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ABSTRACT 

A global variable in C/C++ is one that is declared outside a function, and whose scope extends the lifetime of the entire 
program. Global variables cause problems for program dependability, maintainability, extensibility, verification, and 
thread-safety. However, global variables can also make coding more convenient and improve program performance. We 
have found the use of global variables to remain unabated and extensive in real-world software. In this paper we present 
a source-to-source refactoring tool to automatically detect and localize global variables in a program. We implement a 
compiler based transformation to find the best location to redefine each global variable as a local. For each global, our 
algorithm initializes the corresponding new local variable, passes it as an argument to necessary functions, and updates 
the source lines that used the global to now instead use the corresponding local or argument. We also characterize the 
use of global variables in standard benchmark programs. We study the effect of our transformation on static program 
properties, such as change in the number of function arguments and program state visibility. Additionally, we quantify 
dynamic program features, including memory and runtime performance, before and after our localizing transformation. 
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1. Introduction 

A Global variable is an external variable in C and C++ 
that is declared outside a function, and is in-scope and 
visible throughout the program. Thus, global variables 
are accessible and can be set and used in any program 
function [1]. The use of global variables has been ob- 
served to cause several problems. First, researchers have 
argued that global (and other non-local) variables in- 
crease the mental effort necessary to form an abstraction 
from the specific actions of a program to the effects of 
those actions, making it more difficult to comprehend a 
program that uses global variables [2]. In other words, 
source code is the easiest way to understand when we 
limit the scope of variables. Second, developers have 
found it more difficult to test and verify software that 
employs global variables. Use of globals makes it diffi- 
cult (for humans and automatic tools) to determine the 
state being used and modified by a function, since 
globals do not need to be explicitly passed and returned 
from the function. Similarly, formally verifying code that 
uses global variables typically requires stating and prov- 

ing invariant properties, which make the verification task 
more arduous [3]. For such reasons, formally-defined 
SPARK programming language requires the programmer 
to annotate all uses of global variables [4]. Third, global 
variables have also been implicated in increasing pro- 
gram dependence, which measures the influence of one 
program component on another [5]. Additionally, global 
variables have been observed to produce dependence 
clusters, where a set of program statements are all de- 
pendent on one another. Low program dependence and a 
lack of dependence clusters is found to benefit program 
comprehension [6,7] as well as program maintenance and 
reengineering [8,9]. Fourth, the use of global variables 
causes the program to be non-thread-safe [10,11]. This is 
because global variables are allocated in the data region 
of the process address space, providing only one copy of 
these variables for all program threads. Fifth, global va- 
riables typically violate the principle of least privileges. 
This philosophy says that if the accessibility of a pro- 
gram resource, such as a function or variable, is restricted 
to just those portions of the program where such accessi- 
bility is absolutely required, then the programmer is less 
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likely to introduce errors into the code. Sixth, global 
variables can create mutual dependencies and untracked 
interactions between different program components caus- 
ing an irregularity, called action at a distance in software 
engineering. This issue arises when operations in one 
part of the program affect behavior in some other pro- 
gram parts. On account of these limitations, the use of 
global variables in generally discouraged in program- 
ming. Regardless of the problems caused by global vari- 
ables, they are still extensively used in current real-world 
software systems. Their use can be attributed to two (real 
or perceived) benefits of using global variables: 1) Effi- 
ciency—Researchers have shown that employing global 
variables can boost program efficiency and lower (stack) 
space usage by reducing or eliminating the overhead of 
argument passing and returning values during function 
calls/returns [12]. However, the globalization transfor- 
mations to achieve this effect can generally be performed 
automatically by the compiler during the source-to-bi- 
nary generation without affecting the high level source 
code. 2) Convenience—It may also be more convenient 
for developers to hold program state that is manipulated 
and consumed in multiple dislocated programs regions in 
global variables. In such cases of dislocated use of pro- 
gram variables, it may be difficult for the programmer to 
determine the best place for declaring the local variable 
and find the best path to make it available to all functions 
setting or using it. Such use of globals is especially at- 
tractive for developers updating unfamiliar code regions 
in large programs. However, given the harmful effects of 
global variables, it will be more desirable if we could 
provide developers the convenience of using global va- 
riables, but automatically localize them to preserve the 
dependability, understandability, verifiability, and main- 
tainability of the source code program. 

In this work, we develop and implement a compiler- 
based algorithm to automatically find and eliminate 
global variables in a program by transforming them into 
local variables. Our algorithm automatically finds the 
closest dominator function to localize each global, and 
then passes the corresponding local variable as a pa- 
rameter to every function using the original global. Func- 
tion prototypes are appropriately modified to reflect the 
new parameters for each function. At the same time, each 
access of the global variable is updated to instead modify 
or use the corresponding local variable or function argu- 
ment. In this paper, we also design several experiments 
to measure the effect of this transformation on the space 
and time requirements of the modified programs. Thus, 
we make the following contributions in this work: 

1) To our knowledge, we construct the first source-to- 
source transformation tool to localize global variables in 
C programs. 

2) We present detailed statistics and observations on 

the use of global variables in existing benchmarks. 
3) We measure and quantify the effect of this trans- 

formation on the number of function arguments passed, 
along with its space and performance (time) overheads. 

