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ABSTRACT 

The Theater Positioning System (TPS), which can perform in GPS-denied environments and can work with, or inde- 
pendently of, GPS systems, was presented in [3]. The principal difficulty in optimally combining this new system and 
GPS is caused by the somewhat unpredictable signal propagation of the TPS ground wave signal and thus results in less 
accurate performance when TPS works unaided in the environment while GPS is unavailable. A new navigation scheme 
that can provide an accurate position estimate for the GPS-denied user is developed. The essential of the scheme is to 
build a model to predict localization errors (transmission delays) caused by those propagation disturbances. In this work, 
we adopt three models: A state-space model which is represented by stochastic difference equations (SdEs), a linear 
combination of basis functions, and a special nonlinear model which is called the generalized linear model (GLM). We 
also propose a stochastic approximation method to solve the pseudo-range equations which does not require the prior 
knowledge of noise covariance matrices. A numerical example is provided and compared to illustrate the performance 
of the methods proposed in this paper. 
 
Keywords: GPS; Theater Positioning System; State-Space Model; Basis Functions; GLM 

1. Introduction 

Global Positioning System (GPS) has been widely em- 
ployed for both military and civil purposes, which makes 
it a necessity part in human lives. However, the nearly 
exclusive dependence on the GPS satellite constellation 
for accurate position information becomes a major op- 
erational concern for deploying US military and law- 
enforcement personnel. Such concern comes from the 
comparatively weakness of GPS, e.g., it may suffer from 
multipath and RF interference (intentional and uninten- 
tional), or even invasion from an adversary, which will 
result in inaccurate localization and further waste of time 
and capital. Differential GPS [4] is employed as an en- 
hancement of GPS for improving the localization accu- 
racy. A backup to GPS when GPS signals are out of re- 
ception is inertial navigation systems (INS) [5,6]. These 
units can be viewed as short-term backups to GPS but are 
in general costly, heavy, bulky, inaccurate, and/or power- 
hungry to be deployed except in a few specialized appli- 
cations. Thus, a much more robust, inexpensive, and re- 
liable GPS augmentation technique is badly needed for 

dismounted personnel and most platforms. 
A novel integrated radio-navigation system called 

Theater Positioning System (TPS) that is less expensive 
and offers far more consistent coverage than with GPS 
alone is developed in [3]. It operates at 90 - 110 kHz 
ground-wave radio-frequency (RF) and can be used with 
or without GPS. Like GPS, this enhanced low frequency 
(LF) component of the system uses spread-spectrum 
transmission for improved accuracy, exhibits a large pro- 
cessing gain for greater interference immunity, and thus 
has a significant advantage over conventional LORAN- 
C radio-navigation systems. It can be considered as a 
navigation system that uses terrestrial signal transmit- 
ters and a much lower RF compared with GPS. The low 
frequency property improves the capability of TPS signal 
penetration through obstacles such as buildings, canyons, 
and forrest, where GPS may be disabled due to the signal 
blocking. For example, the first author’s GPS did not 
work well or even provide a close navigation in Chicago 
downtown due to the skyscrapers and bridges. The inde- 
pendence of TPS allows it to provide localization infor- 
mation for users when GPS signal is denied. *Parts of the paper has been published in conference versions [1,2]. 
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The combination of GPS and TPS is explained as fol- 
lows: In the usual operating mode, GPS serves as the 
principal positioning source. Continuity of their fixes are 
assured, since during the normal TPS tracking process, 
the TPS and GPS position data are continually compared. 
As long as the recent and current GPS signal quality is 
good, the displayed TPS fix will be automatically ad- 
justed to overlay the GPS values; this is generally done 
to provide an ongoing in-situ calibration of the TPS sig- 
nal propagation delay figures and thus “drag” the TPS fix 
in to match the GPS. If GPS suddenly fails to provide a 
clean or continuous fix, the TPS value will track the last 
good GPS coordinates. Once GPS signal integrity is re- 
stored for at least a few seconds and a new lock is satis- 
factorily obtained, the system will smoothly revert to the 
GPS fix and return to normal operation. In the event that 
GPS is jammed or otherwise unavailable for an extended 
period, TPS will be employed in a standalone mode to 
derive the unit’s fix, with a caution to the user that fix 
accuracies may be reduced. Another specific advantage 
of the TPS concept lies in the use of TPS as an antis- 
poofing detector for GPS. For instance, if the TPS (pre- 
sumed stable) and GPS planar fixes do not essentially 
coincide (i.e., where the GPS solution is considerably off 
from the TPS fix), this could be an indicator of GPS re- 
ceiver problems or of the presence of a spoofing signal. 

