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Abstract 
 
The electron gas examined in a very thin potential tube exhibits some special kind of the excited pairs mak-
ing them similar to the Cooper pairs. The coupling energy of the pair can be calculated as an amount of en-
ergy required to transform the excitation energy of a coupled pair into the one-electron excitation energy. For 
an extremely thin potential tube the coupling energy of the pair tends to infinity. The gas energy is unstable 
with respect to the pair excitation which provides a kind of gap near the Fermi level. A decisive part of the 
gap energy is due to the electron-electron interaction. The gap is attained on condition the length of a thin 
potential box exceeds some critical value. In the next step, a coherence length in the gas is obtained. This 
length, combined with a critical magnetic field representing a transition from a superconducting to a normal 
state, allows us to calculate the penetration depth of the magnetic field for the singlet and triplet excitations. 
The penetration depth together with the critical magnetic field and energy gap can provide us with a critical 
current, as well as critical temperature for the superconducting state. 
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1. Introduction 
 
Discovery of the superconducting behaviour in the nearly 
one-dimensional compounds, as well as advances in 
semiconductor technology of the wire-like structures, 
provided a special impact of interest in the one-dimen- 
sional many-electron systems. One of the main features 
of the superconducting state described by the Bardeen- 
Cooper-Schrieffer (BCS) theory is that two one-electron 
states are occupied simultaneously by an electron pair 
called the Cooper pair. The electrons in the pair have the 
same absolute value of momentum, but an opposite spin. 
Moreover, if the electron momenta are considered in the 
space of the wave vector k


, their directions in the pair 

are exactly opposite. This property is characteristic also 
for the excited states of the pair. A factor coupling the 
electron pair together is usually attributed to the crystal 
lattice: it is assumed that some phonons can provide an 
attractive potential between electrons putting the pair in a 
kind of the bound state. If some gap exists between the 
ground state and an excited state of the Fermi sea, the 
transport of the pair occupying the excited state can 
exhibit the properties of a superconducting behaviour. 

The superconductivity in one dimension has attracted 

much theoretical attention [1-4] especially after the 
experimental discovery of superconducting effects in the 
one-dimensional organic conductors [5-9]. But an interest 
came also because of the early claim that a high tempera- 
ture superconductivity can be realized in one-dimen- 
sional materials [10]. In this context an interesting 
indication concerning an increase of superconducting 
correlation due to dimensionality change in quasi-one- 
dimensional conductors has been also done [11]. Simulta- 
neously, the nature of supeconductivity in quasi one- 
dimensional systems seems to remain controversial since 
its discovery [12]. 

An important remark on superconductivity in one 
dimension has been done by Friedel who suggested that 
the coupling potential characteristic for the electron pair 
is due to the electron-electron interaction and is not a 
phonon-mediated effect [13,14]. The purpose of the 
present paper is to point out that, in fact, a pair-like 
excitement of the electron gas typical for the Cooper 
pairs is not necessarily limited to a situation due to the 
lattice potential and an interaction provided by a 
phonon-like coupling. In particular, it is demonstrated 
that the coupling of an electron pair, and an excitement 
of the coupled pairs, can be an effect strictly connected 
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with the low dimensionality of the electron gas. More 
accurately, the pairing is due to the properties of the 
Coulomb and exchange interaction between electrons 
which become sound on condition the space occupied by 
the electrons is narrowed to a very thin potential tube. 

In the detailed calculations the Coulomb and exchange 
interactions in one-dimensional systems are studied in 
the framework of the Hartree-Fock approximation. It can 
be shown that these interactions can give a strong 
coupling energy of the electron pair having the same 
absolute momenta, but opposite spin, on condition the 
transversal cross-section of the gas potential tube is 
tending to zero. The calculation of the excitation energies 
of the one-dimensional electron gas is also based on the 
Hartree-Fock method. 

Evidently, in a physical practice the electron gas can 
never become strictly one-dimensional, nevertheless this 
kind of situation is roughly approached when electrons 
are enclosed in a very long and very thin potential tube. 
Simultaneously, because the Pauli principle and the 
Fermi statistics should be obeyed also in this limiting 
case, the magnetic properties of the electron ensemble 
become here of importance. These effects are studied on 
the same footing as applied to the electron interactions in 
a non-magnetic gas. 
 
