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Abstract 
 
The temperature effects on the electrical performance of a large area multicrystalline silicon solar cell with 
back-contact technology have been studied in a desert area under ambient conditions using the current shunt 
measuring technique. Therefore, most of the problems encountered with traditional measuring techniques are 
avoided. The temperature dependency of the current shunt from 5ºC up to 50ºC has been investigated. Its 
temperature coefficient proves to be negligible which means that the temperature dependency of the solar 
cell is completely independent of the current shunt. The solar module installed in a tilted position at the op-
timum angle of the location, has been tested in two different seasons (winter and summer). The obtained so-
lar cell short circuit current, open circuit voltage and output power are correlated with the measured incident 
radiation in both seasons and all results are discussed. 
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1. Introduction 
 
It is known that photovoltaic devices such as solar cells 
generate electrical current when photons with sufficient 
energy penetrate the semiconductor and excite electrons 
into the conduction band [1]. However, due to the great 
need for these cells in massive applications, the solar cell 
industry has grown rapidly in recent years [2]. There is 
no doubt that due to low production costs and readily 
abundance multicrystalline silicon (mc-Si) is a very at-
tractive substrate for solar cells [3,4]. Therefore, it is 
currently the dominant solar cell material for commercial 
applications [5,6]. Moreover, according to predictions, it 
will remain an important and dominant material in 
photovoltaics over the next 10-30 years, owing to its well 
recognized properties and its established production 
technology [7,8].  

In fact, back-contact solar cells hold significant prom-
ise for increased performance in photovoltaics for the 
near future. They have several advantages over conven-
tional solar cells [9-13]. Furthermore, characteristics of 

these back-contact solar cells were studied to improve 
their performance [14,15]. 

Short circuit current and open circuit voltage are the 
two major electrical parameters generally used to char-
acterise the solar cells. Typically, these parameters are 
traditionally measured by digital multimeters (DMMs). 
However, as the big sizes of solar cells produce high 
current intensity with low output voltage; some troubles 
would appear from the usage of multimeters. Although, 
in a previous study [16], the hall sensor technique was 
applied in order to overcome these problems this tech-
nique also suffered from some limitations and needed a 
lot of precautions [17].  

Nevertheless, due to the actual need of measuring the 
solar cells’ high output currents in the desert area; the 
current shunt measuring technique played an essential 
role in achieving this task. Nowadays, current shunts are 
used in such applications to measure current by measur-
ing the voltage developed across their known very low 
resistance [17,18].  

In our application, the current shunt is used in the de-
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sert area under different ambient temperatures. The ma-
jor factor to be considered is the heat generated by the 
shunt itself, along with the ambient temperature. There-
fore, it is essential to study its behaviour under different 
temperatures.  

In this paper, the calibrated (Holt HCS-1) current 
shunt 20 Ampere range was used to study the tempera-
ture effects on the electrical performance of large solar 
cell with back-contact technology. It was tested under 
different temperatures ranging from 5ºC to 50ºC in a 
temperature test chamber to evaluate its temperature co-
efficient effect on its characteristics. Then, it was applied 
in the realistic application to get the short circuit current 
of a mc-Si solar cell of area 21 cm  21 cm with back 
contact technology in two different seasons (winter and 
summer). The cell short circuit current, open circuit 
voltage and output power were accurately measured and 
correlated. 
 
2. Tested mc-Si Solar Cell 
 
The tested mc-Si solar cell with back contact technology 
is shown in Figure 1. It has a large area of 21 cm  21 cm. 
The module was installed in a tilted position at the opti-
mum tilt angles for both seasons that were previously 
investigated [19]. 

The cell current was collected by the fine finger grid 
which is led to the back side through 25 holes. On the 
back side there are 25 soldering pads for each polarity. 
The outdoor cell electrical performance was studied by 
measuring both short circuit current and open circuit 
voltage in the tilted position. 
 
3. (Holt HCS-1) Current Shunt  
 
In order to measure high currents with best accuracy, 
Kelvin Four-terminal current shunts are commonly used 
in the metrology community and in the industrial mea- 
 

 

 
Figure 1. Tested mc-Si solar cell. 

surement applications, specially, in high current low 
voltage applications [20].  