As mentioned in the previous paragraph, the fix accu- 
racies are reduced when TPS works alone. There are usu- 
ally two reasons: 1) The lower radio frequency will limit 
the precision of the localization; 2) The transmission 
errors ( k

i  in Section 3.2) in the position estimation for 
TPS transmissions are caused by environmental factors 
such as the earth surface underlying the propagation path 
(e.g., water or land), as well as local variations in the 
surface types (e.g., terrain, soil types, vegetation). Unlike 
transmission errors in GPS such as ionospheric and tro- 
pospheric delays which have known models [7,8], the 
errors in TPS are harder to capture and difficult to be 
approximated by an exact model. The positioning accu- 
racy thus degrades when TPS is used alone as lacking of 
an accurate delay model. In this work, we focus on the 
second point and build a dynamic model to capture the 
errors’ stochastic characteristics, by which they can be 
predicted, and thus the accuracies of TPS are improved. 
The proposed method can also be applied to the first case 
to improve the precision. 

We also present an algorithm to solve the pseudorange 
equations in both GPS and TPS. Most of the techniques 
presented in the literature have applied Newton-Raphson 
[7,8], Kalman filter [9-11] or particle filter [12] methods 
to estimate the fixes. However, all of the algorithms ei- 
ther require the knowledge of noise statistics (Kalman 
filter and particle filter) or do not take the noise compo- 
nents into consideration (Newton-Raphson). An algo- 

rithm based on stochastic approximation is proposed. 
The algorithm does not need any specific information on 
the noise variance but can still calculate the user’s posi- 
tion efficiently. Moreover, the algorithm uses less com- 
putation than those methods. 

The contributions of this paper are summarized as fol- 
lows: 

1) A stochastic approximation (SA) approach is pro- 
posed to compute the position explicitly. 

2) Three models: A dynamic state-space model, a lin- 
ear combination of basis functions, and a GLM are in- 
troduced to model and predict transmission errors in TPS 
when GPS is absent. 

3) A navigation scheme is put forward and demon- 
strated through the proposed error models and SA algo- 
rithm. 

The paper is organized as follows: In Section 2, we 
briefly discuss the concept of TPS. In Section 3, naviga- 
tion equations for GPS and TPS are presented. In Section 
4, the detailed SA algorithm is proposed. In Sections 5, 6, 
and 7, methods of the state-space model, basis functions 
and GLM are presented, respectively. In Section 8, the na- 
vigation scheme is proposed. Finally, in Section 9, an ex- 
ample is given to illustrate the performance of the methods. 

2. TPS Concept 

The basic configuration of the TPS scheme is shown in 
Figure 1 below. The spread-spectrum (SS) TPS signals 
originate from multiple widely-spaced, terrestrial trans- 
mitters. The radio-locating receiver acquires these trans- 
mitted signals and extracts the transmitter locations and 
times of transmission from data streams embedded in the 
respective SS signals, in a manner analogous to GPS 
units. The radio navigation solutions are then obtained by 
solving the usual systems of nonlinear pseudo-range 
equations by linearization techniques, Newton-Raphson 
estimation, Kalman filtering, particle filtering, multidi- 
mensional kernels or other means, but with downstream 
 

 

Figure 1. TPS deployment in large operational area [4]. 
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corrections for the spherical-earth geometry and RF pro- 
pagation factors governing the ground wave signals. 
However, there are several significant features of the 
TPS which differentiate it from GPS, including its oper- 
ating frequency range (100 kHz), propagation modes, 
and signal security mechanisms [3]. 