2. One-Electron and Two-Electron  

Excitation Energy of an Almost  
One-Dimensional Electron Gas 

 
The electron gas energy in the approximation by Hartree 
and Fock is a sum of the kinetic energy and the Coulomb 
and exchange energy due to the interaction between the 
electron particles. The interaction of electrons with a 
positive core can be neglected because it can be con- 
sidered as a constant term which remains unchanged in 
course of the electron excitation process. The potential 
tube is assumed to be so narrow that only the kinetic 
energy excitations of the longitudinal motion of electrons 
along that tube should be taken into account, with no 
allowed transversal kind of the electron transitions. 

In a ground state of the gas its one-electron levels are 
assumed to be doubly occupied by electrons of an 
opposite spin between the lowest level of = 1n  and 
the highest occupied level Fnn = . In consequence, 
there exists no net magnetic moment of such a gas; see 
Figure 1. 

An electron excitation from some level gn  located 
within the interval 

1 g Fn n                  (1) 

to a level en  above Fn , so 

> ,e Fn n                    (1a) 

 
(a)      (b) 

Figure 1. Pattern of the energy levels filling the Fermi sea of 
a non-magnetic one-dimensional electron gas: (a) a scheme 
before excitations, (b) a scheme after a pair excitement 
from the level Fn  to the level  1Fn . Full circles denote 

the occupied electron states. 
 
requires an excitation of the kinetic energy by the 
amount (see e.g. [15]) 

 
2

2 2
2

=
8kin e g

e

h
E n n

m L
              (2) 

Here L  is the length of the gas potential tube. 
Simultaneously, the electron interaction energy due to an 
excitation from gn  to en  is changed by the amount 
(see e.g. [16]) 

   
= = /2

=1
=

= 2 2

;

i n NF

ee n i n i n i n ie e g g
i

i ng

n n n n n ne g g g e g

E J K J K

J J K



    
 

  


 (3) 

J  and K  are the Coulomb and exchange integrals, 
respectively, the plus sign before K  in the last step of 
(3) refers to a singlet excited state of the gas, the minus 
sign—to a triplet state. In the absence of the magnetic 
field the quantum levels of a non-magnetic gas of N  
electrons in their ground state are doubly occupied by 
electrons having opposite spin, so /2= NnF . 

More detailed formulae are: 

   
2

2 2
1 2 1 2

1 2

= ,ij i j

e
J dr dr r r

r r
 

 
   

      (4) 

       
2

1 2 1 1 2 2
1 2

= ,ij i j i j

e
K dr dr r r r r

r r
   

 
     

   (5) 

where 
1/2

2
( ) = sin ( ) cos ,lq l lq

n
r N J u r l

L Lz
        

   


 (6) 

with 
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= ( , , ),n l q                 (6a) 

is a real wave function of a free electron vanishing at the 
boundary of the potential box. lqN  is the normalzation 
coefficient of the ),( r -dependent part of )(r


 . lJ  

is the Bessel function of the first kind and index l  
extended over the interval 

,<<0 Rr                   (7) 

where R  is the radius of a circular cross-section of the 
cylindrical potential tube, lqu  is the argument giving 
q th zero of the function lJ  at Rr = . Regularly, the 
radius R  is assumed so small that excitations along the 
potential tube are only considered. This means that only 
quantum number n  can be changed in course of an 
excitation process and the number 0=l  as well as 

1
01 2.405=  Ruulq  remain constant for the whole of 

calculations. 
In a thin potential tube any Coulomb integral nmJ  

)=( mn   has a large component [17] 
2

2 ln ,
e

R
L

                (8) 

and the same component enters exchange integral nmK  
)=( mn  . This implies that at 0R  the expression in 

(3) given by the terms enclosed within the square 
brackets converges. A difficulty comes from the 
remainder terms in (3) which are 

.n n n n n ne g g g e g
J J K             (3a) 

Any integral nnJ  has its large component [17]   
2

3 ln
e

R
L

                (8a) 

instead of (8). In effect, for the plus sign before 
gnenK  

the dominant terms in expression (3a) become at small 
R  equal to: 

   
2 2 2

2 3 ln 2 ln = ln .
e e e

R R R
L L L

        (3b) 

This is a large positive number. On the other hand, for 
the minus sign before 

gnenK , the expression (3a) gives 
the dominant terms 

   
2 2 2

2 3 ln 2 ln = 3 ln ,
e e e

R R R
L L L

        (3c) 

which is a large negative number at small R . 
In effect, for a plus sign before 

gnenK  characteristic 
for a singlet excited state, the expression in (3) diverges 
at 0R  giving   

,eeE                   (9) 

which provides us with an infinite (positive) excitation 
energy at 0R . 

