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ABSTRACT 

This paper introduces higher-order solutions of the quadratic nonlinear stochastic oscillatory equation. Solutions with 
different orders and different number of corrections are obtained with the WHEP technique which uses the Wiener- 
Hermite expansion and perturbation technique. The equivalent deterministic equations are derived for each order and 
correction. The solution ensemble average and variance are estimated and compared for different orders, different 
number of corrections and different strengths of the nonlinearity. The solutions are simulated using symbolic computa- 
tion software such as Mathematica. The comparisons between different orders and different number of corrections show 
the importance of higher-order and higher corrected WHEP solutions for the nonlinear stochastic differential equations. 
 
Keywords: Oscillatory Equation; Nonlinear Differential Equations; Stochastic Differential Equation; Wiener-Hermite 
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1. Introduction 

Analysis of the response of linear and nonlinear systems 
subjected to random excitations is of considerable inter- 
est to the fields of mechanical and structural engineering 
[1]. Stochastic differential equations based on the white 
noise process provide a powerful tool for dynamically 
modeling complex and uncertain aspects. In many prac- 
tical situations, it is appropriate to assume that the non- 
linear term affecting the phenomena under study is small 
enough; then its intensity is controlled by means of a 
frank small parameter, say   [2]. 

According to [3], the solution of stochastic partial dif- 
ferential equations (SPDEs) using Wiener-Hermite ex- 
pansion (WHE) has the advantage of converting the 
problem to a system of deterministic equations that can 
be solved efficiently using the standard deterministic nu- 
merical methods. The main statistics, such as the mean, 
covariance, and higher order statistical moments, can be 
calculated by simple formulae involving only the deter- 
ministic Wiener-Hermite coefficients. In WHE approach, 
there is no randomness directly involved in the computa- 
tions. One does not have to rely on pseudo random num- 
ber generators, and there is no need to solve the stochas-  

tic PDEs repeatedly for many realizations. Instead, the 
deterministic system is solved only once. 

The application of the WHE [4-10] aims at finding a 
truncated series solution to the solution process of a sto- 
chastic differential equation. The truncated series com- 
poses of two major parts; the first is the Gaussian part 
which consists of the first two terms, while the rest of the 
series constitute the non-Gaussian part. In non-linear 
cases, there exists always difficulties of solving the re- 
sultant set of deterministic integro-differential equations 
got from the applications of a set of comprehensive av- 
erages on the stochastic integro-differential equation ob- 
tained after the direct application of WHE. Many authors 
introduced different methods to face these obstacles. 
Among them, the WHEP technique [4] was introduced 
using the perturbation technique to solve perturbed non- 
linear problems. 

The WHE was originally started and developed by 
Norbert Wiener in 1938 and 1958 [11]. Wiener con- 
structed an orthonormal random bases for expanding ho- 
mogeneous chaos depending on white noise, and used it 
to study problems in statistical mechanics. Cameron and 
Martin [12] developed a more explicit and intuitive for- 
mulation for Wiener-Hermite expansion (now it is known 
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as Wiener Chaos Expansion, WCE). Their development 
is based on an explicit discretization of the white noise 
process through its Fourier expansion, which was missed 
in Wiener’s original formalism. This approach is much 
easier to understand and more convenient to use, and 
hence replaced Wiener’s original formulation. Since Ca- 
meron and Martin’s work, WHE has become a useful 
tool in stochastic analysis involving white noise (Brow- 
nian motion) [3]. Also, another formulation was sug- 
gested and applied by Meecham and his co-workers [13, 
14]. They have developed a theory of turbulence involv- 
ing a truncated WHE of the velocity field. The random- 
ness is taken up by a white-noise function associated, in 
the original version of the theory, with the initial state of 
the flow. The mechanical problem then reduces to a set 
of coupled integro-differential equations for deterministic 
kernels. In [1], the WHE (Imamura formulation, [13]) 
was used to compute the nonstationary random vibration 
of a Duffing oscillator which has cubic nonlinearity un- 
der white-noise excitation. Solutions up to second order 
are obtained by solving the equivalent deterministic sys- 
tem by an iterative scheme. M. El-Tawil and his co- 
workers [4-10] used the WHE together with the perturba- 
tion theory (WHEP technique) to solve a perturbed non- 
linear stochastic diffusion equation. 

