differention, and by 
integration by parts. Divided into two major sections, this 
paper in Section 2 explains the various multiple shift pro- 
perties connected with the Laplace transform by just 
differentiating the original function. The new infinite 
series representation of trigonometric functions related 
with the Laplace transform is proved in Section 3. In 
consequence of our formulations and derivations, three 
tables are provided at the end of the Section 3 ended with 
concluding remarks and directions for some future work. 
The tables are respectively covering derivatives periods 
for the function E sin t  (in Table 1), 21 trignometric 
series expansions entries (in Table 2), and 16 main 
Laplace transform properties, as generated by Propo- 
sition 3 (in Table 3). Examples 1, 2, and 3 in the body of 
the text of Section 2, as well as Example 6 and Entry 17 
of transform Table 2 in Section 3, are respectively af- 
forded Maple graphs (see Figures 1-5), showing both the 
time function invoked in the corresponding example, and 
its resulting Laplace trasform. 

2. Laplace Transforms by Function 
Differentiation 

As stated earlier in the introduction, an ultimate goal of 
ours, among others, is calculating the Laplace transform 
of  f t  by simple differentiation rather than usual inte- 
gration. We show that we can do this, without resorting 
to the Adomian nor homotopy methods, ADM, and 

HPM, as was done in [22,23]. Along with the Laplace 
series definition below, some elementary properties are 
proved. 

Definition The Laplace transform (henceforth de- 
signated as F(s)) of the exponential order and section- 
wise continuous function , is defined by,  f t 

     1
0

0

d1
e ; Re 0

d

n
st

n n
n

f t
f t s

s t









 
.      

  
L  (1) 

Remark We observe that, from the traditional Laplace 
transform, taking  u f t , so that  
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 nu  and  in Bernoulli’s integration by parts,  nv
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and noting  2 1
1

n
1    for n ≥ 0 Equation (1) follows. 

Can’t one choose u = e−st and  for solv- 
ing the Laplace integral equation by parts? The detailed 
answer with analysis is given in Section 3. For simplicity,  

 dv f t t d

we use hereafter 
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d
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n
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Multiple Shifts and Periodicity Results 

Theorem 1 The Laplace transform of  derivative of -i th
 f t , with respect to  is defined by, t
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Proof. The LHS of above equation is  

     1 1

0
0

i i ki
k

s f t s f
  


   L , substituting Equation  

(1) for  f t  L , the proof is completed. 
 

Table 1. Period function calculations. 

 f t  sinE t  0t   t T


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Table 2. New infinite series representation of trigonometric functions. 
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Table 3. Laplace transform properties with respect to the Proposition 3. 
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0
1 e

n i m km i
m n i kst

m
n kj

s f t f
s

n j t

  
  

 

 
  

  
   

11   
0 0

times

d
t t im

i

f   

         

1

1
0 0 0

1
m

m n i m

n
n j

n j s f t



 


 

 
  

 
  

12 
   

0 0

times

d
t t i

m

i

f 


 

       

 
1

0 1
0

1
n i mm

m n

n j

s f t

n j

 


 

 
  

  
  

13 Periodic function    
0

1
0

1
e

1 e
st n

nsT
n T

s f t







 
   

  

14    
0

d
t

f t g           2

1 1
0 0

e st n

n n
n

s f t g t



 



   
  

15 Initial Value      1

10
0 0

lim lim e st n

nt s
n

f t s f t


 
 



    
  

16 Final Value      1

10
0 0

lim lim e st n

nt s
n

f t s f t


 
 



    
  

 
Theorem 2 The Laplace transform of  antideri- 

vative of f(t), in the domain 
-i th

 0, t  with respect to , is 
given by, 

t Proof. Applying Equation (1) in 
 

i

f t

s

 L   and  

  
   

10 0
0

0times

d e
n

t t i st
n i

n
i

f t
f

s
  .





 



  
     
   

 
L




 

performing the usual computations, yields the RHS of the 
equation above and proves out theorem. 

Theorem 3 For , the Laplace transform of the 
function 

1m 
 mt f t , is given by, 
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(a)                                                       (b) 

Figure 1. Graph of example 1. (a)    t tJ t 1 ; (b)  
 

F s
s

3
2 2

1

1



. f

 

 
(a)                                                      (b) 

Figure 2. Graph of example 2 with a = 1, b = 2. (a)   e et t

f t
t

2 
 ; (b)    

 
 

s
F s

s

1
log

2





. 

