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ABSTRACT 

Let  ijx x  be a double sequence and let M be a bounded Orlicz function. We prove that x is I-pre-Cauchy if and 

only if 
2 2

, ,

1
lim

mn
0.

ij pq

i p m j q n

x x
I M

m n  

 
  
 
 

   This implies a theorem due to Connor, Fridy and Klin [1], and Vakeel 

A. Khan and Q. M. Danish Lohani [2]. 
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1. Introduction 

The concept of statistical convergence was first defined 
by Steinhaus [3] at a conference held at Wroclaw Uni- 
versity, Poland in 1949 and also independently by Fast 
[4], Buck [5] and Schoenberg [6] for real and complex 
sequences. Further this concept was studied by Salat [7], 
Fridy [8], Connor [9] and many others. Statistical con- 
vergence is a generalization of the usual notation of con- 
vergence that parallels the usual theory of convergence. 

A sequence  ix x  is said to be statistically con- 
vergent to  if for a given L 0   

 1
lim : , 0.i

k
i x L i k

k
     

A sequence  ix x  is said to be statistically pre- 
cauchy if 

  2

1
lim , : , , 0.i j

k
j i x x j i k

k
     

Connor, Fridy and Klin [1] proved that statistically 
convergent sequences are statistically pre-cauchy and 
any bounded statistically pre-cauchy sequence with a no- 
where dense set of limit points is statistically convergent. 
They also gave an example showing statistically pre-cau- 
chy sequences are not necessarily statistically convergent 
(see [10]). 

Throughout a double sequence is denoted by  

 .ijx x  A double sequence is a double infinite array 
of elements ijx   for all  , .i j

The initial works on double sequences is found in 
Bromwich [11], Tripathy [12], Basarir and Solancan [13] 
and many others. 

Definition 1.1. A double sequence  ijx  is called 
statistically convergent to  if L

 
,

1
lim , : , , 0,ij

m n
i j x L i m j n

mn



      

where the vertical bars indicate the number of elements 
in the set. 

Definition 1.2. A double sequence  ijx  is called 
statistically pre-cauchy if for every 0   there exist 

 p p   and  q q   such that 

 2 2,

1
lim , : , , 0.ij pq

m n
i j x x i m j n

m n



      

Definition 1.3. An Orlicz Function is a function 
   : 0, 0,M     which is continuous, nondecreasing 

and convex with    0 0, 0M M x   for  and 0x 
 M x  , as x  . 

If convexity of M  is replaced by  
     M x y M M y  x  , then it is called a Modulus 

function (see Maddox [14]). An Orlicz function may be 
bounded or unbounded. For example, 

   0pM x x p 1    is unbounded and  
1

x
M x

x



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is bounded (see Maddox [14]). 
Lindenstrauss and Tzafriri [15] used the idea of Orlicz 

functions to construct the sequence space, 

1

: , for somek
M

k

x
x M 








0 .

       
   




 

The space M  is a Banach space with the norm  

1

inf 0 : 1k

k

x
x M







      
  





 

The space M  is closely related to the space p  
which is an Orlicz sequence space with   pM x x  for 

. 1 p  
An Orlicz function M is said to satisfy 2  condition 

for all values of 


x  if there exists a constant  
such that 

0K 
   M Lx KLM x  for all values of  1.L

The study of Orlicz sequence spaces have been made 
recently by various authors [1,2,16-20]). 

In [1], Connor,Fridy and Klin proved that a bounded 
sequence  kx x  is statistically pre-cauchy if and only 
if  

 2
,

1
lim 0.i j

k i j k

x x
k 

   

The notion of I-convergence is a generalization of 
statistical convergence. At the initial stage it was studied 
by Kostyrko, Salat, Wilezynski [21]. Later on it was 
studied by Salat, Tripathy, Ziman [22] and Demirci [23], 
Tripathy and Hazarika [24-26]. Here we give some pre- 
liminaries about the notion of I-convergence. 