As in [15], the analysis of nonlinear random vibration 
has been studied using several methods, such as, equiva- 
lent linearization method [16], stochastic averaging me- 
thod [17], the WHE approach with nonstationary excita- 
tions [1], the WHE method combining with the small 
perturbation technique [18], eigenfunction expansions 
[19], and the method of detailed balance [20]. All the 
above methods are applied and used for nonlinear ran- 
dom oscillations of real systems subjected to random 
nonstationary (or stationary) excitations. 

As in [5,6], quadrate oscillation arises through many 
applied models in applied sciences and engineering when 
studying oscillatory systems [21]. These systems can be 
exposed to a lot of uncertainties through the external 
forces, the damping coefficient, the frequency and/or the 
initial or boundary conditions. These input uncertainties 
cause the output solution process to be also uncertain. 
For most of the cases, getting the probability density 
function (p.d.f.) of the solution process may be impossi- 
ble. So, developing approximate techniques (through 
which approximate statistical moments can be obtained) 
is an important and necessary work. There are many 
techniques which can be used to obtain statistical mo- 
ments of such problems. The main goal of this paper is to 
compare some of these methods when applied to a quad- 
rate nonlinearity problem. 

In [22], the WHEP technique is generalized to nth 
nonlinearity, general order of WHE and general number 
of corrections. Also, the extension to handle white noise 

in more than one variable and general nonlinearities are 
outlined. The generalized algorithm is implemented and 
linked to MathML [23] script language to print out the 
resulting equivalent deterministic system. 

In the current work the generalized WHEP technique 
developed in [22] is used to derive higher-order with 
higher corrections system of equations for the quadratic 
nonlinear stochastic oscillatory equation and then solve 
them. Up to fourth order equations are derived with dif- 
ferent number of corrections. The mean and variance of 
the response will be simulated up to third order using 
Mathematica. 

This paper is organized as follows. The formulation of 
the quadratic nonlinear stochastic oscillatory equation is 
outlined in Section 2. The WHEP technique is reviewed 
in Section 3. The equivalent deterministic system is de- 
rived in Section 4. In Section 5, the mean and variance of 
the solution is simulated with different order, different 
number of corrections and different values of the nonlin- 
earity strengths. 

2. Problem Formulation 

In this paper, the nonlinear oscillatory equation: 

          2 ; 0,nL x t x f t g t N t t T        (1) 

is considered under stochastic excitation and with the 
proper set of initial conditions  

    0 00 and 0 0x x x x     which is assumed to be de- 
terministic. The operator L is a general linear operator 
and in the case of the oscillatory equation it will be: 

2
2

2

d d
2

dd
L

tt
     

where   is the undamped angular frequency of the os- 
cillator and   is the damping ratio. The nonlinearity is 
introduced as losses of degree  strengthened by a 
deterministic small parameter 

1n 
  . The uncertainty is 

introduced through white noise scaled by a deterministic 
envelope function  g t . The white noise is considered 
here as a function of time but it can be generalized in 
time and space as it was declared in [22]. The function 
 f t  is a deterministic forcing function. Theorem (1) 

will be used in the derivation of the WHEP technique. 
Theorem (1): The solution of Equation (1), if exists, is 

a power series in  , i.e. 

   
0

i
i

i

x t x




  t                (2) 

The theorem can be proved using the mathematical 
induction with the Pickard iterative technique [22]. As a 
direct result of this theorem, it is expected that the aver- 
age, the variance as well as the covariance are also power 
series of  . 