 

       
1

=0 =1
0

e .
nm

m st
n m

n j

n j f t
t f t

s





 

 
         

L


 

Proof. From the theory of Laplace transform  

     d
1

d

m
mm

m
t f t f t

s
      L L

is given by Equation (1), 

   
   

1
0

0

d
1 e

d

nm
mm st

m n
n

f t
t f t

s s









                
L .   (2) 

 , when  f t  L   
When 1m   in Equation (2), 
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(a)                                                      (b) 

Figure 3. Graph of example 3. (a) ; (b)   
t

f t τ τ τ
0

sin d  
 

F s
s

22

2

1



. 

 

 
(a)                                                      (b) 

Figure 4. Graph of example 6 with a = 5. (a)  f t tcos 5 ; (b)    
s

F s
s2


 

. 

 

 
   

     

1
0

0

2
0

0

d
e

d

1
e .

n
st

n
n

n
st

n
n

f t
tf t

s s

n f t

s

















          
    

 
   

  





L

     (3) 

When  in Equation (2), 2m 

 
   

      

2
2

2 1
0

0

3
0

0

d
e

d

1 2
e .

n
st

n
n

n
st

n
n

f t
t f t

s s

n n f t

s

















 
         

  
   

  





L

   (4) 

Finally for the non-negative integer , after simplifi- m
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(a)                                                      (b) 

Figure 5. Graph of entry 17 of Table 2 and its Laplace transform. (a)  f t t t5 5sin cos ; (b)  

       
 


n

n

n n nn
F s s2

2 2 1 2 10

1 5 5 1

512 2 6 10



 


 . 

 
cation, 

 

    

 

1

1

1
1

d e
1

d

1 2

.

m st
m

m n

n m

m

n m
j

s s

n n n m

s

n j

s





 

 


 
  

 

  






 

which yields the result of Theorem 3.  
Theorem 4 The Laplace transform of the function  
 
m

f t

t
, for , is, 1m 

     
 

1

1
0 0

0

e
nm

st
m n

n j

f t f t

t n j
.

ms





 

 

 
        

L

  

Proof. Substituting Equation (1) for  F   in  

     
times

d
m

m s s

m

f t
F

t
 

  
 

 
 
L  and after the usual  

computations, Theorem 4 follows.  
Example 1 As an application of Theorem 3, the 

Laplace transform of , where   1tJ t

   
 

2 1m m

1 2 10

1

2 ! 1 !mm

t
J t

m m









 , denotes the first kind  

order one Bessel function, is calculated as follows, 
(graph shown in Figure 1), 

   

   

   

       
       

 

1

3 5 7

3 5 7

2 4 6
1

3 5 7

3 5
2

3 5 7

12

2 1

2 1

2 0! 1! 2 1! 2! 2 2! 3! 2 3! 4!

1 3 5 7

2 0! 1! 2 1! 2! 2 2! 3! 2 3! 4!

6 20 42

2 1! 2! 2 2! 3! 2 3! 4!

1 functions of 1

2 1 !
1

2 ! 1 !

n nn

nn

n

f t J t

t t t t

t t t
f t

t t t
f t

f t t

n
f t

n n








    
       

   
       

    
     

   


  
  










  1
1

functions of

n

t







 

Now substituting the above derivatives in Equation (3), 
and after applying both the limits,  and     2 0nf t 

       
 

2 1

2 1

1 2 1 !

2 ! 1

n
n

n

n
f t

n n




 


   !
 for   , 0n 

 

    
 

    
 

 

1 3 3 5

2 1 2 3

3 3 2 2 1 2

3

2

3 2 3
2 2

2 1! 4 3!

2 0! 1! 2 1! 2!
2 1 2 1 !

1
2 ! 1 !

2 1 2 1 !1 4 3!
1 1

2 1! 2! 2 ! 1 !

1 1 1
1 .

1

n

n n

n

n n

tJ t
s s

n n

n n s

n n

s s n n

s s
s

 





 
       
 

 
 

s

  
     

        

      





L
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The multiple-shift theorems that follow are useful in 
treating differential and integral equations with poly- 
nomial coefficients. 