But a different situation can exist, however, when not 
a single electron but an electron pair occupying the same 
one-electron level Fg nn   is excited to a level 

Fe nn > , so after an excitation both electrons occupy en . 
The change of the kinetic energy associated with such 
transition is twice of that represented in (2): 

 
2

2 2
2

= 2 .
8kin e g

e

h
E n n

m L
           (10) 

Simultaneously, the electron-electron interaction 
energy of an electron pair located first on level gn , next 
on level en , is changed by the amount [16]:   

= .pair
ee n n n ne e g g

E J J             (11) 

But each Coulomb integral having its both indices the 
same, contains the same term (8a) as its component [17]. 
This property makes (11) a convergent result also at 

0R . 
A full change of the electron-electron interaction 

energy of the gas due to the pair excitement from gn  to 

en  becomes: 

   
= =

=1 =1
= =

= 4 2

.

i n i nF F

ee in in in ine g e g
i i

i n i ng g

n n n ne e g g

E J J K K

J J

 

   

 

 
  (12) 

The number of nmJ  )=( mn   entering (12) with a 
plus sign is equal to the number of mnJ   )=( mn   
entering with a minus sign, and the same property 
concerns the number of nmK  and mnK   having 
opposite sign. Also because a single 

enenJ  entering (12) 
with a plus sign is combined with a single 

gngnJ  having 
a minus sign, the electron excitation energy (12) is a 
fully convergent result also at 0R . In summary, for 
a thin potential tube, an excitation of some special kind 
of the electron pairs requires much lower energy than the 
one-electron excitations. In a limiting process of the 
cross-section of the potential tube tending to zero, any 
one-electron excitation requires an infinite quantity of 
energy, but this does not apply to a two-electron 
excitation of the kind discussed above. This property is 
used in the forthcoming sections of the paper. 
 
3. Positive Change of the Kinetic Energy and  

Negative Character of the  
Electron-Electron Interaction Change  
in Course of a Pair Excitation 

 
The change of the kinetic energy of the electron pair in 
course of transition from the level gn  to the level en  
is evidently a positive quantity, because >e gn n ; see 
(10). But the change of the electron-electron interaction 



S. OLSZEWSKI  ET  AL. 
 

Copyright © 2010 SciRes.                                                                                 JMP 

331

of the same pair for an excitation from gn  to en  is 
coupled with a negative change of energy. For example, 
at small R  the Coulomb interaction energy of the pair 
located on level 1  is [17] 

 

2

11 0,2

2

= 2

3ln 3ln 3ln 2 ln 3 ln 2

e
J A

L

e
R L

L
  



       

 (13) 

whereas the same interaction energy on level 2  is  

 

2

22 0,4

2

= 2

3ln 3ln 3ln 2 ln 3 ln 2 ,

e
J A

L

e
R L

L
  



       

(14) 

where 0.681  is a term descending from the 
normalization process and   is the Euler constant. 
Since 

0,2

2
= (2 ),nA Si n


            (15) 

where Si is the integral sinus, a difference of the 
Coulomb energy in level 2 and level 1 becomes a 
negative result: 

2

22 11

2 2

2

2 1 1
ln 2 2

4 2

1
= ln 2 ( 0,59).

e
J J

L

e e

L L

  



           

     
 

   (16) 

Here the integral sinus entering (15) has been calcu- 
lated with a satisfactory accuracy from the formula 

cos
( )

2

x
Si x

x


            (17) 

because x  equal to   multiplied by an even integer 
number is a sufficiently large argument to apply the 
approximate formula (17). 

A still more approximate approach to the change of 
the electron interaction part of the excitation energy of an 
electron pair excited from some level Fn , which can be 
considered as a Fermi level, to a level Fe nn > , gives 
also a negative value: 

   
2

ln 2 ln 2 .ee e F

e
E n n

L
            (18) 

For 2=en  and 1=Fn  this gives 

2 2

ln 2 = 0.69ee

e e
E

L L
            (18a) 

instead of (16). 
A superconducting character of a system requires an 

instability of the Fermi energy with respect to the pair 

excitation. This is attained for a full excitation energy   

= ,kin eeE E E                (19) 

where kinE  of (10) is added to eeE  of (18), on 
condition eeE  predominates over kinE . 

With the aid of the term 

2
6

2
= = 0.026 10

8 e

h
f cm

m e
      (20) 

we can look for such crLL =  that   

     
2 2

2 2
2

=

1
2 ln ln = 0.