The WHEP technique will be used in this work to de- 
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te

3. WHEP Technique 

ompleteness of the Wiener- 



rmine the equivalent deterministic set of equations. The 
deterministic equations are then solved to obtain the so- 
lution kernels and hence the mean and variance of the 
response. 

The average of almost all Wiener-Her ite functionals 
vanishes, particularly, 

The expectation and variance of the solution will be: 

m

As a consequence of the c
Hermite set [13], any arbitrary stochastic process can be 
expanded in terms of the Weiner-Hermite polynomial set 
and this expansion converges to the original stochastic 
process with probability one. 

The solution function  ;x t w  can be expanded in 
te

Or after eliminating the parameters, for the sake of 
br

d

rms of Wiener-Hermite functionals as [4]: 

 x t w

           

       

       

0 1 1
1 1 1

2 2
1 2 1 2 1 2

3 3
1 2 3 1 2 3 1 2 3

;

; ; d

; , , ; d d

; , , , , ; d d d

x t x t t H t w t

x t t t H t t w t t

x t t t t H t t t w t t t





 

 

  

  

 







 

   

 



evity, we get: 

         0

1

,;
k

k k
k

k R

x t w x t x H 




        (3) 

where 
 1 2d d d dk kt t t    and is a k-dimensional  

integral ver the variables The first term in 
n-random

kR


 o 1 2, , , kt t t . 

the expansion (3) is the no  part or ensemble 
mean of the function. The first two terms represent the 
normally distributed (Gaussian) part of the solution. 
Higher terms in the expansion depart more and more 
from the Gaussian form. The Gaussian approximation is 
usually a bad approximation for nonlinear problems, es- 
pecially when high order statistics are concerned [3]. 

The components    ; , , ,j
1 2 jx t t t t  are called the 

(deterministic) kernels   of the WHE for x t . The vari- 
able w is a random output of a triple probability space 
 , ,B P , where   is a sample space, B  is a  - 

sociated w h   and P is a probability meas- 
ure. For simplicity, w  w l be dropped later on. 

The functional    1 2, , ,n
n

algebra as it
il

H t t t  is the thn  order 
Wiener-Hermite tim nctional. e Wie- 
ner-H functionals form a complete set with  0 1

e-independent fu Th
H   

and      1
1 1H t N t : the white noise. By cons  

the W unctions are symmetric in their ar- 
guments and are statistically orthonormal, i.e. 

   i j

truction,
iener-Hermite f

0, .E H H i j       

  0, 1iE H i       

 
m

   

      

0

2

1

Var ! d
k

k
i k

k R

E x t x t

x t k x 


 

    

 
     (4) 

The WHE method can be elementary used i
stochastic differential equations by expanding the solu- 
tio

n solving 

n as well as the stochastic input processes via the 
WHE. The resultant equation is more complex than the 
original one due to being a stochastic integro-differential 
equation [4]. Taking a set of ensemble averages together 
with using the statistical properties of the WHE func- 
tionals, a set of deterministic integro-differential equa- 
tions are obtained in the deterministic kernels  

   1 2; , , , ; 0,1, 2, .i
ix t t t t i    To obtain approximate 

solutions of these deterministic kernels, one can use per- 
tur having a perturbed system 
depending on a small parameter 

bation theory in the case of 
 . Expanding the ker- 

nels as a power series of  , another set of simpler itera- 
tive equations in the kernel series components are ob- 
tained. This is the main idea of the WHEP algorithm. 