TPS transmitters are typically, although not necessary- 
ily, deployed outside the main area of operations, in a 
reasonably regularly spaced array to provide favorable 
angles of reception from various transmitter locations 
(i.e., “good system geometry” or “cuts”). The mathe- 
matical equations used to calculate the respective ranges 
from the TPS receiver to the transmitters in the area 
(which could easily exceed 1000 km in distance), called 
the pseudorange equations in GPS parlance, are similar 
to the GPS versions, except that the TPS transmissions 
are generally from stationary sources and, as such, do not 
need Doppler or relativistic corrections to the pseudo- 
range values before computing the location solution in 
the receiver [3]. They do, however, require great-circle 
distance corrections for the ground-wave signal paths on 
the earth’s surface and adjustments to the propagation 
velocity values over the intervening terrain due to 
changes in the dielectric constant from varying soils, 
moisture content, etc. Like GPS, the TPS setup utilizes a 
precise common time base to provide highly accurate, 
stable time-of-day information for each transmitter. As in 
GPS, a stable clock in the TPS receiver permits faster 
initial signal acquisition and more accurate positioning 
via algorithms which incorporate strategic averaging 
among the various TPS signals [3]. 

3. Navigation Equations and Problem 
Formulation 

In this paper, we consider the navigation of users on the 
surface of the earth that are subject to environmental 
conditions such as urban areas, very tough terrain, or in 
tropical or heavily forested regions. The calculation of 
the distance between the user and TPS transmitters 
should accommodate the ground-wave propagation and 
great-circle path distances. This is achieved by adjusting 
the equivalent speed of the wave for slower propagation 
along the earth’s surface; the curved-path distances may 
then be converted to the equivalent chord distances to 
utilize the normal rectilinear distance equations. 

In the sequel, we first discuss the basic GPS pseudo- 
range equation, then the corrected great-circle distance 
equation, after which an SA method is proposed to solve 
the pseudorange equations. 

3.1. GPS Pseudorange Equation 

The principle of GPS navigation can be represented as 
follows [7,8]: Each satellite is sending out signals with 

the following content: I am satellite X, my position is Y 
and this information was sent at time Z. These orbital 
data (ephemeris and almanac data) are stored by the GPS 
receiver for later calculations. For the determination of 
its position, the GPS receiver compares the time when 
the signal was sent by the satellite with the time the sig- 
nal was received. From this time difference the distance 
between receiver and satellite can be calculated. If data 
from other satellites are taken into account, the present 
position can be calculated by trilateration (the determina- 
tion of a distance from three points). This means that at 
least three satellites are required to determine the posi- 
tion of the GPS receiver on the earth’s surface. The cal- 
culation of a position from 3 satellite signals is called a 
2D-position fix (two-dimensional position determination); 
it is only two-dimensional because the receiver has to 
assume that it is located on the earth’s surface. By using 
four or more satellites, an absolute position in a three- 
dimensional space can be determined. A 3D-position fix 
also gives the height above the earth surface as a result. 

The pseudorange of the ith transmitter at time k is 
given by the Equation [7]: 

 iTi i R
k k k kc     

i

            (1) 

where k  is the pseudorange computed by the time 
difference between the receiver and the th satellite and 

k

i
iT  is the real range from the user to the th GPS sat- 

ellite at time . The pseudorange contains two primary 
sources of error. One error is introduced by the receiver’s 
clock, which is denoted as 

i
k

R
k  and called the receiver 

clock offset. This error remains the same in each pseu- 
dorange equation of each transmitter at time k . The 
other error is introduced in the transmission of GPS sig- 
nal and denoted as k

i . This error can be modeled and 
approximated accurately [8], and thus is assumed known 
to the users. If we denote the th satellite position by i
 , ,i i iX Y Z  relative to the center of the earth in Earth- 
Centered, Earth-Fixed (ECEF) coordinates, and the user’s 
position by  , ,k k kX Y Z

i

     

 in the same coordinates, then 
the distance between the th satellite and the user can be 
written as the non-linear expression: 

2 2 2
iT i i i

k k k kX X Y Y Z Z      

 , , ,

    (2) 

To solve the user positions and receiver clock offset, 4 
satellites are needed to solve for R

k k k kX Y Z   suffi- 
ciently. 

