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ABSTRACT 

Glaucoma is an optic neuropathy and often associated 
with elevated intraocular pressure (IOP). It is the se- 
cond leading cause of irreversible blindness world- 
wide and is characterized by the optic nerve degen- 
eration and loss of retinal ganglion cells (RGCs). This 
may lead to loss of vision. The primary cause of glau- 
coma is unknown but several risk factors including 
elevated IOP and age have been suggested. In most 
population, primary open-angle glaucoma (POAG) is 
the most common type of glaucoma and is often asso- 
ciated with elevated IOP. Genetic analyses have iden- 
tified at least 14 chromosomal loci but only three genes 
which when mutated can cause POAG have been well 
documented. These genes account for less than 5% of 
all POAG cases suggesting that more than 90% of the 
genetic contribution of POAG cases is unknown. RGC 
consists of cell body, axon and dendritic arbor and 
each of these three parts can independently degener- 
ate. Several molecular signals such as oxidative stress, 
mitochondrial dysfunction, disruption of neurotro-
phic factor (NTF), dysfunction of immune system, 
glial activation and the release of tumor necrosis fac- 
tor (TNF) have been found to be involved in the optic 
nerve degeneration. Therefore, therapies aimed at 
axonal and cell body protection may have a greater 
protective role in early or progressive glaucoma. In 
the future, an understanding of gene-gene and gene- 
environmental factor interaction as well as epigenetic 
regulation of gene expression by environmental fac- 
tors may provide an opportunity to develop neuro- 
protective therapies and DNA based diagnostic tests. 
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1. INTRODUCTION 

Glaucoma is clinically and genetically complex neu- 
rodegenerative disorder of the eye. It is the second lead- 

ing cause of blindness affecting approximately 70 mil- 
lion people worldwide [1]. The condition affects all age 
groups throughout the world and is classified into pri- 
mary open-angle (POAG), primary angle-closure (PACG) 
and primary congenital (PCG) glaucoma [2-5]. The dis- 
order is clinically characterized by the progressive dege- 
neration of the retinal ganglion cells (RGCs) and is fre- 
quently associated with elevated intraocular pressure 
(IOP) that leads to optic nerve damage and irreversible 
loss of vision. Previous studies suggest that glaucoma- 
tous neuropathy is associated with several molecular sig- 
nals such as oxidative stress, disruption of neurotrophic 
factor (NTF), dysregulation of immune system, glial ac- 
tivation, mitochondrial dysfunction and the release of tu- 
mor necrosis factor (TNF) [6]. Epidemiological studies 
suggest that POAG is the most common type of glau- 
coma in most populations and is consistently associated 
with elevated IOP [7,8]. However, patients with POAG 
can also have an IOP within the normal range and they 
are classified as having normal tension glaucoma (NTG) 
—most likely a different entity [4]. In addition, in some 
patients without elevated IOP, optic neuropathy develops 
[9]. Therefore, elevation in IOP is neither necessary nor 
sufficient for the onset or progression of the disorder. 
This clinical heterogeneity may also indicate genetic he- 
terogeneity of the disease. It is likely that genetic, epige- 
netic and environmental factors may influence the deve- 
lopment of POAG [10]. 