The WHEP technique for general nonlinear exponent 
n , general order m  and general number of corrections 
NC  follow the steps [22]: 

1. Truncate the e pansion (3) to contain only  x
 1, 1mm    kernels  ;0jx j m  , i.e. 

         0 ;; dk k
m

t w x t x H
1 kk R

kx 

   and then 

2. Substitute into the stochasti ifferential 
Equation (1); 

c partial d

3. Use the multinomial theorem to expand the nonlin- 
ear term nx  in (1); 

4. Multiply by  ;0jH j m   and then apply the 
ensemble average. This will lead to  1m   equations  

 the kernels  ;0jx j m  ; in

5. For each kernel  ;0jx j m  , the pertur- apply 
e up to i.e.  bation techniqu NC  corrections, 

   

0

NC
j ji

i
i

x x


  ; 

6. Equating t  coefficients of  in both 
sides to get 

he ;0k k NC  
1NC   equations for each kernel  

 ;0jx j m  . 
This will l the following   1 1m NC   equa- 

t
ead to 

ions [22]: 

      ! jj L x f t     00 1

0

j j t

j

t tg

m

 

 
 1 ;

  (5) 
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, 1!

0 ,1

j j ;j
b f f b

f

j L x c D E

j m b NC

 

   


 

f
    

where 

   (6) 

   
, 1

var 0 0

d
p
g

z

m NC hj i
f b g p

i pR

D c x z



 

      
      (7) 

And the expectations j
fE  are computed as: 

    
0

j
f

m k
j ij

f
i

E H H


              (8) 

It was explained in [22] how to get j
fE  in terms of 

the Dirac delta functions and then use 

integrals appear in

them to reduce the  

  
, 1
j

f bD  . The summation means   
var

that all variations ;0 ,0p
qh q m p NC     that satisfy  

m NC

the equality 
0 0

p
qd p  are selected. Th an be  

q p 
 h is c

g technique. For these vdone be a searchin ariations, the  

factors 

0

!

!i
f

NCg
p
g

p

h



k
 will bec   multiplied by each other to 

get 
g

c  i.e. 
var

g gc c . The term 0j  is the Kronecker  

wise ilarly 1

delta function that equals one when and zero other- 
. Sim , the term

0j 
 j  is the Kron er delta 

func hat equal en 1j  and zer herwise. 
The counter 

eck
tion t s one w o oth

f , in the su right hand side  

er

mmation in the 

of (6), runs over all the 
n m 
 
 

 combinations of the 

positive integ s 0 1, , , m

n

f f fk k k  such that 
0

m
i
f

i

k n


 . 

Equations (5) and (6) ca s be solved using the 

solved independen ;0

n alway
proper sequence. The first  Equations (5) are 

tly to get 
1m 

 
0

jx j m 
used to compute t ponents in (6

 
om

then they are 
he other c ). For 0j  , 

the component  0
0u  is obtained by solving 

    0
0 al iniL x f t  with the origin tial conditions which 

are assumed deterministic. For 1j  , the component 
 1
0x  is obtained solving   by      1

0 g tL x t t  1  with  

zero initial con
and sid

fy the soluti
to b

ditions. The other components  
0 ; 2jx j   

will be zeros due to zero right h e and zero initial 
conditions. Equations (6) speci on sequence 

e followed. The component  j
ix  is ev

f the previously computed c ents
aluated in

 
 

terms o
 

ompon
; ,p

kx p j k i  . This means that the 1st corre  
all kernels,  

1 ;0j
ctions for

x j m   are solved firstly then solv- 

ing the 2nd corrections for all kernels,  
2 ;0j

 

x j m  ,  

  up to the thNC  corrections for kernels 
  ;0j
NC

all 
x j m  . 

These results
g WHE. In W

e bottom, th
rcing di

rectly we inant 
in

 are consistent with the known results 
obtained usin HE, higher order kernels are 
driven by lower order kernels, and at th e 
Ga els a - ussian kern re driven by the random fo

. So, the r order kernels are usually dom lo
 magnitude [3]. 
The statistical properties of the solution will now be 

calculated as: 

   0

0

NC
i

i
i

E x t x

     Var ! d
m NC

ki
i kx t k x

2

1 0kk iR

        



   

  

     (9) 

If    

0

j ji
i

i

x x




  , then it will be convergent if [22]: 

 

 
1

j
i

j
i

x

x




  

for  0 ,Tt t  means that . This   should obey an up- 
pe ition after which divergence is obtained. 

