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Abstract 
 
This paper focuses on the micromechanical study of the tensile property of Polymer-Clay Nanocomposites 
(PCN). Polypropylene (PP) filled with nanoclay is chosen as the PCN. Measurements of optical dispersion 
parameters (as discussed by Basu et al., namely, exfoliation number (ξn), degree of dispersions () and ag-
glomerate %) in PCN system were carried out using Transmission Electron Microscopy (TEM) and Optical 
Microscopy (OM). The experimentally obtained tensile modulus is compared with theoretically obtained 
modulus values from the optical dispersion parameters and observed a close matching between these values. 
Also, the tensile values are compared with other standard theoretical models and observed that the results 
obtained from optical dispersion parameters are suited well with experimental results. 
 
Keywords: Polymer Clay Nanocomposites, Transmission Electron Microscope, Optical Microscope,  

Intercalation/Exfoliation, Micromechanical Modeling 

1. Introduction 
 
Polymer filled with nanolayered silicate clay has become 
a significant research interest in recent past and contin-
ues to be an area of important focus because they exhibit 
dramatic improvement in properties at very low clay 
filler contents. Usually micron-Scale conventional fillers 
are added in polymer in the form of particles or fibres 
shaped additives. However, the addition of these parti-
cles in polymer imparts increased weight, brittleness, 
opacity etc. A polymer nanocomposite (in which at least 
one dimensions of reinforcement material in nanometer 
level ~100 nm) on the other hand provides enhanced 
property benefits to polymer system at very low weight 
concentration level (~3 to 5 wt.%). Commonly used 
nanoparticles in polymer matrix are nanolayered clays, 
because of their ease availability and cost effectiveness 
[1-3]. 

The addition of nanoclay in polymer matrix result in 
the formation of two types of nanocomposites structures, 
namely, an intercalated or an exfoliated structure. The 
host polymer matrix enters into the interlayer spacing of 
nanoclay and increases the interlayer of clay more and 

maintains the parallel arrangement of nanolayers of clay 
in matrix and this structure is called an intercalated 
structure. If the nanolayers of clays are randomly dis-
persed in matrix, then the structure is called an exfoliated 
structure. These intercalated and exfoliated structures can 
be examined by using TEM and X-ray diffraction (XRD) 
methods. In general, exfoliated structure provides im-
proved properties than intercalated nanocomposite struc-
ture due to increase of net aspect ratio of clay nanolayers 
(length/thickness). However, if the concentration of clay 
is increased, the composite structure becomes interca-
lated structures and also some times leads to improved 
properties which are primarily due to the major contribu-
tion of clay property rather than nanoclay composite 
structure (exfoliated) [4-7]. Each nanolayer of clay con-
stitute of elliptical disc like platelet shaped structure, of 
length and width varying from 100 nm to 2000 nm and 
thickness of about 1 nm. 

It is well known fact that the property of PCN depends 
on degree of dispersions of clays. The properties are 
good if the dispersion of clays are proper and with no 
agglomeration [8-11]. This phenomenon suggests that 
there exists a link between dispersions and the property 
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of composites. The better the dispersion of nanolayers in 
polymer, better property enhancements can be obtained. 
However, the nanolayers are not easily dispersed in most 
polymers due to their preferred face-to-face stacking of 
clay platelets in agglomerated tactoids. Studying the char-
acteristics of dispersions of particles (distribution, ar-
rangement, orientation, etc) helps to understand the prop-
erty of composites in better way. Basu et al. [12] has 
done image analysis using sterelogy of TEM and Optical 
Microscope (OM) pictures and studied the extent of dis-
persion of particles using dispersion parameters (namely: 
exfoliation number, interparticle distance and agglom-
eration %). In this work, we used these optical dispersion 
parameters and further extended these parameters to 
study the tensile property of composites. PCN system 
chosen in this study was polypropylene (PP) as matrix 
polymer material and reinforcement as nanoclay particles. 
The objective of this work is to measure the tensile 
modulus using optical dispersion parameters. The theo-
retically measured tensile modulus using optical disper-
sion parameters is then compared with experimentally 
obtained results and also with various standard micro-
mechanical models. It is observed that the theoretical 
results measured using this optical dispersion parameters 
correlated well with that of experimental results than 
other standard models. The out come of the results are 
discussed in this paper. 
 
2. Experiments 
 
2.1. Materials and Manufacturing 
 
Cloisite 15A is a natural montmorillonite organically modi-
fied with a quaternary ammonium salt and was obtained 
from Southern Clay Products, USA. Polypropylene pel-
lets were procured from Chempro, South Africa. 