3.2. TPS Great-Circle Distance 

As mentioned above, the multilateration radiolocation 
algorithms for TPS are generally similar to those used in 
GPS except for the addition of great-circle corrections to 
accurately represent the lengths of the ground-wave 
propagation paths on the nearly spherical eart and (obvi- 
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ously) the deletion of the satellite almanac and ephemeris 
data. In most operational scenarios, the TPS transmitters 
will be locked to GPS time with very high-quality clocks. 
In addition, their locations will be pre-surveyed and 
known to fractions of a meter. The respective TPS data 
streams will thus provide all the information needed by 
the receiver (except for onboard-stored local propaga- 
tion-correction tables) to accurately compute its position. 
Due to the finite conductivity of the earth’s surface, and 
local variations due to surface types (i.e., land or water), 
soil, moisture content, temperature, and (to a lesser ex- 
tent) seasons, the average signal velocity must be re- 
duced by very roughly 0.15%. In addition, the curved 
path on the earth’s surface requires generic great-circle 
distance computations. As shown in Figure 2, the true 
range transmitted is along the spherical earth instead of 
the chord between A (the user) and T (the transmitter) 
and should be estimated by the great-circle distance. 

The TPS ground wave follows the great-circle distance 
between two points on the earth’s surface (assumed 
spherical), which can be computed by the following for- 
mula, where i  and i  are latitude and longitude, 
respectively and  is the radius of the earth (approxi- 
mately 6371 km on average), then the great-circle dis- 
tance is approximately: 

r

 2 1 2os    

d

 1 1 2 2

1 1 2 1

, , ,

cos sin sin cos cos c

d

r

   

     
 (3) 

The great-circle distance equation is employed to cal- 
culate the distance of a near-spherical earth path between 
the user and land-based TPS transmitters. In this paper, 
we consider only the navigation of the users near the 
surface, which means the height between the user and the 
earth surface is zero. For users at varying heights, the 
distances between the users and TPS transmitters do not 
quite follow the great-circle equations and should be 
calculated by taking the heights of the users into account. 

Now assume there are M  TPS transmitters. Then, 
the pseudorange equation at time  for TPS can be 
written similarly as that of GPS as follows: 

k

 

A 

T 
Transmitter

 iTi i R
k k T k kd d c  

 

Figure 2. The users near the earth surface. 

            (4)   

id
i iT

kd
i

where k  is the pseudorange between the user and the 
th TPS transmitter, and  is the true range between 

the user and the th  1 i M 

i

 TPS transmitter, 
which is approximated by the great-circle equation given 
above. k  is the transmission error generated in the 
transmission of the TPS signal by the environment 
around the surface and is what we need to model. R

k  is 
the receiver clock offset, equivalent to R

K  in the GPS 
pseudorange equation. 

i
k3.3. Modeling and Identification of   

i
k  is introduced through the transmission environment, 

which cause the change of the velocity of TPS transmis- 
sion signal. Roughly, a 0.15% reduction of the velocity 
should be used, but this reduction seems more like an 
overall adjustment from experience. Thus, a more accu- 
rate model is needed to improve the estimation of the 
transmission errors. Unfortunately, it is difficult to model 

k
i  accurately with a deterministic model (like GPS 

transmission errors) due to its characteristic irregularity. 
In the sequel, we propose a navigation scheme for TPS 

that can improve the accuracy of modeling and identify- 
cation based on statistics methods. In this work, we util- 
ize past available GPS data to adjust TPS localization, 
e.g., model TPS transmission errors when GPS is avail- 
able, then predict them when GPS is unavailable, and 
finally, obtain better users’ positioning information. This 
procedure is illustrated in the Figure 3. 

4. Stochastic Approximation Method 

To obtain the position of the user exactly, we need to 
solve the GPS and TPS pseudorange equations explicitly. 
Numerous algorithms have already been proposed in the 
literature such as the Kalman Filter, Newton-Raphson 
method, particle filter, and the likes [7-12]. However, 
most of them require either the variance of the noise 
(Kalman Filter and particle filter) is known, or do not 
consider the effect of noise (e.g. Newton-Raphson). In 
this section, a stochastic approximation algorithm in [13], 
which is based on Kalman Filter is employed to compute 
the fixes explicitly. This method trains the Kalman gain  
 

 

Figure 3. GPS and TPS localization. 