Example 2 The Laplace transform of 
e ebt at

t

 
 is  

calculated by taking, 

     
   
         

1

2 2 2

1

e e , e e ,

e e , ,

1 e 1 e ; 0

bt at bt at

bt at

n nn n bt n at

f t f t b a

f t b a

f t b a n

   

 

 

    

 

    

  

(Figure 2), When  in Theorem 4, 1m 

     
0

0

e .
n

st
n

n

f t f t

t ns








  
    

    
L  

So that, 

   

   

12 2

2

1 1

e e

1 1

2

1 1

log 1 log 1 log .

bt at

n nn n

n

n n
n n

n n

t

b ab a b a

s s ns

a a b

s sns ns

a b s a

s s s b

 



 

 
 
 

    
   

  
         
  

                   



 

L

b 



,

 

Theorem 5 Let  when the  derivative of 
the function 

, 1i m 


-i th
f t , with respect to  is shifted by , 

then the Laplace transform is given by, 
t mt

 

     

         

1
0 1

0

1
1 1

0 1

d

d

e

1

i
m

i

nm
st

n m i
n j

mi
m i k m k

k j

f t
t

t

n i j f t

s

i k j s f





  

 


   

 

 
 
  

  
   

  

     





L

0 .

  (5) 

Proof. The proof is simple, we have  

     d dd
1

d d

i im
mm

i m d i

f t f
t

t s

  
   

    
L L

t

t





 where  

 d

d

i

i

f t

t

 

  

L   is given by Theorem 1. 

Theorem 6 For non-negative integers i and , when 
the  derivative of the function 

m
-i th  f t , with respect  

to  is shifted with t
1
mt

, then the Laplace transform is  

given by, 

 

   
 

     
 

1

1
0 0

0

1 111

0 0

d1

d

e

1 0
.

i

m i

nm
st

n m i
n j

m ki k mmi

k j

f t

t t

f t

n i j s

s f

i k j





  

 

   

 

 
 
  

 
   

   




 





L

     (6) 

Proof. The LHS of above equation is  

   
times

d
d

d

i
m

is s

m

f t

t


   
 
  

 

 L  and 

 d

d

i

i

f t

t

 

  

L 

1

 are given  

by Theorem 1, and after proper calculations, the proof is 
calculated. 

Theorem 7 For , the Laplace transform of the 
 antiderivative of the function 

,i m 
-i th  f t  with respect to 

t   the interval in  0, ifted with mt ,  given by, ,t  sh  is

  

     

0 0

times

1
0 1

0

d

e .

t t im

i

nm
st

n m i
n j

t f

n i j f t

s

 





  

 

 
 
 
 

  
   

  

 




L

 

Proof. Applying Theorem 2 in LHS yields the RHS of 
the Equation above. 

Theorem 8 The Laplace transform of the  anti- 
derivative of the function 

-i th
  ,f t  with respect to  in  t

the interval  0, t  shifted with 
1

; 1,
m

m
t

  is given by, 

  

   
 

0 0

times

1

1
0 0

0

1
d

e .

t t i

m

i

nm
st

n m i
n j

f
t

f t

n i j s

 





  

 

 
 
 
 

 
   

   

 




L

 

Proof. Computing the summation in the RHS of the 
Equation in Theorem 2 with respect to s  in the domain 
 ,s  ,  times, yields the proof. m

We now establish the following results, 
Theorem 9 For , the Laplace transform of the 

 derivative of 
,i m 1

-i th  mt f t  with respect to t  is given 
by, 

       

     

1
0 1

0

1
1

0

d
e

d

0 .

ni m
m st

i n
n j

i
i k km

k

n j f t
t f t

t s

s t f

i m





  

 


 



  
            







L
 (7) 

Proof. Substituting Theorem 3 in 
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       1 1

0
0

i i k km m

k
t f t s t f

  


    Lis . 

Theorem 10 The Laplace transform of the   

derivative with respect t

-i th

o t  of 
 

,
m

f t
 for non-nega

t
tive  

ve , integers, i  and ,m  is gi n by

 

   
 

     

1

1
0 0

0

11

0

d

d

e

0
.

i m

nm
st

n i m
n j

i k ki

m
k

t t

f t

n j s

s f

t





  

 

 



 
  
   

 
   

  







L

      (8) 

Proof. Substituting Theorem 4 in  

i f t 

   
   1 1 0k

i i kf t f   
0

i
m mk

s s
t t

 
 

L . 