2. GENETIC AND ENVIRONMENTAL 
FACTORS 

The mode of inheritance of glaucoma is unclear. How- 
ever, twin studies and the prevalence of the disorder in 
first-degree relatives suggest genetic contribution to the 
development of glaucoma [11,12]. Accordingly, genetic 
analyses have identified at least 14 chromosomal loci [2, 
13,14] for POAG but only three genes (myocilin, opti- 
neurin and WDR 36) which when mutated can cause  
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POAG have been well documented. These three genes 
account for less than 5% of all POAG cases [14,15] sug- 
gesting that more than 90% of the genetic contribution of 
POAG cases is unknown. Recently, a significant associa- 
tion of two common variants in an intergenic region be- 
tween the CAV1 and CAV2 (encoding caveolin 1 and 2) 
[16,17] and SNPs located near the TMCO1 (transmem-
brane and coiled-coil domain-1) and CDKN2B-AS [18, 
19] genes in POAG as well as in NTG (CDKN2BAS) 
have been reported. However, the association of CAV1 
and CAV2 has not been replicated in other populations 
[20,21] suggesting that this risk factor may not have a 
major role in all populations. The CDKN2B-AS (cyclin 
dependent kinase inhibitor) gene product is involved in 
the regulation of expression of CDKN2B gene which is a 
component of transforming growth factor (TGF-beta) 
signaling pathway. This pathway was previously shown 
to be involved in glaucoma [22]. Although the exact role 
of myocilin (MYOC), optineurin (OPTN) and WDR 36 
(tryptophan and aspartic acid repeat domain 36) genes in 
the pathogenesis of glaucoma is unknown, the biology of 
mutant genes has been studied and discussed previously 
[4,5,15]. For instance, mutations in MYOC gene is re- 
ported to sensitize cells to oxidative stress induced apop- 
tosis [23], mitochondrial defects [24] that may lead to 
trabecular meshwork cell death and endoplasmic reticu- 
lum stress [25] that may cause cellular toxicity and death. 
Similarly, mutation in OPTN gene (E50K) selectively 
induced the death of RGCs and this was inhibited by an- 
tioxidants suggesting that cell death is mediated by oxi- 
dative stress [26]. This may have implications for the 
pathogenesis. In the same way, mutations in the WDR 36 
gene may interfere in a variety of cellular processes such 
as signal transduction that may lead to cell death. Inter- 
estingly, inherited glaucoma in animals however, does 
not involve mutations in MYOC, CYP1B1—a member 
of the cytochrome P450 enzymes encoding genes—and 
neurotrophic factor 4 (NTF4) genes [27-30]. 

Although hereditary components of PACG exist, cau- 
sative genes have not been identified except occasional 
difference in the frequency of polymorphisms in some 
genes [3]. PCG is an important cause of visual loss in 
children and the familial condition is inherited as an au- 
tosomal recessive trait. More than 60 different mutations 
in CYP1B1 (or GLC3A) have been reported in several 
PCG families [5]. NTG is relatively a less explored ave- 
nue of research and there has been paucity of research 
into the genetic basis of NTG [4]. In addition to genetic 
predisposition, environmental factors such as drinking 
coffee, wearing tight neckties, smoking, dietary fat, post- 
menopausal hormone use and other life-style factors may 
influence the development of glaucoma by affecting IOP 
and RGCs death [31]. One example to illustrate this is 
the pseudoexfoliation syndrome that is the most common 
subtype of POAG. This disorder is shown to be associ-  

ated with mutations in lysyl oxidase like-1 (LOXL1) 
gene in addition to geographic and climatic factors such 
as sun exposure and ambient temperature [32]. Similarly, 
epigenetic regulation of gene expression by environmen- 
tal factors may also play a role in the development of 
glaucoma. For instance, in experimental glaucoma mod- 
els, it has been found that several ganglion cell marker 
genes are down regulated in RGCs [33-37]. This may 
lead to an early onset atrophy of ganglion cells [38]. In 
addition, the pathologic course of RGC involves histone 
modification [39] and histone deacetylase 4 (HDAC4) 
may have a role in the survival of retinal neurons [40,41]. 
Similarly, histone acetyltransferase p300 was found to 
promote intrinsic axonal regeneration [42]. 