Copyright © 2013 SciRes.                                                                                  ICA 

RETRACTED



X. MA  ET  AL. 210 

matrix to its correct, steady-state form, when the plant 
noise and observation noise covariance matrices are 
unknown. 

The dynamic model of the user’s activity can be re- 
presented by the following discrete-time system [14]: 

1k k kx Ax w  

 k k k

               (5) 

y d x v                 (6) 

where kx  is the state vector containing the longitude, 
latitude (or X, Y, Z fixes in ECEF coordinates) of the user 
at time , velocities, and clock offsets; k A  is the cor- 
responding system matrix;  kd x  is the pseudorange 
vector containing all the pseudoranges [as in (1) and (4)] 
sampled for each GPS/TPS transmitter and is a nonlinear 
function of kx . For example, in TPS, kx  may be used 
to denote the longitude, latitude, and the clock offset of 
the user by , , R

k k k kx    
w

W

   , and 4 4  is an iden- 
tity matrix. The state noise k  represents the uncer- 
tainty in the movement of the user and k  represents the 
sensor noise, both of which are assumed to be unmeas- 
ured noises with covariance  and V , respectively. 

A  I

v

k

It is well known from extended Kalman filter theory 
that the posterior estimate of x  is given by: 

  1 1ˆ ˆk k k 1 ˆk kx Ax K y   d Ax 

  1T T
1| 1k k k

        (7) 

where 

1 1| 1 1k k k k kK P D D P    D V


  

T
| 1 1k k kP A W  

 

is the Kalman gain, where  

 1| 1k k k k kP A I K D    

and 

ˆ1 kk Ax

d

x





 k k k k

D . 

Instead of the traditional Kalman gain, the stochastic 
approximation procedure provides a recursive gain adap- 
tation algorithm in the form: 

1K K K                (8) 

where k  is a decreasing sequence of real numbers and 
 kK  is an unspecified stochastic vector that depends 

on kK . One choice for  kK  is 1 1k k  TˆkK Ax v   , 
and under certain conditions on k


  in [13], 1kK   con- 

verges to the optimal Kalman gain. 
The advantages of this SA algorithm over other algo- 

rithms are summarized as follows: 
1) It does not assume knowledge of the noise covari-

ance matrices; 
2) The computation of its Kalman gain does not re- 

quire the calculation of the estimation covariance, which 
can reduce the computation cost significantly over that of 
the Kalman filter; 

3) Unlike Newton-Raphson, which needs N equations 
to solve for N unknowns, SA can estimate kx  accu- 
rately with a number of measurements smaller than the 
number of variables contained in the state kx (partially 
observed). 

5. State Space Model 

In this section, we model the errors produced during the 
transmission of TPS via a dynamic state-space model 
which is based on SdEs. SdEs have been widely used 
previously to model discrete-time control systems and 
communication channels. For example, a mobile-to- 
mobile communication channels can be modeled as [15]: 

1
c c c c c
k k k k k

c c c c c
k k k k k

x F x G w

y H x N v

 

 



c

               (9) 

where kx  is the channel state; k
cy  is the measurement 

sampled at the output of the channel; k  and k  are 
noises; and k

cw cv
cF , , c

kG c
kH  and  are parameters of 

the channel model. 

c
kN

w v

The time-varying property of the parameters in (9) 
adapts dynamically to the variety of states. The noises 

k  and k  can also capture the range uncertainties 
introduced during the transmission. Due to these special 
characteristics, we propose to use the state-space model 
to track, estimate and predict the stochastic behavior of 
the transmission errors  i

k  (we suppress the super- 
script  below) in TPS transmissions. Consider the fol- 
lowing time-invariant state-space predictor: 

i

1
t t t t t
k k k

t t t
k k k

x F x G e

H x e
  


           (10) 

where k  is the transmission error computed for each 
transmitter, and k k k  is the error between the 
measured k

t t te H x 
  and its prediction by the model. To esti- 

mate the parameters tF , , tG tH , and k
tx , the predict- 

tion error minimization (PEM) method [16] is employed. 
PEM estimates the parameters by minimizing a least- 
square cost function: 

 T

1

N
t

N k k
k

V e e


 

N

k
,t t

             (11) 

where  is the number of measurements stored for 
model identification. The details of the algorithm can be 
found in [16]. 