Example 3 Consider the function, 
0

sin d
t
   , then  

taking   sin ,f t t  yields the expected derivatives,  
            1 2 2sin , , 1 sin

nncos ,f t t t t f t t    ,f
 2 1 nn

   

and,    1 cosf t t  ;   0n  . Next, for  
1  in Theorem 11, i m

       
30

0
0

1
d e

n
t st

n
n

n f t
f

s
   .









          
L  




Therefore (Figure 3), 

   
 

   

 

4 6 2 20

4 2 2

22

1 2 12 4
sin d

1 12 2
1

2
.

1

n
t

n

n

n

n

s s s

n

s s s

s

  


        

  
    

 




 



L

 


Theorem 11 For non-negative integers  and  
th

i m ,
e Laplace transform of the -i th  antiderivative with 

respect to t  in the domain  0, of  mt f t , is given 
by,  

t  

  

     

0 0

times

1
0 1

0

d

e

t t im

i

nm
st

n i m
n j

f

n j f t

s

  





  

 

 
 
 
 

 
  

  

 




L

 

.



Proof. From the property of Laplace transform, the  

LHS of above equation is  in which Theo-  

rem 3 is substituted and simplified.  
lace transfo

 e domain

 mt f t

Theorem 12 The Lap rm of the -i th  
antiderivative with respect to t  in th   0, t  of  
 
m

f t

t
, where, , 1i m  , is given by,  

   
   

 
1

10 0
0 0

0

d e
n

.
m n i m

n j
i times

f t

n j s






mt t i stf






      

 

  
 
     
 

L  

Proof. The proof is straightforward where we mul  

tiplied 

- 
1

is
 to Theorem 4. 

pl  function, Exam e 4 Consider the
0

1 e
d

t






 , which  

Laplace transform we can find by taking,   1 e tf t   ,

and,  

  

yielding,        1 2e , e ,t tf t f t      
      1

1 e .
nn tf t
    Now, since from  the theorem

 we have, above, for 1,i m 

     
10

0
0

,
t

n
n

f

ns




d e
n

st f t






 

   



 

    
  

we consequently get, 

L

 

 

0
d

1

2 3 4 1

1

2

1 e

1 1 1 1
1

2 3
1 1 1 1 1 1

1 log 1 .
2

t

n

n

n

n

s s s ns

s s s ss ns









 

     

            
   





 

From Theorem 5 through Theorem 12, there is no re- 
striction on positive integers  and , which means 
bot


 

 
L

m i
h can be same (or) different and either of the integer 

can less than (or) greater than to one another. 
The Theorem 5 and the Theorem 9 varies only in the 

coefficients, that is the order of the derivative, the same 
holds for Theorem 6 and Theorem 10, again the Theorem 
7 and Theorem 11 varies only in the coefficients, that is 
the order of the anti-derivative, similarly for Theorem 8 
and 12. Hence we have the following propositions, re- 
spectively. 

Proposition 1 If the function  f t  and its  1i   
derivative with respect to t  go to zero as 0t  , then, 

is

  L

   
 Co

d d
.

d d

i i
m m

i i
t f t t f t

t t

  
      

   
L L   (9) 

efficients i



   
 Coefficients

d 1 d
.

d d

i i

i m m i
i

f t
f t

t t t t 

    
    

     
L L   (10) 

Proposition 2 
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  

  
 

0 0

times

0 0

times Coefficients

d

d .

t t im

i

t t im

i i

f

t f

  

 



 
 
 
 


 
 
 

 

 









L

L

 


    (11) 

   

  
 

0 0

times

0 0

times Coefficients

d

1
d .

t t i

m

i

t t i

m

i i

f

f
t






 



 
 
 
 
 
 
 
 

 

 









L

L

     (12) 

The following initial and final value, convo
function periodicity related theorems can 
verified through conventional Laplace transform theory. 