8 e F e F
e

E

h e
n n n n

m LfL



 
      

 

 (21) 

This gives for crLL =  the equation 

   
2 2

= 2
ln ln

e F
cr

e F

n n
L f

n n




      (22) 

where 

=e Fn n n                 (23) 

and 0>n . In order to give a negative excitation 
energy of the electron pair the length L  of the potential 
tube should be larger than some critical length crL  
calculated in (22). In Figure 2(a) we plot crL  as a 
function of Fn  for three integer values of n . 

Here it should be noted that in calculating crL  in (22) 
the electron interaction of the ‘bare’ pair submitted to an 
excitation with the electron pairs occupying deeper levels 
in the Fermi sea has been neglected. The correction due 
to that interaction effect is calculated in Section 4. 
 
4. Pair Interaction with the Fermi Sea 
 
Section 3 examined only the Coulomb electrostatic 
energy of a ‘bare’ electron pair; no exchange energy is 
then involved because electrons have an opposite spin. In 
reality, such a pair is interacting with the Fermi sea. Our 
aim is to calculate a correcting term equal to the change 
of the pair interaction due to the presence of other 
electrons in the gas in course of an excitement of the 
electron pair. The index of an excited level of the pair is 
assumed to be 1Fn , and the level on which the pair is 
located before excitation let be Fn ; see Figure 1. The 
interaction energy of the pair located in 1Fn  with the 
Fermi sea is equal to 

 
= 1

, 1 , 1
=1

2 2
i nF

i n i nF F
i

J K


           (24) 

(the level Fn  is emptied), whereas a similar interaction 
energy of the pair located in the level Fn  is  
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(a) 

 

 
(b) 

Figure 2. Critical length crL  of the electron gas potential 

tube. A formation of the gap at the Fermi level requires the 
tube length > crL L . (a) crL  for an excitation of a single 

electron pair with neglected pair interaction with the Fermi 
sea [see (22)]; (b) crL  calculated for an excited electron 

pair interacting with the Fermi sea [see (32)]. The curves 
are plotted for = 1n  (lowest crL ), 2, 3 (highest crL ). 

 

 
= 1

, ,
=1

2 2 .
i nF

i n i nF F
i

J K


           (25) 

The factor of 2 before the integral J  within the 
brackets is due to the fact that the Coulomb energy 
concerns an interaction which involves both kinds of 
spin, whereas the exchange integral concerns an inter- 
action only between electrons having spin of the same 
kind [16]. 

In effect, the correcting term representing the change 
of the electron interaction energy connected with the pair 
transition from the level Fn  to the level 1Fn  
becomes 

   
= 1 = 1

, 1 , , 1 ,
=1 =1

= 4 2 .
i n i nF F

corr
int i n i n i n i nF F F F

i i

E J J K K
 

       

(26) 

For large Fn  the first sum in (26), which can be 
approximated by [17] 

 
= 1 2

, 1 ,
=1

1
,

2

i nF

i n i nF F
i F

e
J J

n L



        (27) 

becomes negligibly small in comparison with the second 
sum in (26) which becomes approximately equal to [17]:   

= 1 2

, 1 ,
=1

( ) ln(2 ) .
i nF

i n i n FF F
i

e
K K n

L



       (28) 

In total, the correction of energy due to the pair 
interaction with the Fermi sea calculated from (27) and 
(28) is a negative term: 

 
2

2 ln 2 .corr
ee F

e
E n

L
         (29) 

Evidently, for large Fn , the excitation energy of a 
‘bare’ electron pair calculated for 1= Fe nn  [see (18) 
and (18a) for a special case of 2=en  and 1=Fn ] is 
negligibly small with respect to corr

eeE , so 

 
2

= 2 ln 2 .corr
ee ee F

e
E E n n

L
            (30) 

This is a negative term because the difference of the 
exchange integrals entering (26) has a minus sign. The 
interval n  is that given in (23), where 1>n  can be 
also admitted. 

Consequently, a critical length of the potential tube 
descending from the requirement that   

= = 0kin eeE E E               (31) 

[see (22)] becomes 

 
   

2 22 2
= .

2 ln 2 ln 2
e F F

cr
F F

n n n
L f f

n n n





     (32) 

In the formula for crL  the number 1Fn  is 
assumed. The length crL  is plotted in Figure 2(b) as a 
function of Fn  for three values of n : 1, 2, and 3. 
 