At each discrete-time instant , the PEM algorithm 
estimates the parameters G t and F H  from meas- 
urements available at . With the estimated parameters 
and states of the model, the one step-ahead prediction of 
the transmission error can be computed as: 

k

  1
ˆˆ ˆ ˆˆ ˆ ˆt t t t t t

k k k k k k k kH F x G H x           (12) 
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ˆkwhere 1 
ˆ,t t

k k

 denotes the predicted transmission error at  
ˆ t

k
ˆ ˆ t

kH  and x  are the parameters and state  1k  ; F G ,

estimated by PEM at time ; k ˆ ˆt t
k k kH x 

 ˆ ˆt t
k k k k

 is the predict-  

tion error at ; k ˆk k
ˆˆ t t tF x G H x   is from the state  

evolution Equation in (10). The -steps-ahead p  1p 

  ˆˆ ˆt t t
k k k

 
prediction of the transmission error can be computed as: 

  1 ˆˆ ˆ ˆˆ
p

t t t t
k p k k k k kH F F x



   G H x  

  ˆˆ ˆt t t
k k k k

  (13) 

where 

  1 ˆˆ ˆp
t t t

k k kF F x G


H x 

k

N

 

computes the predicted state after  steps from . p
The state-space model introduced in this section em- 

ploys the PEM algorithm which numerically estimates 
the model parameters, however, such procedure may 
increase the computation cost. An autoregressive (AR) 
process can be viewed as a special case of the state-space 
model, where the parameters in the AR model can be 
estimated explicitly without involving numerical calcula- 
tions. The details of the AR model can be found in the 
literature, e.g., [16]. The performance analysis of the AR 
model in our context is given in [2]. 

6. Basis Functions Method 

In the state-space (or AR) model, the procedure of esti- 
mation is based on an implicit mathematical model of the 
process. In contrast to this, we employ the method of 
basis functions which is based on explicit model of pa- 
rameter variation [17]. This method assumes that the 
measurements are governed by known functions, which 
are the so-called basis functions. It is commonly used in 
signal processing for signal decomposition. In this paper, 
we utilize this method as a comparison for the purpose of 
the modeling and prediction of transmission errors. In the 
sequel, we will introduce the procedure of this method. 

Still assume there are  measurements that are avai- 
lable for model identification. Assume transmission er- 
rors k  can be decomposed into an equation of basis 
functions below: 

 
1

p

k j j
j

, 1, 2, ,A k k 


  N 

 k

       (14) 

where j is the basis function depending on time; 

jA  is the amplitude corresponding to each basis func- 
tion. In this work, the basis functions are chosen as 

    , fj N
j k k  or 1, ,j p 

N

   

         (15) 

With these basis functions, transmission errors vary 
with time, which represents the time characteristic of the 
errors. The amplitudes are estimated through the  
measurements by the minimizing the following cost 

function: 
2

1 1

ˆ
pN

k j j
k j

A k 
 

  A

T

1, , pA A

J           (16) 

 where  A 

 T1, , N η  N p

 is the amplitude vector to be  

computed. Let , and define a   
matrix 

     
     

     

1 2

1 2

1 2

1 1 1

2 2 2
p

p

pN N N

  
  

  

 
 
 
 
 
 




   


         (17) 



Thus, the amplitude vector A  can be computed by 
[17] 

  1T T
A ηΦ Φ Φ

 
1

ˆˆ , for
p

k j j
j

              (18) 

To predict the future transmission errors in the absence 
of GPS data, we have 

A k k N 




Y

         (19) 

which will then be used in TPS localization. 