The nanocomposite panel was manufactured using a 
melt-blend technique. In this technique, the polypro-
pylene pellets and the nanoclay were combined in a 
REIFFENHAEUSER screw extruder. The extruder has a 
40 mm diameter single rotating screw with a length/di-
ameter ratio (L/D) of 24 and driven by a 7.5 kW motor. 
Three heating zones along the length of the screw were 
set up to gradually heat the pellet/clay mixture. The tem-
peratures in these zones were as follows: Zone 1 (pellet 
loading end) was set at 170˚C, Zone 2 (centre region of 
screw) was at 190˚C, and Zone 3 (extrusion end) was 
maintained at 210˚C. This temperature gradient setup 
was created to avoid thermal shock, (i.e., the heating 
condition is fixed up in such a way that the melt polymer 
samples exhibits uniform gradient of temperature across 
the length of extrusion unit instead of sudden change of 
temperature). 

2.2. Characterization 
 
Microscopic investigation of selected nanocomposite 
specimens at the various weight compositions were con-
ducted using a Philips CM120 BioTWIN transmission 
electron microscope with a 20 to 120 kV operating volt-
age. The cryo and low dose imaging TEM has BioTWIN 
objective lens that gives high contrast and a resolution of 
0.34 nm. The specimens were prepared using a LKB 
/Wallac Type 8801 Ultramicrotome with Ultratome III 
8802A Control Unit. Ultra thin transverse sections, ap-
proximately 80-100 nm in thickness were sliced at room 
temperature using a diamond coated blade. The sections 
were supported by 100 copper mesh grids. 

3 cm × 3 cm × 3 mm specimen of PP-clay series were 
taken and cut into two across the mid portion of the 
specimen. The cut portion is viewed through optical mi-
croscope at 100x using ZEISS AXIO LAB optical mi-
croscope. Tensile tests were performed on virgin PP and 
the nanocomposite specimens using the LLOYDS Ten-
sile Tester fitted with a 20 kN load cell. The tensile tests 
were performed at a crosshead speed of 1 mm/min in 
accordance with the ASTM D3039 standard. 
 
3. Results and Discussions 
 
3.1. Rules of Mixture and Halpin-Tsai  

Formulation 
 
The parallel model (rules of mixture) has been applied 
for the prediction of Young’s modulus and is given the 
Equation (1). Young’s modulus of clay and PP are taken 
as 167 GPa and 1 GPa respectively. 

c m m f fE E V E V                  (1) 

Figure 1 shows the experimental and rules of mixture 
values. There is a large variation in experimental and 
theoretical values. Equation (1) shows that the theory 
does not account for the aspect ratio and the shape of the 
fillers. 

This theory is further improved by Halpin Tsai [13] 
which predicts the stiffness of particulate filled compos-
ites as a function of aspect ratio. The longitudinal and 
transverse moduli E11 and E22 are expressed in the gen-
eral form as per Equation (2). 
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Figure 1. Comparison of Rules of mixture and experimental 
results. 
 
  = 2 (a/b) in which ‘a’ and ‘b’ are the length and 
thickness of the fibre. The effect of ‘a’ on modulus of 
composites is shown in Figure 2. At higher clay content, 
there is a large variation in experimental and theoretical 
results. The existence of agglomeration, intercalated struc-
tures, etc, of clay particles in matrix polymer might have 
reduced composite properties along the loading direction 
and this leads to the low modulus value than the theo-
retical values. 
 
3.2. Stack Model 
 
The polymer-clay nanocomposites consist of clay plate-
let reinforcement in variety of polymer matrices for the 
formation of either intercalated or exfoliated structure. 
However, in most cases exfoliation is thermodynamically 
unfavourable and most process techniques lead only to 
intercalated structures particularly at higher clay content 
[8-11]. Here an attempt is made to understand the influ-
ences of incomplete exfoliation on nanocomposite stiff-
ness using composite theory. For this analysis, the stack-
ing of clay platelets within a particle is treated in a very 
simple fashion, i.e. platelets of equal diameter are stacked 
directly one over the other and the load is applied paral-
lel to the platelet edges, as shown in Figure 3. Matrix 
polymer is assumed to be present in the interlayer region 
of two clay nano platelets (layers). 