Theorem 13 Let the function, 

lution, and 
be easily 

  ,f t  be Laplace 
transformable, then, 

 
   

0
lim lim e .

n
st

nt s

f t
f t

s






 

 
          (13)

0n  0

 

 
   

0 0
0

lim lim e .
n

st
nt s n

f t
f t

s






  

 
   


  


     (14) 

Theorem 14 The Laplace transform of the convolution 
of two functions  f t , and,  g t , is given by, 

   
   

 

   
2 10

0
0

n s
d e .

n
t st

n

f t
f t g  

ng t







       L  

he L  tran periodic 
function 

    

Theorem 15 T aplace sform of the 



 f t  with period  so that  


 ,T
  f t T t ,f   is given by, 

 
   

1
0

e .
1 e

st
sT n

n

f t
s


 


0

1
T

nf t 
        

L  

 Equation (1) Proof. Writing as, 

   

 

1
0

0

1
0

d1
e

d

d1
e st

d

Tn
st

n n
n

n

n n
n

T

f t
f t

s t

f t

s t












 
     

  


 
  

L

 

Now substituting 




 

t T 
e equation so

 in the second infinite 
series of the abov  that the limits  ,T   
changes to  a ng 0, nd by havi     n nff T   

proof. 
 

pletes the and after rea uating com
Example 5 The full sine-wave rectifier is given by the  

rranging and eval

function,   sin ,f t E t  with the period 



T  .  

Using Theorem 15, the Laplace transform of the full 
sine-wave rectifier is calculated by using the entries of 
column 5 of Table 1, 

 

   

3 5 7 2 1

2 4 6 8 2 1

1 e
1

1 e

s
n

n

s n

E E E E E

s s s s





    


 

 

2 2
cosh .

2

t

s

E s

s






sinE

 
       



L



     

3. Laplace Transforms by Integration by 
Parts 

The Laplace transform of is calculated by substituting 


  

t  
 f t t  in the Lapla tegral transform, now by ce in

taking u t  and d e dstv t  evaluating by parts gives  

2

1

s
. On the other hand, to calculate the Laplace trans-  

 

aluation leads 

form of sin t , we take sinu t  and d e dstv t  and 

after ev
2

1

1s 
. Here we can also take u =  

e st  and d sin dv t t  again it gives the same Laplace 
transform  se  so
integral eq on by takin

. Hence, in this
uati

ction, we lve the Laplace 
g, e st , and u   t , d dv f t

and integrating by par elow, the sub-scripts in say ts. B

   nf t  represents th egration n  in the  e order of int

variable ,t  

 

  
times

d
n

n

f t t


 

 
 
 . 

Su ect to some constraints we then generally ave, 
osition 3 The Laplace transform of a or’s 





bj  h
Prop  Tayl

nometric function  seriezable trigo ,  f t , is given by, 

     1
e d ;

nst nf t s f t t

 
0

1 times 0

Re( ) 0.

n
n

s









 
     
 




  L

 

e stu 
e

Proof. Now , so that  
       0 1e , , , 1 e

nnst ss tu u u sn st    , 
Next 
  

 d dt tv f , leads to  

          

 

2

0 1

1

1 time

d , d , ,

d

n

n

v f t t v f t t v

f t t


 



 
 



    n

s

Substituting  and in the Bernoulli’s formula 
of continuous i ation parts and observing 
is positive for s Proposition 3.  

Example 6 The Laplace transform of

 nu
ntegr

all n

 nv  
by 

give
 2

1
n  

0  
 cos at  with 
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non-negative integer, a, is calculated by simply integra- 
ting the function. Now, for 0n  , 

     

   
 

1

2 1 2 1

1 sin
n

n n

a

at
f t 




 

2a

and,  

sin
cos , , ,

at
f t at f t  

    1

2 2 1

1 cos
n

n n

at
f t

a



 


 . Furthermore, in view  

of Proposition 3, when applying the upper and lower 
limits in the antiderivatives above, we get.    2 1 0,nf t    

and  
  1

2 1 1

1
n

n n
f

a



 


 , whence we get, (function and its  

Laplace transform in Figure 4) 

 

 

3 2 1

2 1

2

cos

.

ns s
at

a a a

1
1

n

n

s

2 2

1 1
n

n

n

s s s

a s

 
    

s

a a a

          





  

 



e agree that co
roposition 3, since the 

continuous integration of constant and polynomials with 
respect to does not converge anywhere when 
and 

3.1. New Infinite Series Representation for Trig 
Functions 

In


 

L

W nstants and polynomials cannot be 
Laplace transformed with the P

t  
0 . 