7. Generalized Linear Model (GLM) 

In the previous section, we introduce basis functions 
method which can be viewed as linear regression. In this 
section, we introduce a nonlinear model approach called 
generalized linear model for modeling purposes in TPS 
transmission. As its name stands, it generalizes linear 
regression by allowing the linear model to be related to 
the response variable via a link function and by allowing 
the magnitude of the variance of each measurement to be 
a function of its predicted value [18]. 

In a GLM, the responses  are assumed to be gener- 
ated from a particular distribution in the exponential 
family, including normal, binomial and poisson distribu- 
tions, etc. The mean,  , of the distribution, depends on 
a function of the linear combination of the independent 
variables X  through the following expression [18]: 

 1EY g X               (20) 

Xwhere   is called the linear predictor, a linear com- 
bination of unknown parameters  ; g  is the link 
function. The unknown parameters,  , are typically 
estimated with maximum likelihood, maximum quasi- 
likelihood, or Bayesian techniques. 

The GLM consists of three elements, including a 
probability distribution to describe the responses Y , a 
linear combination of X , z X  , and a link function 

 z gg  such that 
i
k

. In this work, we consider the 
transmission errors   in TPS transmission as re- 
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sponses , and stipulateY X to be independent variables, 
i.e., the transmission errors from 1 to  are denoted by 

, while 
k

Y X  is chosen as the standard Brownian motion 

0k k
, which is one of the most popular and funda- 

mental stochastic processes. The relationship can then be 
set based on 

 B

,X Y  and   can be estimated. The esti- 
mated   is further used for the prediction of transmis- 
sion errors when TPS works alone. More details of GLM 
can be found in [18] and will not be discussed here. 

8. TPS Navigation Scheme Algorithm (NSA) 

In this section, a navigation scheme to improve accuracy 
is introduced. 

Assume GPS and TPS data are available from time 1 
to time ; also, from time  on, only TPS data is ac- 
cessible. The procedure to navigate with TPS only at 
time  is given as follows: 

n n

1n 
 1) Compute the user’s position k, ,k kX Y Z  and R

k  
for each  using (1) and (2) through the SA 
algorithm. Then convert k k k

1,k  ,
, ,

n
 X Y Z  to latitude and 

longitude. As the user is assumed near the earth’s surface, 
the height of the user H  is estimated as 0. 

2) Plug the latitude and longitude back into (3) to ob- 
tain  terms for each  and each transmit- 
ter. 

iT
kd 1, ,k n 

3) As the receiver clock offset is constant in one single 
time slot, we can assume that R R

k k  . Then k
i  can 

be computed in (4) for each  and each i  (note  
are measured by TPS). 

k i
kd

 
1

k ni
k k





i

4) Build a statistical model for each  and pre-  

dict 1n   for each transmitter using the models intro- 
duced in section 5, 6 and 7. 

5) Plug 1
i
n   back into (4) and obtain the measure- 

ment equations. Together with the system Equation (5), 
the state 1nx 

n

 can now be estimated accurately by the 
SA algorithm. 

After time , continue to compute the user’s posi- 
tions with the previous algorithm when the GPS signal is 
lost. Once GPS becomes available again, update the 
model with the new 

1

i
k  values computed from the latest 

GPS measurement. 
Remark 1: The ground wave signal passes through a 

variety of different environments, which indicates that a 
fixed model can not capture the stochastic characteristics 
during the transmission. In different environments, e.g. 
canyon, forest, etc., the transmission errors introduced 
into the system are distinct, while the proposed models 
are well suited to such situations as they can be updated 
with new measurements. For example, once the signal 
transmission surroundings are changed, these models can 
be improved with the new incoming GPS measurements 
for the new surroundings. 

Remark 2: For the users with varying heights  0H  , 

the distance equation to compute the true range should be 
updated. However, it is difficult to determine a unique 
equation in this case, as the user may be below the aver- 
age earth altitude (e.g., a canyon) or on a hill, where the 
equations are different (see Figure 4). In a practical 
situation, the range may be approximated by the great- 
circle equation. However, once the distance equation is 
altered for varying heights, the navigation scheme pro- 
posed in this paper is still applicable to the new distance 
equation. 

9. Numerical Example 

In this section, we present an example to illustrate the 
performance of the navigation algorithm proposed in this 
paper. The simulation result is based on MATLAB. 