5. Energy Gap at the Fermi Level and the  

Coherence Length 
 
At length crext LLL 2==  [see (32)] the difference E  
entering (31) plotted as a function of L  attains its 
minimum; see Figure 3.  

For extLL >  there exists a slow increase of E  to 
the value 0E   attained at very large L . The 
absolute value of E  at extLL =  can be considered as 
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the energy gap for the pair excitation spectrum. This is: 

  2
4

= 2

2 ln 2
= = = .Fe

L Lg ee ext
F

n nm e
E E E

nh

    (33) 

A plot of gE  versus Fn  is presented in Figure 4. 
The energy gE  in (33) can be referred to a distance 

0  called the coherence length [18,19]: 

0

2
= .F

g

v

E





             (34) 

The velocity Fv  at the Fermi level is estimated as 
equal to 

= ,
2

F
F

e

n h
v

m L
             (35) 

 

 

Figure 3. The excitation energy E  of the electron pair 
[see (31)] in a one-dimensional non-magnetic electron gas 
plotted versus the length L  of the gas potential tube. The 
minimum position extL  is attained at 2 crL , where crL  is 

a critical length at which = 0E ; see (32). 

 

 

Figure 4. Energy gap gE  (in eV) for the pair excitation of 

a non-magnetic gas [see (33) and (30)]. The lowest gE  is 

for = 1n , the highest one—for = 3n . 

since Fv  satisfies the following equation for the Fermi 
energy of the non-interacting gas: 

2 2 2

2
= = .

28
F F

F e
e

n h v
E m

m L
       (36) 

The formula (34) combined with (35) for  
= = 2ext crL L L  taken from (32) gives   

 
2

0 2 2

1

ln 22
F

Fe

nh

n nm e






      (37) 

where 
2

6
2

= 8 0.209 10 cm.
e

h
f

m e
        (38) 

A plot of the function )(0 Fn  for several Fe nnn  =  
is done in Figure 5. 
 
6. Relation between the Critical Length crL   

and the Coherence Length 0  

 
These parameters can be compared together giving an 
especially simple relation, on condition an excitation of 
the electron gas having large Fn  is considered. Si- 
multaneously, the change n  of Fn  is assumed to be 
a relatively small number. In this case, because of (32), 
(37) and (38), we obtain the ratio:   

0
2

2 1
=

crL n


 

           (39) 

which means a proportionality between crL  and 0 , 
with the factor of proportionality dependent on n . 

 

 

Figure 5. Coherence length 0  [see (37)] plotted for 

several pair transitions = e Fn n n  as a function of Fn . 

The lowest 0  is for = 3n , the highest one - for = 1n ; 

see also (39) and Figure 2. 
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7. Effect of the Magnetic Field on a  
Superconducting Behaviour of a  
One-Dimensional Many-Electron System 

 
A well-known property of three-dimensional supercon- 
ductors is a destruction of the superconducting state due 
to an external magnetic field. A similar property can be 
expected in a one-dimensional system. In this case the 
magnetic field can do a reversal of the electron spin at 
least at some levels near the Fermi level Fn . In effect, 
the excitations of electron pairs near that level are 
stopped and the low-energy one-electron transitions, 
absent in a non-magnetic gas case, become then possible. 
An example of the pattern of levels of this kind is 
presented in Figure 6. 

The transition energy of a single electron between 
level Fn  and 1Fn  becomes a finite, i.e. convergent, 
result at 0R  in this case. Assuming the electron- 
electron interaction as only important part in the ex- 
citation energy, and the kinetic part of that energy 
considering as negligible, the transition energy from the 
level Fn  to the level Fe nn >  becomes:   

= 1

, ,
=1

= 1 = 2

, , , ,
=1 =1

= ( )

( ) ( ).

i nF
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ee n i n ie e
i
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i i
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
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   

   



 
   (40) 

The first two sums on the right-hand side of (40) come 
from the interaction between electrons having the same 
kind of spin, the last sum is due to the interaction 
between electrons having opposite spin. Approximately, 
the expression (40) becomes [17]   

 

 
(a)       (b) 

Figure 6. Pattern of the energy levels filling the Fermi sea of 
a partly magnetized electron gas: (a) a scheme before 
excitation; (b) a scheme after a single-electron excitation at 
the Fermi level. Full circles denote the occupied electron 
states. 
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The end result in (40a) holds on condition 