The tensile modulus of a simple stack in the direction 
parallel to its platelets can be estimated by using the rule of 
mixture, as suggested elsewhere [14]. Stack modulus can be 
found out from rules of mixture as per Equation (4). 

s mi mi cl clE E V E V                (4) 

The stack modulus (Es) obtained from Equation (4) is 
substituted in Equation (1) in place of Ef. The matrix 
thickness in the stacks plays a significant role in the 
composite modulus. If matrix thickness in the clay inter-
layer region is more, then the effective clay volume frac-
tion will reduce. Figure 4 shows the effect of matrix 
thickness in interlayer region and their corresponding 
decrease in the clay volume fraction. Also, at given ma-
trix thickness, the volume fraction of clay stack remains 
constant irrespective of number of stacks. 

Figure 5 show the comparison of experimental results 
with the theoretical values of stack model. It is observed 
that matching is good at clays volume fraction of 0.02 
and 0.03, however at higher clay content the deviations is 
more. By altering stack thickness and thickness of matrix 
at interlayer (dms), some matching can be expected. Even 
though at higher clay content, the structure becomes in-
tercalated structure (stacking sequence), the theoretical 
and experimental results have not matched well. Possibly 
other factors like aspect ratio, interface property etc, 
could have influenced the experimental results. 
 
3.3. Mori-Tanaka Theory 
 
Mori-Tanaka micromechanical model have been pro-
posed to predict the elastic constants of discontinuous 
fibre/flake composites [15]. This model depends on pa-
rameters including particle/matrix stiffness ratio; particle  
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Figure 2. Comparison of Halpin-Tsai theory and experi-
mental results. 
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Figure 3. Tensile loading in stack model. 
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Figure 4. Effect of matrix thickness in clay nanolayer. 
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Figure 5. Comparison of tensile modulus of nanocomposites 
and stack model. 
 
volume fraction; particle aspect ratio; and their orienta-
tion. In applications relevant to the present study, the 
particles and matrices are assumed to be linearly elastic, 
can be taken as isotropic or transversely isotropic. Here, 
Ep and Em denote the elastic modulus of the particle and 
the matrix respectively. Later, Tucker et al. [16] provides 
a good review of the application of several classes of 
micromechanical models to discontinuous fibre rein-
forced polymers. It is noted that, of the existing models, 
the widely used Halpin-Tsai equations give reasonable 
estimates for effective stiffness, but the Mori-Tanaka 
type models give the best results for large aspect-ratio 
fillers. The present study is focused on the prediction of 
longitudinal stiffness, E11; for composites filled with 

unidirectional disk-like particles. The Mori-Tanaka model 
is given by Equation (5). 

11 1 2( / ) f
m

E
L t V

E
              (5) 

  is the shape factor which can be taken from Hal-
pin-Tsai shape factor (Equation (3)), t is the thickness of 
the clay nanolayer (1 nm) and L is the length of the clay 
nanoclayer (nm). Figure 6 shows the comparison of ex-
perimental values with theoretical results for different 
values of clay length. The thickness of nanolayer ‘t’ is 
taken as 1 nm. 

The modulus values increases as the length of clay 
nanoparticle increases. The theoretical prediction of modulus 
up to low clay volume fraction is better, however, at 
higher clay concentrations, there exists large variations 
in the experimental values and Mori Tanaka result. This 
suggests that other parameters are influencing the ex-
perimental trend. The length of clay layers are not the 
function of clay concentrations since same species of 
clays are used. Hence it is understood that net aspect 
ratio (length/thickness) has affected the aspect ratio. Also, 
stacking of clay nanolayers is high at higher clay con-
centration (intercalated structure). All these factors could 
have reduced the modulus at higher clay content. Mori 
-Tanaka formulation considers only the size, shape, as-
pect ratio and volume fraction of fillers, however, it does 
not consider the effect of net aspect ratio of fillers (which 
is predominant at higher clay content). In Mori-Tanaka 
formulation, the bahaviour of interface characteristics is 
also not considered, which is taken care in Takanayagi’s 
phase model. 
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Figure 6. Comparison of modulus with Mori-Tanaka the-
ory. 
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3.4. Takanayagi’s Two Phase and Interface 
Model 

 
The phase model suggested by Takayanagi has widely 
been used to explain modulus of polymers, polymer 
blends and composites [16]. Two phase model describes 
the modulus of composites which consists of homoge-
neous rigid discontinuous phase and homogenous con-
tinuous matrix phase. When the dispersed particles ap-
proach a very small size, the specific surface area of the 
interfacial region is so large that it is comparable with or 
even larger than that of the dispersed phase. Recent work 
on polymer nanocomposites shows that the macromo-
lecular chains intercalated in inorganic compounds are 
confined in a very small region and their behaviour is 
quite different from those in bulky polymers. It is found 
that these macromolecules are quite rigid. Based on this, 
an interface contribution of matrix and particle is taken 
in to account in Takayanagi’s model. 