,t   
t 

 the Proposition 3 the limitations of  f t  to be 
Taylor’s seriezable trigonometric function is acceptable 
only on a theoritical point of view, from the evaluation of 
Laplace tra sform of trigonometric functions vice-versa 
of De on

n
finiti  of Section 2 and Proposition 3. On the other 

hand, we show under what condition the Proposition 3 

inve ansform of Proposition 3. 
ositio

exists? Definitely the answer would be by finding the 
rse Laplace tr

For simplicity’s sake, re-writing the Prop n 3, is 
akin to evaluating the limits and representing,    1nf t , 
in Proposition 3. The Laplace transform of Taylor’s se- 
riezable trigonometric function  f t  is simply defined 
by, 

     

ove equ

r a star n  in 

 1
0 0

; Re 0.lim
n

n
t n

f t s f t s



 

     L  

The inverse Laplace transform of Proposition 3 would 
be same as inverse Laplace transform of the ab - 
ation, and hence it is enough to find the inverse Laplace 
transform of , 0ns n  . 

Fo t up, whe  0n  ,ns  
 t

the inverse La- 
place transform of be  which is Dirac  

delta function [2] since, .  

Again when 

1 would 

   
0

e d 1stt t t 
 


    L

1n  n in s  

e Sum

the inverse Laplace transform 
of s is given by the first derivative of Dirac delta function 
with respect to t ,    

udu transform context (see 
Eq 18 d (

rm o

1 t . In particular, readers are 
invited to consider connected relation to Dirac delta 
function but in th

uations (2.19), (2.20), ( ), an 4.20) in [9]). In 
general, the inverse L place transfo f n

4.
a s  is given by  

   n t , since      
0

e d n n st nt t t
 


    s . In a

 n-th a

L ll  

cases upto the  deriv tive the initial value theorem is 
undefined for   ,t  and    

nct

functio ted in new infinite series,
coefficients are calculated by integrating the fu

 4 Th

zable trigonometric function 

n t  leads of course to the 
study of generalized fu ns (see [2], and references 
therein for more details). 

We prove the inverse Laplace transform of singular 
functions that satisfy the Tauberian (initial value) theo- 
rem in the following proposition where the trigonometric 

io

ns are represen  where 
nction, 

[24]. 
Proposition e necessary condition for the exist- 

ence of Proposition 3 (and hence the above equation) is 
that, the Taylor serie
 tf   can be expressed as, 

       01 000

d
2 d .

d

n

n ntn

f t f t J vt v
t

 

 

    

Proof. Taking inverse Laplace transform of  

     0 10
lim .n

t nn
f t s f t 

       

     1

0 0

.lim
n

t n


L

1nf t s f t




 

  L       (15) 

In [14] the Bilateral Laplace Sumudu Duality ( SD) 
was established. the inverse Laplace transform of  is 
gi

BL
1

ven by (see Equation (5.10) in [14]),  

   0 00 0

0

2 d d

1
e d 1.

v

s

J 2vt v J vt v

v

 

s



       

 

 



L L

   (16) 

Thus    1
00

1 2 dJ vt v  L , here the  


     
 0 20

1
2

!

m m

m

vt
J vt

m






   is the first kind Bessel’s  

function of order zero. And this particular function will 
play the major role in the exponential kerneled
transforms (see Equations (30) through (35) in [20]). And 
the Laplace transform is taken with respect to , since v 
and ndependent, the perm rchange 
of of integration is consid ur. Though  
the function 

 integral 

t
ntet  are i issibility of i

 order ered in favo
 00
2 dJ vt v



  gives no meaning (as be-  
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comes zero when evaluated) but as per the Laplace (in- 
tegral) transform point of vie
rem 5.1. Equation (5.8) in [14]). By having, 

w this is worth (see Theo- 

 0
0

lim 2 1.
t

J vt


          (17) 

The Laplace transform of the first derivative of  

 0 2J vt  with respect to t  is e 1
v

s

  and with the  

help of Equati 7), ons (16) and (1

 
   0 00 00
2 d lim 2

t

00

d
2 d

d
J vt v

t

d .s J vt v J


    L

 (18) 

vt v s



 

 
  

 

L

Therefore the inverse Laplace transform of s  is  

 00

d
2 d

d
J vt v . In general, from place trans-  

t



  the La

function with respect to form of the -n th  derivative of 
t , 

 

     
   1

0
0

d
lim 2 .

d
n k

kt

0

1
1

1
1

0

d
2

d

d
2 lim 2

e

n

n

kn
n kn

v kn
n s

k

J vt
t

0 0
00 d ktk

s J vt s J vt

s s


 





 
 
 

  

 





L

L  (19) 
t 

J vt
t

 



But, 

     
0

0

1d
lim 2 ; 0 .