= ,e F Fn n n n                 (41) 

and Fn  is assumed to be a large number. 
The density of energy due to the presence of the 

magnetic field in a sample can be referred to the energy 
difference between the paramagnetic and non-magnetic 
state. This is expressed by the formula (see e.g. [20,21])   

218 =
paramagnetic non magnetic

c

paramagnetic non magnetic
ee ee

E E
H

E E









 




     (42) 

where   is the volume of the metal sample: 
2= .R L                (43) 

The energy difference in (42) can be limited to a 
difference of the electron excitation energies near the 
Fermi level. Because of (40a) and the relation   

 
2

= = 2 ln 2non magnetic
ee ee F

e
E E n n

L
       (44) 

[see (30)], the formula (42) becomes   
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  (45) 

The expression (45) is evidently a positive result for 
any 0>n . 

The size of cH  can be expressed in terms of 
parameters R  and L  entering the right hand side of 
(45). For physical reasons a constant   

82 10 cmR                 (46) 

can be put equal roughly to the length of the order of an 
atomic radius estimated for the atoms entering the whole 
of the atomic chain forming the core of a one-dimen- 
sional system [22]. On the other hand, L  should be not 
smaller than crL  calculated in Section 4. A plot of cH  
versus Fn  is done in Figure 7 (see the singlet (s) curve). 
 
8. Penetration Depth in One-Dimensional  

Superconductors and Its Kinds 
 
With the action of the magnetic field on a supercon-  
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Figure 7. Critical magnetic field cH  (in oersteds) calcu- 

lated from a difference of the energy density between the 
paramagnetic and non-magnetic electron gas; see (45) for 
the singlet states (curve s ); for the triplet states see (62) 
(curve t ). 

 
ductor is associated the penetration depth  . If the field 
outside a superconductor is equal to 0H , its decrease 
measured inside a sample on a distance z  from its 
surface is represented by the formula [23,24] 

/
0=)( zeHzH               (47) 

where 
1/22

2
=

4
e

tot

m c

n e



 
 
 

           (47a) 

and 

2

2
= F

tot

n
n

R L
             (47b) 

is a formula for the electron density within a quasi one- 
dimensional sample, valid on condition Fn  is a large 
number. This   is independent of the strength of the 
magnetic field. 

However, there exists also another penetration depth 
II  which can be associated with the coherence length. 

This parameter is useful in classifying the superconductors, 
namely those belonging to the second kind of super- 
conductors. According to the Ginzburg-Landau theory, 
the free energy of a superconductor of the second kind 
can be defined with the aid of two parameters,   and 
  [23]. The first parameter is coupled with the 
coherence length 0  with the aid of the equation 

2

2
0

| |= ,
2 em





             (48) 

whereas the second parameter is defined by a critical 
magnetic field cH  and  : 

2

2

4
= .

cH

               (49) 

If we put   

| |
= ,part




              (50) 

the penetration length II  becomes 
1/ 2

2

2
= .

4
eII
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m c

e



 
  
 

        (51) 

In this formula part  replaces totn  present in (47a). 

A comparison of II  and 0 , important in classifying 

the properties of superconductors, is discussed below; 
Section 9. 

A plot of   calculated from (47a) is done in Figure 
8, a similar plot of II  obtained from (51) is presented 
in Figure 9, curve s . This dependence concerns a 
singlet excited state of the electron pair. 
 
9. Singlet-Singlet and Triplet-Triplet  

Excitations of the One-Dimensional  
Electron Gas 

 
Transitions of the electron pairs in a non-magnetic gas 
discussed in Section 3 and Section 4 concerned the 
electrons of opposite spin forming the singlet states; see 
e.g. [16]. But a situation may exist when an electron pair 
of the same spin is located near the Fermi level, for 
example on the levels Fn  and 1Fn ; see Figure 10. 
This situation should be classified as a triplet state. In the 
next step, one of electrons of the pair can be promoted 
from 1Fn  to a level qnF  , where 1>q , leaving 
the electron on Fn  unchanged: 

).,(1),( qnnnn FFFF           (52) 

The electron-electron interaction energy of the pair in 
its ground state 1),( FF nn  is equal to   

,=1),( 1,1,  
FnFnFnFnFF

pair
ee KJnnE    (53) 

on condition the interaction with the remainder of 
electrons in the gas is neglected. A convergent result is 
attained for (53) at 0R , because the Rln  
divergencies entering J  and K  cancel together. But 
the same property concerns also the interaction energy of 
an excited pair, say that obtained when one of electrons 
is promoted from the level 1Fn  to some level 

qnF  : 

.=),( ,, FnqFnFnqFnFF
pair

ee KJnqnE       (54) 

Evidently, a difference of two convergent energies in 
(54) and (53), which is the change of the electron- 
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Figure 8. Penetration depth   of the magnetic field 
calculated from (47a) is the same for the singlet and triplet 
states; see (57). 
 