A (Holt HCS-1) current shunt set consists of seven 
separate calibrated shunt modules having current ranges 
from 10 milliamps up to 20 Ampere. Each range can be 
used for 50% up to 130% of its rated current. In this 
work, the 20 Ampere range current shunt shown in Fig-
ure 2 was preferably used to measure the high short cir-
cuit current (ISC) of our tested solar cell. 

This shunt resistor has a coaxial design; where, the re-
sistor being a web of wire arranged coaxially about the 
axis of the shunt. Actually, it is the most cost effective 
current sensing elements, having compact package pro-
files, suitable for current measurements. It has as their 
major design goal adequate power dissipation and mini-
mal resistance changes with temperature (low tempera-
ture coefficient of resistance). Eventually, one of the 
most important features of this current shunt is that it 
converts the applied current to voltage drop across its 
terminals in a linear manner [21-24]. 

 
3.1. Temperature Effect on the Current Shunt  
 
Temperature testing aims to prove the resistance capabil-
ity of test specimens to the environmental influences of 
the temperature combined with the humidity. The 
(Votsch-VCL) temperature test chambers are ideally 
suited to the environmental simulation applications. This 
type of chambers provides an optimum solution where 
space is limited. In addition, it is visually attractive with 
large windows, compact, easy handling, suitable for a 
broad range of applications involving temperature and 
relative humidity (RH). Besides, it has touch panel and 
independent adjustable temperature limiter with standard 
humidity diagram.  

The described 20A current shunt was tested at differ-
ent temperatures of 5ºC, 10ºC, 20ºC, 30ºC, 40ºC, and 
50ºC at RH 50%. Its output voltage was recorded by the 
8.5 digit DMM (Fluke 8508A) when the current was 
applied through it from the (Wavetek 9100) calibrator. 
Both the DMM and the calibrator used in this test were 
recently calibrated. 
 

 

Figure 2. (Holt HCS-1) Current shunt 20 ampere range. 

HCS-1 SHUNT
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Tables 1, 2 and Figure 3 demonstrate the input-output 
relation of the 20 Ampere current shunt at different tem-
peratures from 5ºC up to 50ºC respectively. 

Figure 3 illustrates the experimentally investigated 
input-output curve of the 20A (HCS-1) current shunt at 
the temperatures from 5ºC to 50ºC, which clearly shows 
that its output voltage is linearly proportional to its input 
current with approximately the same linearity equation at 
all temperatures. Eventually, the investigated linearity 
equation that relates the input current to the output volt-
age is: 
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Figure 3. Input-output curve at different temperatures 
from 5ºC up to 50ºC. 
 
Table 1. Input-output relation of the 20 ampere current 
shunt at 5ºC, 10ºC, 20ºC. 

Temperature (ºC) 5ºC 10ºC 20ºC 

I/P Current 
(Ampere) 

O/P Voltage (Volt)  

0.5 0.02583 0.02585 0.02589
1 0.05168 0.05169 0.05171
2 0.10331 0.10342 0.10362
3 0.15498 0.15513 0.15544
4 0.20666 0.20699 0.20728
5 0.25831 0.25896 0.25912
6 0.30997 0.31036 0.31093
7 0.36169 0.36197 0.36274
8 0.41332 0.41396 0.41456
9 0.46498 0.46598 0.46638
10 0.51664 0.51727 0.51821
11 0.56831 0.56912 0.57001
12 0.61998 0.62014 0.62182
13 0.67165 0.67241 0.67362
14 0.72331 0.72402 0.72541
15 0.77498 0.77691 0.77718
16 0.82666 0.82779 0.82893
17 0.87835 0.87991 0.88072
18 0.92997 0.92997 0.93253
19 0.98141 0.98193 0.98201
20 1.03364 1.03393 1.03321

Table 2. Input-output relation of the 20 A current shunt at 
30ºC, 40ºC, 50ºC. 