!d

k kk

kt

v
J vt k

kt


     (20) 

Finally from Equations (19) and (20), 

 
   

   

 

00

11
1

0 0
0

1 11

0
0

d
2 d

d

1
e d d

!

1
.

! 1

n

n

k n k kv n
n s

k

k n k kn
n

k

J vt v
t

s v
s v

k

s v
s

k k



  




  



 
 
 


 

 
   

  



 



L

 v    (21) 

ide of Equation 
(21) is zero, 

Since the second part of right hand s

     1
00

d
2 d ; 0

d

n
n

n
s J vt v n

t

  L  .   (22) 

Substituting Equation (22) in Equation (15) for 
 1 nsL  completes the proof of Proposition 4. 

Thus, the function  00

d
2 d

d

n

n
J vt v

t



  from the Equ-  

at
de

wing example. 
Example 7 Consider the function  then  

ion (20) satisfies the initial value theorem (unlike Dirac 
lta function) which is zero. To concretize ideas, we 

give the follo
2sin t ,

  2sinf t t ,  1

sin 2

2 4

t t
f   ,  

2

2

cot t
f  

s 2
,  

2 2! 8

 

3

3

sin 2

! 16

t t
 ,  2 3

f 


4

4

cos 2
, ,

2 4! 32

t t
f  


   

       1
1 sin 2

n
t


 

2 1nt 

2 1 2 12 2 1 ! 2
n n

f t
n 

 
 

, and,  

  
 

  
 2 1 1 cos 2

nn tt
f t

 
 2 2 2 322 2 1 !n nn    

. Applying Pro- 

position 4, a tends to zero, a the s t ll    2 1 0,nf t   and  

   
 

2 2 2 3

1
,

2

n

n n
f t 


  and since 

1

2
 is the common factor,  

0n  ,
infin

 the function,  can be written  the new 
ite series as, 

2sin t ,  in

   
2 1

2
02 3 2 10

0

11 d
sin 2 d .

2 2 d

n n

n n
n

t J
t

 

 



    vt v

From Equation (22), it is wothy 
Laplace transform of the integral of  derivative of 

to note that the 
-n th

 0 2 ,J vt  with respect to t, in the do  0,  main with 
respect to v, is sim we

vative of 

ply the s po r the order of the deri-  

 J0 2 vt

e fun
 Proposition 4,  gives all new 

infinite series expansions of ba metric func- 
tions. The extra factor in the infi  of entries 5, 6, 
9, 10

. 

Along with that of th ction, 2sin t , in light of this 
new infinite series Table 2

sic trigono
nite series

, 14, 16, 20 and 21 are common for all 0,n   
while integrating. Furthermore, the following expression 
is easily derivable from the Bessel’s function,  

   
 

0d 2 1
.

n m m m nJ vt v t  
   

0 ! !d n
m m m nt  

 ofTherefore, the Laplace transform  2sin ,t  can be 
calculated through, 

   

2

2 1

02 3 2 10
0

sin

11 d
2 d

2 2 d

n n

n n
n

t

 
 

2 1

2 3 2
0

11 2
.

2 2 4

n n

n
n

J vt v
t

 

 


  

s

s s s






 
  

  


  




Lapla
re 5), 

 

L

L  

Entry 17 of Table 2 has the following ce trans- 
form (shown in Figu

 

5 5

2
2 2 1 2 1

0

sin cos

1 5 5 1
.

512 2 6 10

n

n
n n n

n

t t

s


 


  

      


L
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3.2. LaplaceTransform Properties in View of 
Proposition 3 

The Laplace transform of multiple shifts functions can 
readily be derived with the help of Proposition 3. Since 
the derivation of the various properties are straight- 
forward and similar to the theorems of Section 2.1, we 
give directly the Laplace transform of shifted functions, 
ba

e transform of the function, 

sed on Proposition 3 in Table 3 where m  and i are 
non-negative integers. 