 

Figure 9. Penetration depth II  characteristic for a 
superconductor of the second kind calculated for the singlet 
and triplet states [see (51)]. cH  and 0  are different for 

singlets and triplets; see (61) and Figure 7. 
 

 
(a)      (b) 

Figure 10. Pattern of the energy levels in a one-dimensional 
electron gas having near the Fermi level an electron pair in 
the triplet state. (a) the gas before an excitation of the pair , 
(b) the gas having an excited triplet pair. 

electron interaction energy due to the transition between 
1Fn  and qnF  , is also a convergent result at 
0R . 

A full change of the electron-electron interaction 
energy in a triplet state associated with a one-electron 
transition from the level 1Fn  to the level qnF   is 
obtained when the interaction energy of the pair with 
other electrons in the gas is taken into account. This 
calculation replaces the difference between energies in 
(54) and (53) by the change of the interaction energy 
similar to that given in (40) and (40a):  

   
=

, 1, , 1,
=1

= 2 .
i nF

triplet
ee n q i n i n q i n iF F F F

i

E J J K K         
(55) 

The first sum in brackets represents a contribution of 
the Coulomb integrals. This can be omitted at 0R  
in comparison with the second sum in (55) which is due 
to the exchange integrals. A full excitation energy is 
approximately equal to:   

   
2

1 ln 2triplet
ee F

e
E q n

L
            (56) 

The result in (56) is a negative number on condition 
1>q . 

The critical length crL  for the triplet states can be 
obtained on the basis of (56), for example for 2=q . In 
this case we have a promotion of an electron from 

1Fn  to 2Fn . Because of (56) the formula which 
replaces (32) becomes   

2 2( 2) ( 1)
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ln(2 )

2
= ,

ln(2 )
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n n
L f
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n
f L
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  


    (57) 

so crL  in the triplet and singlet state remain approxima- 
tely the same. 

Another situation is for 0 . A comparison of triplet
eeE  

in (56) calculated for 2=q , so   

1,=1=1)(=  qnqnn FF      (58) 

with 

 
2

= = 2ln 2singlet non magnetic
ee F

e
E E n

L
        (59) 

calculated in (30) for a singlet transitions having 1=n , 
shows that for the same n  the lowering of the 
excitation energy due to the electron-electron interaction 
calculated in a triplet state is only a half of the result 
obtained for a singlet state. Consequently to (33), a 
reduction of the energy gap for the triplet-triplet tran- 
sitions is obtained to the value 
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1 1
= = ,

2 2
triplet singlet
g g gE E E          (60) 

where gE  is that given (33). In effect, the coherence 
length  

,22= 000
singlettriplet             (61) 

because the formula in (34) can be applied also for 
triplet
0 . The results obtained in (57) and (61) indicate that 

the ratio crL/0  calculated in (39) becomes for the 
triplet transitions twice as large as that obtained for the 
singlet transitions. 

An estimate of the critical magnetic field for the triplet 
states takes into account the fact that the electron- 
electron interaction energy near the Fermi level is of a 
paramagnetic character, so it does not vary much upon 
the action of an external magnetic field. In effect, the 
expense of the field energy is expected to be done mainly 
in order to change the kinetic energy: 

   2 22
2

2

2 11
= = .

8 8
F F

c
e

n nE h
H

m L
  

 
 (62) 

Here crLL =  from (57) has to be substituted into 
(62), as well as in   in (43). A plot of cH  of this 
kind done versus Fn  is given in Figure 7. This plot is 
there compared with that done for the singlet states 
obtained with the aid of the formula (45). In the next step, 

triplet
0  of (61) and cH  of (62) can be applied to the 

calculation of II  for the triplet states following the 
formulae (48)-(51); see Figure 9. In Figure 11 we 
compare the plots of totn  entering (47a) and (47b) with 

part  obtained for singlet and triplet transitions cal- 
culated from (48)-(50). 
 