Temperature (ºC) 30ºC 40ºC 50ºC 

I/P Current 
(Ampere) 

O/P Voltage (Volt) 

0.5 0.02584 0.02585 0.02585
1 0.05171 0.05171 0.05172
2 0.10342 0.10342 0.10342
3 0.15514 0.15515 0.15514
4 0.20689 0.20688 0.20686
5 0.25862 0.25861 0.25857
6 0.31034 0.31031 0.31027
7 0.36207 0.36203 0.36196
8 0.41381 0.41371 0.41366
9 0.46553 0.46542 0.46533

10 0.51726 0.51714 0.51697
11 0.56902 0.56876 0.56861
12 0.62079 0.62041 0.62022
13 0.67254 0.67206 0.67181
14 0.72422 0.72367 0.72335
15 0.77588 0.77528 0.77498
16 0.82755 0.82696 0.82656
17 0.87908 0.87863 0.87825
18 0.93074 0.93039 0.92988
19 0.98234 0.98204 0.98145
20 1.03405 1.03461 1.03473

 
50.0517 8 10out inV I             (1) 

where Vout is the output voltage drop across the current 
shunt resulted from applying input current source Iin. 

This means that our tested current shunt is not only 
very stable under a wide range of temperatures from 5ºC 
up to 50ºC but also it has a unique linearity equation at 
all tested temperatures. Therefore, it can be safely used 
in the desert area and the cell short circuit current (ISC) 
could be computed from the investigated linearity equa-
tion when the voltage drop across the current shunt (Vout) 
is applied as an input data to the equation and the current 
(Iin) is considered for (ISC). Furthermore, the admirable 
advantage of this shunt is that, its temperature coefficient 
is negligible and would never affect the solar cell output 
results. 
 
4. Electrical Measurements of the Tested 

Solar Cell in Different Seasons 
 
As an application of the current shunt for the outdoor 
measurements, the large solar cell had been installed in a 
tilted position at the optimum angle of the location and it 
had been tested in two different seasons (winter and 
summer).  

The data was recorded on 9th March and on 19th July. 

T = 5ºC

T = 10ºC

T = 20ºC

T = 30ºC

T = 40ºC

T = 50ºC
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The ambient temperatures of these two days were re-
corded which representing the surrounding temperature 
around the cell. Figure 4 shows the ambient temperature 
variations during these two days. 

As shown in Figure 4, the temperature around true 
noon relatively increases rather than the two wings (sun 
rise and sun set) for the two days. The recorded tem-
peratures on 19th July are higher than the temperatures on 
9th March by about 10ºC, which represent the attainable 
heat particularly acquired by the solar cell around true 
noon. 

In our concept, the 20 Ampere current shunt was sim-
ply used as an accurate sensor to obtain the equivalent 
voltage drop across its known resistance when the short 
circuit current was passed through it. Afterwards, this 
equivalent voltage was applied to a 14 bit data logger. It 
is directly connected to a PC to compute the correspond-
ing current using the shunt input-output linearity curve 
according to Equation (1).  

The solar cell open circuit voltage signals were re-
ceived by the data logger to be transferred to the PC 
through the prepared software. This software was de-
signed to accurately give the output electrical power of 
the solar cell. The incident radiation was recorded by 
using CMP3 Kipp&Zonen pyranometer which measures 
the solar radiation with a high quality blackened thermo-
pile. The measured data of short circuit current ISC, open 
circuit voltage VOC and output electrical power of the 
tested solar cell for both seasons are carried out. The 
plotted curves of ISC, VOC and power of two selected days 
in these seasons are illustrated in Figures 5 and 6 respec-
tively. 

 
5. Results Correlation   
 
To correlate the obtained measurements of the investi-
gated cell for both seasons, the current-voltage, the 
power and the radiation characteristics were presented. 
Strictly speaking, temperature affects the current-voltage 
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Figure 4. Ambient Temperatures on 9th March and 19th 
July. 
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Figure 5. (ISC), (VOC) and electrical power of the cell in win-
ter. 
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Figure 6. (ISC), (VOC) and electrical power of the cell in 
summer. 
 
characteristics of the silicon solar cells [7]. Physical as-
pects of deterioration of the output power and the con-
version efficiency of solar cell with increasing tempera-
ture are: increase of the thermal lattice vibrations, lead-
ing to electron-photon scattering, decrease of charge car-
riers mobility, and reduction of the p–n junction built-in 
voltage and junction ability to separate electrons from 
holes in the photogenerated pairs [7]. 