The moduli of the matrix, dispersed phase, and inter-
face are Em, Ed and Ei respectively, and their corre-
sponding volume fractions are Vm, Vd and Vi respectively. 
Figure 7 shows the distribution of particles in the matrix. 
The schematic of filler/matrix interface is also depicted. 
The system can be explained as a three-phase model in 
which the three phases are connected to each other in 
series and in parallel. The response of these three phases 
to a stress is schematically shown in Figure 8. 

The three phase model as shown in Figure 8 is di-
vided in to three regions which are connected in series as 
A, B and C. The elongation of these three regions under 
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Figure 7. Schematic of cross-section view of polymer-parti- 
cle filled composites. 
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Figure 8. Equivalent model under tensile response. 

the stress (T) loaded on the specimen are A, B and C, 
respectively. In region A, only matrix with volume frac-
tion VAm exists. In region B, the interface with volume 
fraction VBi and matrix with volume fraction VBm coexist 
in a parallel arrangement. In region C, the matrix with 
volume fraction VCm, the interface with volume fraction 
Vd coexists in a parallel arrangement. It is known that 
VAm + VBm + VCm = Vm, VBi + VCi = Vi. 
The elongation in region A is  

A
A m

T T

E E
                  (6) 

where EA is the modulus of the region A, i.e., Em. 
The elongation in region B is:  

(1 ) m Bi

T

E E  
             (8) 

The elongation in region C is  

(1 ) ( )m ci d

T

E E E      
          (9) 

The total elongation in these three regions is  

(1 ) ( )C A B C            

= 

1

(1 ) (1 ) ( )m m Bi m Ci dE E E E E E

   
     

  
        

 

(10) 

Where ;d iV V                (11) 

Since C /T = 1/Ec, where Ec is the modulus of the 
composites, Equation (10) becomes 

1 1

(1 ) (1 ) ( )c m m Bi m Ci dE E E E E E E

   
     

 
  

     
 

(12) 

This equation can be understood by considering some 
special cases. 

1) when   = Vd = 0, i.e. no dispersed phase and 
therefore no interfacial region, only a matrix exists, then 
Ec = Em 

2) when 1   = 0, 1 –  = 0, i.e.,  = 1,  = 1 and 
Vm = 0, i.e., the matrix phase does not exist. Here there is 
no interfacial region and dispersed phase giving Ec = Ed 

3) when  – λ =  –  = 0, or  = – λ and  = , 
Equation (12) reduces to  

1 1

(1 )c m dE E E

 
 


 

 
         (13) 

The Equation (13) describes the modulus of two-phase 
composites namely homogeneous rigid phase and ho-
mogeneous matrix phase. However, in nanoclay filled 
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composites, the matrix particle interface has to be con-
sidered and this is given in 3-phase model. 
 

3.4.1. Modulus of the Interfacial Region 
The modulus of the interface in regions 1 and 2 are dif-
ferent from each other (shown in Figure 8). In the region 
1, owing to the parallel arrangement of a number of 
volume units in the interfacial region, the modulus of this 
region could be expressed by: 

( )il ilE E l                (14) 

where Eil(l) is the modulus at region 1 with the distance l 
from the surface of the dispersed rigid phase. If a linear 
gradient distribution of the modulus along the normal 
direction of the surface is assumed, then 

(0)
( ) il m

il

E E
dE l dl




          (15) 

After integration, the Equation (16) is obtained: 

(0)
( ) (0) il m

il il

E E
E l E l




         (16) 

where Eil (0) is the modulus of the interface at the sur-
face of the dispersed rigid phase and  is the thickness of 
the interface region. When l = 0, Eil (0) stands for the 
modulus of the interface, close to the surface of the fill-
ers and it is a constant. Alternately, when l =, Eil () 
represents the modulus at the edge of the interface next 
to the matrix, i.e., Em (Figure 9). If there exists linear 
decrease of Ef along l, then the modulus of the interface 
region l with thickness of  is then  

(0)

2
il f

il

E E
E


                (17) 

As seen in Figure 8, the region 2 (Block i2) connects 
with the dispersed phase at the top and connects with the 
matrix at the bottom. From top to bottom the modulus of 
these phase varies from Ei2(0) to Em. Block i2 can be 
treated as a series arrangement of a number of volume 
units and the modulus in this region varies with l. 