Assume N = 3 TPS transmitters are located with lati- 
tude and longitude pairs: ,  38.3127 ,115.6443 

 39.2763 ,116.0855  ,  37.6414 ,114.3173  . The ini- 
tial position of the user in ECEF coordinates is 
 6 6 62.172 10 4.390 10 4.074 1, , 0    . 

The user is assumed to move along the earth’s surface 
randomly. Thus, for convenience but without loss of 
generality, the distance equation can be written as (5) and 
(6), where 4 4A I  , where 4 4 4 4 denotes the I   
identity matrix, the state vector k k k k   for 
TPS and k k k k k

TT , , Rx    
TT , , , Rx X Y Z      for GPS. The move- 

ment of the user k  is simulated by a Gaussian random 
variable with mean  and standard deviation 

 on both latitude and longitude. 

w
0.000001

0.0000002

 50

1

G
k k

x
From time 1 to 50, when both GPS and TPS data are 

available, 


 are computed by the SA algorithm  

 50

1

i
k k




 can be obtained by following the NSA  and then 

described in section 8. From times 51 to 150, GPS is de-
nied and only TPS is available. A scalar state-space  

model is employed to model   , and then  
50

1

ki
k k






  150ki


51k k
 are predicted by this model using the algo-

rithm proposed in Section 5. Next, the positions of the 
user are estimated by the SA algorithm from time 51 to 
150. The differences between real fixes and estimated 
 

A D

B 

C 

Transmitter 

T 

 

Figure 4. The users with varying heights. 
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fixes of all coordinates are presented in Figure 5 (shown 
in ECEF coordinates for the sake of comparison). It is 
obvious that the positions estimated by the proposed 
navigation scheme are close to the real ones since the  
 

 
 

 
 

 

Figure 5. Position estimation errors in ECEF coordinates 
using state-space model. 

differences between the estimated and the true fixes are 
small. The deviations from true positions are bounded by 
8 m, 7 m and 6 m on each axis, respectively. The per- 
centage of the error between actual  i

k  and pre-  

dicted ones  ˆi
k   ˆi i i

k k k    by the state-space  

model are plotted in Figure 6. These plots demonstrate 
that the proposed state-space model can predict the 
transmission errors with small errors. 

 

 
 

 
 

 

 Figure 6. Error percentage of k
i i, 1,2,3   predicted by 

the state-space model. 
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Similarly, to illustrate the performance of the basis 
functions method, choose 3p  , bases in (15) to run the 
same simulation. The simulation results are shown in 
Figures 7 and 8. For GLM, the independent variables 
X  corresponding to the measurement  are gene-  ky

 

 
 

 
 

 

Figure 7. Position estimation errors in ECEF coordinates by 
basis functions. 

rated by normal distribution  and the simu- 
lation results are shown in Figures 9 and 10. Note al- 
though the navigation schemes based on the basis Func- 
tions and GLM both generate close estimation fixes,  

 0,N k

 

 
 

 
 

 

 Figure 8. Error percentage of k
i i, 1,2,3   predicted by 

basis functions. 
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the scheme based on the state-space model and GLM 
clearly offer better localization performances for this data 
set. 
 

 
 

 
 

 

Figure 9. Position estimation errors in ECEF coordinates by 
the GLM. 

 
 

 
 

 

 Figure 10. Error percentage of k
i i, 1,2,3   predicted by 

the GLM. 

10. Conclusion 

In this paper, we have presented a new navigation system, 
the Theater Positioning System (TPS), which is largely 
intended to be used as a backup in GPS-denied environ- 
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ments. We have considered the user moving along the 
earth’s surface and have employed three models: a 
state-space model, an AR process and a GLM model, to 
predict the error generated by environmental delays in 
the transmission, thus improving the estimation accuracy 
of TPS fixes. We have also proposed a stochastic ap- 
proximation algorithm to solve the pseudorange equa- 
tions. An example was provided to demonstrate that the 
estimation performances of all the models are quite sat- 
isfactory. The simulation results show that the state- 
space provides a better localization performance than the 
other two models. Future work will focus on more com- 
plex nonlinear models to further improve the accuracy. 
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