The formulation given in Equations (5) and (6) are 
quite general and could be used or analysis of the re- 
sponse of an any linear operator with degree non- 

r bound cond

 f
L

rar

thn
linearity and subjected to an arbit y, stationary, or non- 
stationary Gaussian or non-Gaussian random excitation. 

Consider the quadratic  2n   nonlinear oscillatory 
equation with excitation function: 

 2 2 22x x x f             (10) 

With the initial conditions  

x t  

   0 0 00 and 0x x x x    

In case of zero initial conditions, 



the exact solution can 
be obtained using different methods such as 
lin  Laplace transform, 
an

the theory of 
ear differential equations or the
d it will be the convolution: 

         
0

d
t

x t h t f t h t f          (11) 

where    1
e sint

d
d

h t t 


  with 21d    ,  

which is the angular frequency of the underdamped 
 1   harmonic oscillator. 

For   e tf t  , the solution will results in: 

 

   

2

1

1 2

e sin d

t

t

 




 


1

e e cost t t
d t    

  

 

d 

x
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The solution (11) of the model Equation (10) can be 
used as a model solution that is used in all kernels after 
considering the proper right hand side for the nel 
equation. 

4.

ar oscillatory equation and first order (m = 1) 
rrec- 

deter- 

ker

 The Equivalent Deterministic System 

Applying the above mentioned WHEP algorithm to get 
the following systems of equations of the quadratic (n = 
2) nonline
Gaussian approximation and different number of co
tions  NC . The initial conditions are assumed 
ministic and hence only the zero-order and zero-  

correction kernel equation      0
0L x f t  will has the  

initial conditions  0 0andx x . Other kernels equations  

will have zero initial conditions. 
1NC  : 

    0

  1    
        

        

0

0 0 12 2
1 0 0 1

1 0 12
1 0 0 1

d

2

R

L x f t

L x g t t t

L x x x t t

L x x x t



 





 

    









  

 


0 1

2 2

1

: The above equations in addition to: 

d

: The above equations in addition to: 

2NC 

              

              

0 0 0 1 12 2
2 0 1 0 1 1 1 1

1 0 1 0 12 2
2 0 1 1 1 0 1

2 2

2 2

R

L x x x x t x t t

L x x x t x x t

 

 

  

  


 

3NC 

        

           

      
     

2
0 0 0 02 2

3 0 2 1

2
1 1 12 2

0 1 2 1 1 1 1 1

1 0 1 0 12 2
3 0 2 1 1 1 1

0 12
2 0 1

2

2 d

2 2

2

L x x x x

       
R R

dx t x t t x t t

L x x x t x x t

x x t

 

 

 



  

    

 


 







 
 

4NC  : The above equations in addition to: 

          

       

              
           

0 0 0 0 02 2
4 0 3 1 2

0 12
1 1 3 1 1

1 1 2 1 1

1 0 1 0 12 2
4 0 3 1 1 2

0 1 0 12 2
2 1 1 3 0 1

2 2

2 d

2 d

2 2

2 2

R

L x x x x x

x t x t t

x t x t t

L x x x t x x t

       

1

1 12

R

x x t x x t

 





 

 

  





  

 



  

5NC  : The above equations in addition to: 

            

       

       

   

     
           
     

20 0 0 0 02 2 2
5 0 4 1 3

1 12
0 1 4 1 1

1 12
1 1 3 1 1

212
2 1 1

1
5 0 4 1 1 3 1

0 1 0 12 2
2 2 1 3 1 1

0 12
4 0 1

2 2

2 d

2 d

d

2 2

2 2

2

R

R

R

L x x x x x x

x t x t t

x t x t t

x t t

L x x x t x x t

x x t x x t

x x t

  







 

 



   









 
 