It should be noted that EBi = Ei2, ECi = Eil. Eil or Ei2 
could be another type of function depending on the in- 
teraction of the macromolecules with the surface of dis-  

l = 0 l = τ 

Ef 

Em 

Eil 

τ 

l 

particle 

 
Figure 9. Variation of interface modulus along the normal 
of particle surface. 
 

persed phase. In the present case it is assumed that 
modulus Eil and Ei2 are same. 
 

3.4.2. Tensile Modulus of Polymer Nanocomposites 
If the modulus in the interfacial region takes a linear gra-
dient reduction along the normal direction of the surface 
of dispersed phase, Equation (13) would be  

2 2

1 1

(1 ) [ln( / (0)][ (0) ]

(1 ) ( )[ (0) ] / 2

c m m i i m

m il m d

E E E E E E

E E E E


 


   




  


    

 

If a random orientation of the plate-like dispersed 
phase is considered with thickness = λ, length and width 
as ζ and ζ 1, the following conditions are assumed, i.e., 
 = ,  = λ. Each plate particle has two interface re-
gions: Vd = λ and 2 – Vd = (2/t)Vd, which can be ar-
ranged as 

1/2[(2 / 1) ]dt V               (19) 

The modulus of interfacial region is assumed to be  

2(0) (0)il i mE E kE              (20) 

Where k represents the modulus ratio (1 < k < [Ed/Em]) 
of the neighboring interface surface of a dispersed parti-
cle. Thus the equation obtained is 

 

1 [2( / ) 1]1

{[2( / ) 1]}

{1 ([2( / ) 1] ) [ ([2( / ) 1]( 1) / ln

{1 ([2( / ) 1)} { [(2( / ) 1) ] }( 1) / 2

d

c m

d

d m m

d

m d m d d

t V

E E

t V

t V E t k E k

V

t E t V Vd k E V E





 

 

 


 


    


      

                             (21)
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Using the above equation the effects of particle size, par-
ticle shape, thickness of interfacial region, modulus ratio 
of dispersoid phase to the matrix, and the k value on 
nanocomposites is studied. 
 
3.4.3. Effect of k Value 
k is the modulus ratio of the particle surface adjacent to 
the matrix and is usually in the range of 1 < k < (Ed/Em). 
Ec increases with the increase of k and the variation is 
shown in Figure 10. The result shows that for higher 
clay conent the experimental values better with theoreti-
cal values. Also the curve suggests that the interfacial 
modulus has considerable effect on tensile modulus of 
composite. At lower clay concentration, possibly interfa-
cial moduli are higher or the model may not suit with 
experimental results. 
 
3.4.4. Effect of Particle Size and Interface Thickness 
The effect of particle size on the modulus of nanocom-
posites is studied and the results are shown in Figure 11. 
The thicknesses of layers are varied from 1 nm to 30 nm. 
Here the interface thickness is assumed as 10 nm and k 
as 30. By altering these parameters possibly some match 
between experimental and theoretical can be expected. 
Figure 12 shows the effect of interface thickness on 
composite modulus. This suggests interface thickness has 
some influence in nanocomposite modulus. 
 
3.5. Optical Dispersion Parameters 
 
The above discussed theoretical models consider mostly 
the geometry and composition of composites. To some 
extent, they consider the interface characteristics in pre-
dicting the modulus values of composite series. Hence, 
most likely experimental and theoretical results do not 
match each other. In this section, optical dispersion pa-
rameters (namely: Agglomeration %, Exfoliation number, 
degree of dispersion) are taken in to consideration for 
predicting modulus values. These parameters are meas-
ured by viewing the composite material through Optical 
microscope (Figure 13) and Transmission Electron Mi-
croscope (Figure 14). 

In Figure 13 of OM, the bright phase is the matrix 
phase and the dark phase is the particle phase. As the 
clay concentration increases the clay stacking becomes 
more and hence more aggregated clay phase is seen. 
Figure 14 shows the bright field TEM of PP-clay nano-
composites. Matirx phase represents the bright region 
and the dark phase represents the particle (clay) regions. 

Agglomeration % (Agg. %) is the proportion of mi-
cron size agglomerates in Optical microscope, micron 
-size agglomerates larger than 5 microns are considered. 
The area lesser than 5 microns was analyzed using TEM 
images. 