Example 8 The Laplac
sint a ,t  is obtained by simply integrating sin at ,  

thus   sinf t at     , 1

cos at
f t

a
  ,   , 

   
 

 
1n

2 1 2 1

1 cos
n n

at
f t

a
 


 ,    

 
 

1

2 2 1

1 sin
n n

f t 




n
at

a



.  

When, 1m  , in entry 3 of Table 3, 

     1
1

0 0

e .st n
n

n

tf t ns f t


 




       
L  

Therefore, when 0t  , and t  ,    2 0,nf t2    

and    
 

 
 ; 0 ,n   yielding, 

1

2 1

1
n

nf t







2 1n
a



   
   

   

3

3 5

2n 1

2 3 22

2 4
sin

1 2 1 2
.

n

n

s s
t at

a a

n s s a

s aa





    

 
 



L

 

Example 9 The Laplace transform of



 
cos t

t
 is cal-  

culated by integrating cost. Now,   cosf t t , 

   1 sinf t t , 

 2 2  cos      1, , 1 sin ,
n

nf t t f t  
1n

t  and  ,  

     2 1 1 cosnf t t  

 , 0t f t   and


. Now, for,  and, 

, , 

Finally, with in the entry 4 of Table 3, 

0t  ,

  f t   2 1n     1

2 1 1 ; 0
n

n n


  . 

1,m   

     
 

1
1

0
0

e .
1

n
nst

n

s f tf t

t n








  
        

L  

So that, 

  

 
   

1 12 4 6 1cos
n

t s s s
       

2

2 14
2

1

11 1
lo .

2 2 1

n

n n

s

n

s
s

n







   
          





L

 

Example 10 The La form 

2
g

1s
 

2 4 6 2t

s

  

place trans of, 
t

0
cos d ,     

is calculated. For,   cosf t  et  after taking limits, w  
lying the 

formu

,
1

1
get,      1

2 1 ; 0 .
n

nf t n


   Hence, app 
la with, i m  , in entry 11 of Table 3, 

.t   2
10

0 0

d e
t st n

n
n

f ns f  


 




          
L  

We consequently then have, 

   

   

     

      

   

1 2 1

0
0

1 2 1

1

1 12 1 2 1

2 2

0 0

2

2
2

cos d 1 2 1

1
1 2 1

1

1 2 3 1 1

1
1

t n n

n

n n

n

n nn n

n n

n

n s

n s
s

s

n s
s

s s s n s
s

s
s

  


 




 



 
  



      

    

  

           
      







L



1 1

1 1 1
n n

n s n
s  

       

1 1

4 2

1
1 1 1 1

1

n n

n

n n

s n s
 

 



     

   

 

s  
2

2

2

1
.

1

s 


It is important to note that with respect to the entries 5 
and 9 (and entries 6 and 10) of Table 3, the proposition 1 
Equation (9) (and Equation (10)) holds true. Similarlly 
with respect to the entries 7 and 11 (and entries 8 and 12) 
of Table 3, the proposition 2 Equation (11) (and Equa- 
tion (12)) remains the same. 

3.3. Concluding Remarks and Future Work 

As far as the Section 2 is concerned, when the function is 
Laplace transformed by differentiation, then the inverse 
Laplace is automatically an integration process. Having 
worked with various examples, our proposed methods 
lead to exact solutions. A remaining open query is that of 
defining the inverse for the Laplace transform by using 
similar tools and processes as in Proposition 3. But in 
vi

ess of differentiating. For 
example consider the function , its Laplace trans-  

2s s 

 

ew of the concept of Section 2 above, Laplace and 
inverse Laplace transform are the respective reciprocal 
processes of differentiation and integration of the func- 
tion. 

If so, then with the Proposition 3, the inverse Laplace 
transform will be the proc

cos t
form by the Proposition 3 is given by  0

1
n

n

2 1ns
 


   

which gives 
2 1

s

s 
. Hence for finding the original func- 

tion, when equating the coefficients of identical powers 
of 

 

s  with Proposition 3, we get    
As t e sub-scripts denote the order 

  1

2 1 1 .
n

nf t


    
h of integration. Now 
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by differentiating        1

2 1 1 , 2 1
n

nf t n


     times, 
one should get the infinite series of the function, cost as 
entry 4 of Table 2. 

As part of some future works in this regard, we aspire 
to pursing working schemes of this paper, and establish- 
ing more comprehensive tables as was done for the 
Sumudu transform i nsform
in
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