3. RGC DEGENERATION 

Retinal ganglion cell consists of cell body, axon and den- 
dritic arbor and each of these three parts can independ- 
ently degenerate. The mechanism of RGC death is not 
well understood. A current proposal based on the local- 
ized retinal nerve fiber layer defects in glaucoma patients 
suggests that the axon is the first one to be affected by 
the elevated IOP [6,43,44]. According to rodent models 
also axon dysfunction and degeneration are early events 
in RGCs death [45,46]. This axonal degeneration could 
be due to lack of support function from astrocytes that 
are the major resident cell population of axons in addi- 
tion to lamina cribrosacytes. Once the axonal function is 
lost it cannot transport neurotrophic input to cell bodies 
and in absence of neurotrophic input RGC bodies may be 
activated for degeneration by a distinct activation path- 
way [47]. This may lead to ganglion cells to undergo 
apoptosis program by the activation of several kinases 
and caspase. However, it is not clear how these kinases 
are activated and how axonal damage is transmitted to 
the cell soma. The mechanism of degeneration of axons 
and neuronal cell bodies may also differ from one an- 
other [6]. It is likely that ganglion cells are initially 
damaged at the level of optic nerve head and the secon- 
dary degeneration involving somatic components dam- 
age the surrounding healthy ganglion cells. Alternatively 
the dying ganglion cells may affect other cells such as 
microglia, macroglia and Muller cells. These cells se- 
crete several other molecules such as cytokines that may 
lead to the activation of extrinsic apoptosis program. 
However, it is not clear whether the secondary degenera- 
tion in glaucoma occurs or not. A more comprehensive 
treatment of this subject was appeared previously [43]. 

There are several molecular signals such as oxidative 
stress, dysfunction of immune system, retrograde trans- 
port of neurotrophic factor, glial activation, release of tu- 
mor necrosis factor (TNF) and mitochondrial dysfunc- 
tion that are associated with ganglion cell degeneration 
[6,43,44]. These signals may converge to induce RGC 
death. For instance, in some patients, IOP elevation may 
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contribute to specific changes in optic nerve that may 
lead to axonal degeneration and subsequent RGC death 
[43]. In addition, defective retrograde axonal transport of 
neurotrophic factors and disruption of the axonal motor 
protein expression may contribute to the degeneration 
[48,49]. Glial cell activation produces tumor necrosis 
factor (TNF) alpha and interleukin (IL) beta as major 
cytokines. These are involved in several pathways and 
may mediate RGC death [50,51]. Recent report also sug- 
gests that neurodegenerative and inflammatory pathway 
components are linked to TNF-alpha/TNFR1 signaling in 
the glaucomatous retina [52]. Increase in endoplasmic re- 
ticulum (ER) stress may induce the accumulation of 
miss-folded proteins and that may result in the induction 
of RGC degeneration by apoptosis [53]. Similarly, oxi- 
dative stress may play an important role in retinal neu- 
ronal degeneration. It induces severe damage to cellular 
proteins, nucleic acids, mitochondria and subsequently 
can lead to cell body death [54,55]. Mitochondrial dys- 
function due to oxidative injury has also been reported in 
RGC body death [56]. Several types of stress including 
IOP also activate endothelin-1 receptors such as ETRA 
and ETRB in the optic nerve and retina. This may be 
subsequently involved in RGC body death by ischemia 
and apoptosis [57-59]. Similarly, excitotoxicity by glu- 
tamate may be responsible for optic neuropathy through 
the stimulation of NMDA receptor that may initiate sev- 
eral molecular pathways such as increase in intracellular 
calcium influx, activation of apoptotic pathway and ini- 
tiation of inflammation [60-62]. Thus, it appears that 
these varieties of signals converge to produce the glau- 
coma pathology. Recently, aggregation and deformabi- 
lity of erythrocytes have been reported in POAG [63] 
suggesting decreased blood flow to the optic nerve. 

4. CONCLUDING REMARKS 

Glaucoma is a complex neurodegenerative disorder of 
the eye. Several factors such as genetic, environmental 
and epigenetic contribute to the degenerative processes 
of the retina. The progressive nature of the disease may 
also support the idea about the accumulation of several 
insults that ultimately results in glaucoma pathology. In 
the future, it is necessary to have neuroprotection studies 
and we need to understand how degeneration of one part 
of the neuron affects another part. In addition, we need to 
know the epigenetic changes such as promoter methyla- 
tion, activation of histone deacetylases and deacetylation 
of histones occurring in the nucleus [64]. Therapies aim- 
ed at axonal and cell body protection may have a greater 
protective role in early or progressive glaucoma. 
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