Definition 1.4. [20,27] Let X be a non empty set. Then 
a family of sets (  denoting the power set of X) 
is said to be an ideal in X if 

2XI  2X

(i) I  
(ii) I is additive i.e ,A B I A B I   . 
(iii) I is hereditary i.e ,A I B A B I    . 
An Ideal  is called non-trivial if . A 

non-trivial ideal  is called admissible if  
2XI 

2I 
2XI 

X

  :x x X I . 
A non-trivial ideal I is maximal if there cannot exist 

any non-trivial ideal J I  containing I as a subset. 
For each ideal I, there is a filter  £ I  corresponding 

to I. i.e. 

   £ :

where .

c

c

,I K N K I

K N K

  

 
 

Definition 1.5. [10,21,28] A double sequence  
 ijx 


 is said to be I-convergent to a number L if for 

every ,  0

 , : iji j x L I .      

In this case we write lim .ijI x L   
Definition 1.6. [21] A non-empty family of sets 
 £ 2XI   is said to be filter on X if and only if 
(i)  £ I , 
(ii) For ,A B  £ I  we have  £A B I  
(iii) For each  £A I and A B  implies  £B I . 

2. Main Results 

In this article we establish the criterion for any arbitrary 
double sequence to be I-pre-cauchy. 

Theorem 2.1. Let  ijx x  be a double sequence and 
let M be a bounded Orlicz function then x  is I-pre- 
Cauchy if and only if 

2 2
, ,

1
lim 0, for some 0.

ij pq

mn i p m j q n

x x
I M

m n


 
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Proof: Suppose that 
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 
 

   

For each 0, 0   and  we have that ,m n IN

1
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Now by (1) and (2) we have 
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1 12 2
, ,

1
, : lim , ,  ,

ij pq c

mn i p m j q n

x x
m n IN M i p m j q n A A I

m n


 

            
   .   

thus x  is I-pre-Cauchy. 
Now conversely suppose that x  is I-pre-Cauchy, and that   has been given.  
Then we have 

1 12 2
, ,

1
, : lim , ,   ,

ij pq c

mn i p m j q n

x x
m n IN M i p m j q n A A I

m n


 
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Theorem 2.2. Let  ijx x  be a double sequence and 
let M be a bounded Orlicz function then x is I-convergent 
to L if and only if 

, 1 1

1
lim 0, for some 0.

m n
ij

m n i j

x L
I M

mn


 
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Proof: Suppose that 
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1
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 
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Let 0   be such that   .
2

M
   Since M is a  

with an Orlicz function M, then x  is I-convergent to L 
(See [1]) bounded Orlicz function there exists an integer B such  

that  
2

B
M x   for all . Therefore, for each  0x  Conversely suppose that x  is I-convergent to L. We 

can prove this in similar manner as in Theorem 2.1 as- 
suming that , ,m n IN  
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 
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and M being a bounded Orlicz function. 
Corollary 2.3. A sequence  ijx x  is I-convergent 

if and only if 

2 2, , ,

1
lim 0.ij pq
m n i p m j q n

I x
m n  

x     

Proof: Let   .M x x  Then 
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

 (4) 
(3) 

Since x  is I-pre-Cauchy, there is an IN  such that 
the right hand side of (3) is less than   for all 

. Hence ,m n I N
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and 
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 (5) 

Therefore from (4) and (5) we have,  

1 1

, : , , , ,

.
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c

x x
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Hence 

2 2, , ,

1
lim 0.ij pq
m n i p m j q n

I x
m n  

   x   

if and only if 

2 2, , ,

1
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ij pq

m n i p m j q n

x x
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m n  

 
 
 
 

    

By an immediate application of Theorem 2.1 we get 
the desired result. 

Corollary 2.4. A sequence  ijx x  is I-convergent 
to L if and only if 

, 1 1

1
lim 0

m n

ij
m n i j

I x
mn  

  L   

Proof: Let   .M x x  
We can prove this in the similar manner as in the proof 

of Corollary 2.3. 
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