 


 

 









  

        0 1 0 12 2

0
2

In case of zero initial conditions and zero deterministic 
excitation [i.e.  0

0 0x  ], we shall have: 

  
      

      

  

        

            

  
  
              

              

   

0
0

1
0 1

20 12
1 0 1 1

1

2

1 0 12
2 1 0 1

2
0 0 1 12 2

3 1 0 1 2 1

1
3

0
4

1 0 1 0 12 2
4 1 2 1 3 0 1

0 0 0 1 12 2
5 1 3 0 1 4 1

212
2 1 1

0

d

0

0

2

2 d

0

0

2 2

2 2

d

R

R

R

R

L x

L x g t t t

L x x t t

L x

L x

L x x x t

L x x x t x t t

L x

L x

L x x x t x x t

L x x x x t x t t

x t t

L x







 

 

 





 

 





 

  




 

 
 





  

  

 
 









  1
5 0

 

  
1

1

1d

Which means the all of 

0 

         0 1 0 1 1
0 1 2 3 5, , , ,x x x x x  and 

 0
0x  are become zeros. 
The second order  2m   equations will be: 

1NC  : 
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0
0

1
0 1

2
0

2 2
0 0 12 2

1 0 0 1

1 0 12
1 0 0 1

2 1 12
1 0 1 0 2

2 0

d

2

2 2

R

L x f t

L x g t t t

L x

L x x x t t

L x x x t

L x x t x t



 







 



  

 



   
 



 
 

1

: The above equations in addition to: 

1

2

: The above equations in addition to: 

2NC 

              

              
       

                

0 0 0 1 12 2
2 0 1 0 1 1 1

1 0 1 0 12 2
2 0 1 1 1 0 1

1 22
0 2 1 1 2 2

2 0 2 1 12 2
2 0 1 1 2 0 1 1

2 2 d

2 2

4 , d

2 4 , 4

R

R

L x x x x t x t t

L x x x t x x t

x t x t t t

L x x x t t x t x t
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2

20 0 0 02 2
3 0 2 1

1 12
0 1 2 1 1

1

2
1 1 2 1 2

1 0 1 0 12 2
3 0 2 1 1 1 1

0 12
2 0 1

1 22
0 2 2 1 2 2
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1 2 1 1 2 2

2 0 22 2
3 0 2 1 2

2

2 d

d

2 , d d

2 2

2

4 , d

4 , d

2 4 , 4

R

R

R

R

L x x x x

x t x t t

t

x t t t t

L x x x t x x t

x x t

x t x t t t

x t x t t t

L x x x t t x
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0 2
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1 12
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1 1 1 2
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       1 12

x t t

x t x t

x t x t
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R

R

R
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 3m   equations are: The third order 
1NC  : 
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5. Results 

The following output is simulated using Mathematica. 
The solution (11) of the model Equation (10) is used to 
get all kernels with the proper right hand side. The mean 
response and the response variance are then calculated 
from the kernels using Equation (9): 

Figures 1 and 2 show the response mean and variance, 
respectively, for the case of zero initial conditions, zero 
deterministic exciatation and unit envelope function mul- 
tiplied by the white noise. The angular frequency 1   
and the damping ratio 0.5  . The nonlinearity stren
is changed to study its effect on the response mean and 
variance. As it is shown in the figures, the nonlinearity 
strength greatly affect the amplitudes of the mean and 
variance. It should not be increased after a certain value 
to obtain convergent solution. This value depends on the 
different parameters of the problem. 

Also, we can notice that higher correction solutions are 
required with longer time intervals. 

In Figures 3 and 4, the envelope function 

gth 

 g t
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taken as . This will attenuate the effect of t ite 
noise as t e time increases. We can notice the at n 
effect on the response variance as the time increases. In 
this case, the variance vanishes with time and the so- 
lution becomes nearly deterministic. 