Therefore, the short circuit current (ISC) is reduced 
with the increasing of the temperature of the cell connec-
tions and bars. Also, the open circuit voltage (VOC) is line-
arly reduced with increasing temperature. The magnitude 
of this reduction is inversely proportional to VOC. The 
change in VOC with temperature is about (–0.50%/°C). 
The daily profiles of ISC and VOC in March and July are 
depicted in Figures 7 and 8. 

It is clearly shown that the cell ISC and VOC in July are 
slightly lower than ones in March due to the increasing 
of temperature during summer as shown in Figure 4. 
The cell short circuit current and open circuit voltage 
values in summer are slightly lower than in winter 
around the noon time, however the collected radiation 
values in summer per day are higher than in winter. This 
is mainly attributed to the long time of sun shine. Con- 
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Figure 7. Cell short circuit current in winter and summer. 
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Figure 8. Cell open circuit voltage in winter and summer. 
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Figure 9. Solar radiation intensity for two selected days of 
March and July. 
 
sequently, the cell has been exposed to the sun rays for 
longer interval. Figure 9 demonstrates the cell solar ra-
diation intensity incident on its surface in case of the 
optimum tilted angle of two selected days. 

The cell total incident solar radiation value per day on 
19 July in summer was about (6.9 kWh/m2.day) while its 
value on 9 March in winter was about (6.3 kWh/m2.day). 
This means that, the amount of the solar energy falling 
on the cell surface in summer is greater than it in winter. 
Accordingly, the electricity converted by the solar cell 
during the summer is higher than it in winter. 

Figure 10 illustrates the cell output power for both 
seasons. The cell output electrical power values in winter 
are slightly higher than them in summer. The largest 
peak values of 9th March lie around local time 3:30  

which corresponding to lower values of 19th July, this 
due to the maximum attainable heat to the cell  from the 
surrounding adding to the incident radiation around this 
time. 

The total accumulated output cell power value per day 
in summer is about 505 W/m2.day which higher than its 
value in winter (431 W/m2.day). 

The percentage conversion efficiency of the cell has 
been evaluated in summer and in winter from the fol-
lowing equation: 

* .
% *100

*

P F F
Efficiency

A R
          (2) 

where,  
P: Cell output power, 
F.F.: Fill Factor (equals to 0.61), 
A: Cell area,  

and 
R: Input radiation. 
Figure 11 illustrates the percentage conversion effi-

ciency of the cell in both seasons. It is clearly shown that 
the higher temperature in summer reduces the cell con-
version efficiency. 
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Figure 10. Cell output power in winter and summer. 
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Figure 11. Cell % conversion efficiency in winter and sum-
mer. 

ISC (March) 

ISC (July)

I S
C
 (

A
m

p
er

e)
 

VOC (July)VOC (March) 

V
O

C
 (

V
ol

t)
 

(W
/m

2 ) 



H. M. A. MAGEED  ET  AL. 
 

Copyright © 2010 SciRes.                                                                                ENG 

893

6. Conclusions 
 
It is concluded that, using the 20 Ampere (Holt HCS-1) 
current shunt measuring technique prove to be very sat-
isfactory. It is not only very stable under a wide range of 
ambient temperatures from 5ºC up to 50ºC but also it has 
an identical linearity equation for all tested temperatures. 
Therefore, it can be safely used in the desert area to get 
the solar cell high short circuit currents from its investi-
gated linearity equation. Moreover, applying it in the 
solar cell measuring circuit does not affect the cell tem-
perature dependency due to its negligible temperature 
coefficient.  

The correlation between the cell winter and summer 
results is clearly shows that, the cell short circuit current 
and open circuit voltage values in winter are slightly 
higher than ones in summer specially around the noon 
time. In addition, the cell collected radiation values in 
summer per day are higher than in winter. This means 
that, the amount of electricity converted by the solar cell 
during the summer is higher than in winter. Furthermore, 
it is demonstrated that the conversion efficiency are af-
fected by the ambient temperature. 
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