10. Critical Current and Critical  

Temperature for One-Dimensional  
Systems 

 
A critical current for destruction of the superconducting 
state can be obtained from the ratio (see e.g. [19,25]): 

c
c

H
J


                   (63) 

where cH  is a critical magnetic field and   is a 
penetration depth. We can calculate cJ  separately for 
the singlet and triplet states. The   of two kinds, that 
of (47a) as well as II  of (51) can be applied. The plots 
of the dependencies of cJ  in (63) on Fn  are presented 
in Figure 12. 
The size of a critical temperature cT  can be estimated 
from gE  assuming the approximate formula: 

 

Figure 11. Electron gas density totn  in the potential tube 

[see (47b)] compared with the particle density part  

entering the calculation of II  for (a) the case of the 
singlet states ( s ), (b) the triplet states ( t ); see (50). A 
characteristic point is that totn  is not essentially different 

from part . 

 

 

Figure 12. Critical current intensity cJ  for the one- 

dimensional superconductors calculated as a function of 

Fn ; see (63). 1  0.8 /Oersted A cm . The curves with the 

indices s  and IIs  referring to the singlet states are 

calculated for cH  from (45) and  , II  taken from 

(47a), (51), respectively; the curves with the indices t  and 
IIt  referring to the triplet states are calculated for cH  

from (62) and  , II  indicated above. For large Fn  the 

curve s  merges with IIs . 

 

g
c

B

E
T

k
                (64) 

where Bk  is the Boltzmann constant. The plots of cT  
are done on Figure 13. 
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Figure 13. Critical temperature cT  calculated from (64) as 

a function of Fn . Curve s : temperature cT  for singlets; 

curve t : temperature cT  for triplets. 

 
11. Summary 
 
An attempt is done to approach the problem of super- 
conductivity in quasi one-dimensional systems basing 
mainly on an analysis of the electron-electron interaction 
and kinetic energy effects; an important problem of the 
many-electron wave function is neglected here. 

A well-known fact is that the geometry of the volume 
in which the electron charges are enclosed can influence 
considerably the interaction between them; see e.g. [26]. 
In particular, a one-dimensional volume provides us with 
the logarithmic divergencies in the interaction energy 
between the charges. 

But in considering the superconductivity effects, the 
excitation energy of an electron system, and not the 
absolute value of the system energy, plays a dominant 
role. Consequently—in the first step—the excitation 
energy of a single electron pair, located in the vicinity of 
the Fermi level is considered. In an extremely thin 
potential tube the total energy of the pair tends to diverge. 
Nevertheless, this divergence is precisely cancelled in 
the case of a pair excitation. This holds on condition the 
pair occupies a single orbital quantum state, equally after 
and before the excitation process. This requirement 
implies that the absolute values of the electron momenta 
in the pair should be equal, but the spin states in that pair 
are opposite. Evidently, the presence of pairs of this kind 
leads to the singlet states. 

An important property of the pair is that the Coulomb 
part of its excitation energy from a lower orbital quantum 
level to a higher level is a negative number. With a 
positive value of the kinetic excitation energy between 
the pair levels, we obtain a kind of competition between 

the changes of the electron-electron interaction and 
kinetic energies. Above some critical length of the 
potential tube, the interaction part predominates over the 
kinetic part, and the pair excitation is connected with a 
lowering of the energy of the system. 

This elementary result obtained for a single electron 
pair can be extended to an excitation of the many- 
electron system present in an almost one-dimensional gas 
volume. In particular, the interaction energy of the pair 
submitted to an excitation with the remainder of the gas 
electrons is taken into account. A characteristic point is 
that the size of the energy gap obtained when ex- 
citements of an isolated electron pair are only considered 
becomes much larger for the case of the pairs interacting 
with the Fermi sea. The critical length crL  for an 
isolated pair at large Fn  is also very large, but for an 
interacting gas crL  is reduced to about 12 1010   cm. 

Beyond of singlets, also excitements of the pairs 
representing the triplet states are taken into account. The 
parameters of the electron gas examined in the paper 
include the coherence length, critical magnetic field, 
critical current intensity and critical temperature. The 
plots of these parameters are done in dependence on the 
electron number present in the linear gas sample, which 
is approximately equal to Fn2 , where Fn  is the index 
representing the orbital quantum number at the Fermi 
level. For a macroscopic 810Fn  we obtain: gE  
equal to about 510 eV, 2

0 10  cm, 1cH   Oe, 
610  cm, 610II

s  cm and 75 10II
t  cm, 

6 210 A/cmcJ   for singlets and 7 210 A/cm for triplets, 
210cT  K for singlets and a half of that value for 

triplets. 
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