The Agg. % were calculated using OM and using the 
Equation (22) 

 
 

total area of clay dispersed in matrix   100
Agg %

agglomerated area of  5 microns





 

(22) 

It is observed that Agg. % increases as clay concentra-
tion increases in polymer matrix. The exfoliation number 
(ξn) is calculated from TEM pictures (Figure 14) as per 
Equation (23). 

100( )

( )
v p c

v total

S

S
              (23) 

where (SV)P−C is the polymer-clay interfacial area per 
unit volume of the specimen and (SV)total is the total clay 
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Figure 10. Effect of interface modulus. 
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Figure 11. Effect of particle thickness. 
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Figure 12. Effect of interface thickness. 
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Figure 13. Optical microscope of PP with (a) 1%, (b) 2%, (c) 
3%, (d) 4% and (d) 5% clay. 
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(a) 

 

 
(b) 

 

 
(c) 

 
interfacial area exposed to the polymer matrix. 0 indi-
cates no exfoliation and 100 indicate complete exfolia-
tion. (SV)P-C and (SV)total are calculated as per Equations 
(24) and (25) respectively. 

 
(d) 

 

 
(e) 

Figure 14. TEM of PP with (a) 1%, (b) 2%, (c) 3%, (d) 4% 
and (e) 5% clay. 
 

4
( ) A

v p c

L
S

                  (24) 

( )
0.94

v
v total

V
S                  (25) 

where LA is the total length of perimeter of particles 
per unit area from TEM images, VV is the volume 
fraction of clay estimated from the area fraction of 
all particles from TEM images. The degree of disper-
sions () is calculated as per the Equation (26). 

(1 .%)Agg                (26) 

The values of these parameters are shown in Table 1. 
Figure 15 shows the experimental values and values 
obtained from dispersion parameters. These parameter 
were compared and it is observed that these parameters 
fit well with experimental results. The resulted disper- 
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Table 1. Nanocomposite dispersion data and property. 

Optical dispersion 
parameters 

PP + 
1% 
clay 

PP + 
2% 
clay 

PP + 
3% 
clay 

PP + 
4% 
clay 

PP + 
5% 
clay 

Agg. % 8 12 18 19 20 

Exfoliation No. 
(ξn) 

90 70 32 26 18 

Degree of disper-
sion () 

83 62 26 21 14 

Exptl. Tensile 
modulus, GPa 

1.9 2.3 1.5 1.45 1.4 
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Figure 15. Comparison of rules of mixtures, experimental 
obtained values and analytical dispersion parameters. 
 
sion parameter (Table 1) values are substituted with 
theoretical modulus from rules of mixtures and graphs 
are plotted. It is observed a close matching between dis-
persion parameters and experimental results. 
 
4. Conclusions 
 
The structural changes that are taking place in PP-nano-
clay systems are quantified as optical dispersion parameters 
and were measured using TEM and OM image analysis. 
The dispersion parameters measured were exfoliation 
number (ξn), degree of dispersion () and agglomerate 
concentration (Agg. %). These parameters were substi-
tuted in rules of mixtures (parallel model) to predict ten-
sile modulus of nanocomposites and observed a good 
correlation between experimental and theoretical tensile 
modulus. Further, the modulus prediction by these opti-
cal dispersions method is better than other standard 
models. This good correlation of optical dispersion pa-
rameters with experimental results shows positive goal 
towards successfully measurement of tensile modulus. 
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Notation 

  length fraction of interface 

  width fraction of interface 

  length fraction of dispersoid 

  width fraction of dispersoid 

  degree of dispersions  

ζ  shape factor of filler 

  modulus ratio factor 

τ  interface thickness 

ξn  exfoliation number  

A, B, C elongation in region A, B and C respectively 

a  length of clay platelet 

k  interface modulus (modulus ratio) 

t  nanoclay thickness 

 

 

 

 

 

 

 

 

 

 

 

dms  thickness of matrix in a stack  

Ec  Young’s modulus of composites 

Em  Young’s modulus of matrix 

Ef  Young’s modulus of filler 

Es  Stack modulus 

Ep  Youngs’s modulus of particle 

Vf  volume fraction of filler 

Vm  volume fraction of matrix 

Ecl  clay modulus in stack 

Emi  matrix modulus in stack 

Vcl  volume fraction of clay in stack 

Vmi  volume fraction of matrix in stack 

L  length of clay platelet 

T  applied load 

 

 

 

 

 