In Figures 5 and 6, non-zero initial condition is con- 
sidered;  and . The third correction mean 
and varia ffers first and second corrections 
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In Figures 7 and 8, the second order solution is simu- 
lated for different nonlinearity strengths with the first and 
second corrections. Higher corrected solutions will be 
time consuming even with multi-core machines. Mathe- 
matica automatically runs in parallel when multiple cores 
are available. The estimation of the response variance is 
more difficult than the response mean for higher correc- 
tions. 

In Figures 9 and 10, the third order solution is simu- 
lated. Also, higher corrected solutions will be time con- 
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Figure 1. First order mean response for the first, second 
and third corrections. Comparison between the different 
corrections for ε = 0.3 and ε = 0.5. Case of zero initial 
conditions, zero deterministic force and unit envelop 
deterministic function multiplied by the white noise. The 

gular frequency an  1  and the damping ratio . 0 5 . 
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Figure 2. First order response variance for the first, second 
and third corrections. Comparison between the different 
corrections for ε = 0.3 and ε = 0.5. Case of zero initial 
conditions, zero deterministic force and unit envelop 

eterministic function multiplied by the white noise. The 
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Figure 3. First order mean response for the first, second 
and third corrections. Comparison between the different 
corrections for ε = 0.3 and ε = 0.5. Case of zero initial 
conditions, zero deterministic force and  envelop de- 
terministic function multiplied by the e noise. Th
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Figure 4. First order response variance for the first, second 
and third corrections. Comparison between the different 
corrections for ε = 0.3 and ε = 0.5. Case of zero initial 

conditions, zero deterministic force and  envelop 
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Figure 5. First order mean response for the first, second 
and third corrections. Comparison between the different 
corrections for ε = 0.3 and ε = 0.5. Case of initial conditions 
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Figure 6. First order response variance for the first, second 
and third corrections. Comparison between the different 
corrections for ε = 0.3 and ε = 0.5. Case of initial conditions 
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Figure 7. Second order mean response for the first and 
second corrections. Case of zero initial conditions, zero 
deterministic force and unit envelop deterministic function 
multiplied by the white noise. The angular frequency  1  
and the damping ratio . 0 5 . 
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Figure 8. Second order response variance for the first and 
second corrections. Case of zero initial conditions, zero 
deterministic force and unit envelop deterministic function 
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Figure 9. Third order mean response for the first and 
second corrections. Case of zero initial conditions, zero 
deterministic force and unit envelop deterministic function 
multiplied by the white noise. The angular frequency 

1   and the damping ratio .0 5  . 

 

0 2 4 6 8 10
t

20

40

60

80

100
xvar

1stcorrection

1

0.7

0.5

0.3

0.1

 
 

2 4 6 8 10
t

50 000

100 000

150 000

200 000

250 000

300 000

350 000

xvar
2ndcorrection

1

0.7

0.5

0.3

0.1

 

Figure 10. Third order response variance for the first and 
second corrections. Case of zero initial conditions, zero 
deterministic force and unit envelop deterministic function 
multiplied by the white noise. The angular frequency 

1   and the damping ratio .0 5  . 

suming especially when estimating the response va- 
riance. 

The fourth order first correction solution is also ob- 
tained but it is the same as the third and the second order 
with first corrections. Higher corrections will be more 
and more expensive. There is a need for an alternative 
method such as the numerical estimations to overcome 
the difficulties in using symbolic packages. 

6. Conclusion 

In the present paper, we investigate the mean response of 
the quadratic nonlinear oscillatory system subjected to

rrec
. The mean and variance are simu- 

ted using Mathematica. It is observed that the WEHP 
technique can be applied to study the non-Gaussian re- 
sponse of any random systems. Moreover, the higher- 
order terms of the WHE should be adopted to obtain the 
responses of nonlinear random systems, and the integro- 
differential equations for the kernels should be calculated. 
There is a need for numerical estimations when higher 
order and higher corrections are required. 
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