2. Related Works 

In this section we describe previous research efforts to 
localize and manage global variables. Many popular pro- 
gramming language textbooks [13] and individual pro- 
gramming practitioners [14] have derided and discour- 
aged the use of global variables. At the same time, ac- 
knowledging the necessity and/or convenience of em- 
ploying global variables/state, language designers have 
developed alternative programming constructs to provide 
some of the benefits while controlling many limitations 
of global variables. Arguably, one of the most well- 
known alternatives to some uses of global variables is the 
static specifier in C/C++ that limits the scope of global 
variables to individual functions or files [13]. Another 
construct that programmers often use in place of global 
variables is the singleton design pattern that can encap- 
sulate global state by restricting the instantiation of a 
class to a single object [15]. However, the use of the sin- 
gleton pattern can result in many of the same problems 
with testing and code maintenance that are generally as- 
sociated with global variables [16]. 

To our knowledge, there exist only a few attempts to 
automatically detect and eliminate global variables in 
high level programs. Sward and Chamillard developed a 
tool to identify global variables and add them as locals to 
the parameter list of functions in Ada programs [17]. 
However, apart from operating only on Ada programs, 
this work does not describe their implementation and 
does not provide any static or runtime results. Yang et al. 
proposed and implemented a “lifting” transformation to 
move global variables into main’s local scope [18]. 
However, lifting was designed to only work with their 
other “flattening” transformation that absorbs a function 
into its caller without making a new copy of the function 
for each call-site. This earlier research aimed to place the 
stack allocated variables in static memory to minimize 
RAM usage for embedded systems applications, and did 
not have to deal with most of the issues encountered in a 
more general technique to eliminate global variables.  

More related to our current research are works that at- 
tempt to automatically eliminating global variables to 
generate thread-safe programs. Zheng et al. outlined a 
compiler-based approach to eliminate global variables 
from multi-threaded Fortran MPI (Message-Passing In- 
terface) programs [11]. Their transformation moves all 
globals into a single structure, which is then passed as an 
argument to all functions. Thus, unlike our implementa- 
tion, their transformation does not target or affect code 
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maintainability. Additionally, this previous work also did 
not collect statistics on the use of global variables and the 
effect of the transformation on code maintainability and 
performance metrics. Smith and Kulkarni implemented a 
similar algorithm to transform global variables into locals 
to make “C” programs thread-safe [10]. However, this 
work was not targeted at code dependability and did not 
implement a source to source transformation. The ulti- 
mate goal of our research is to develop a new code re- 
factoring tool that can flexibly reassign storage between 
local and global variables. Existing code refactoring tools 
are typically only used to enhance non-functional aspects 
of the source code, including program maintainability 
[19] and extensibility [20]. Examples of important code 
refactorings for C program maintainability include re- 
naming variables and functions, dividing code blocks 
into smaller chunks, and adding comments to the source 
codes [21]. None of the existing refactoring tools provide 
an ability as yet to transform global/local variables, as we 
perform in this work. 

3. Localizing Global Variables 

Even moderate-sized programs in C/C++ often contain 
many global variables. Additionally, these global vari- 
ables may be scattered throughout the code, which make 
it highly tedious and error-prone to manually detect and 
refactor the code to remove these variables. Therefore, 
our approach employs an automatic compiler-driven al- 
gorithm to find and eliminate global variables. Our algo- 
rithm works by converting the global variables to locals, 
and then passing them as arguments to all the functions 
where they are needed. This tool provides command-line 
options that enable the user to selectively eliminate all or 
some particular global variables and instantly see the 
changes made to the source code files. In this section we 
provide more details on our compiler-based framework 
and transformation algorithm. 

Transformation Algorithm for Localizing  
Global Variables 

Our compiler based transformation performs two passes 
to localize global variables. In the first pass, we generate 
the call-graph, detect global variables, and collect other 
information regarding the use of global variables in the 
program. The second pass uses this information to move 
global variables into the local scope of the appropriate 
function, pass these new local variables to other func- 
tions that use the original globals, and update function 
headers and the variable names in the source statements 
accessing each global variable to instead use the new 
local/argument. We use the small example program in 
Figure 1(a) to explain our transformation algorithm in 
more detail. The syntax “=var” in Figure 1(a) indicates  

 

Figure 1. Example to illustrate the program transformation 
to localize global variables. 
 
a use of the variable var, while “var =” is a set of the 
variable var. The algorithm proceeds as follows. 
 In the first step we invoke the compiler to compute 

the static call-graph of the program. Figure 1(b) 
shows the call-graph that will be generated for the 
example program in Figure 1(a). 

 The compiler then detects all global variables in the 
program, as well as the functions that set and/or use 
each global variable. We also record the data type and 
initialization value of each global variable. 

 Next, we automatically determine the best function to 
localize each global variable. While the root program 
function, main(), can act as the default localizing 
function for all global variables declared in applica- 
tion programs, we attempt to place each global as 
close as possible to the set of functions that access 
that variable in order to minimize the argument pass- 
ing overheads. We employ our implementation of the 
Lengauer-Tarjan algorithm [22] to find the immediate 
dominator of each node (function) in the call-graph. 
A dominator for a control flow graph node n is de- 
fined as a node d such that every path from the entry 
node to n must go through d [23]. Since one global 
variable can be used in many functions, we further 
extend the Lengauer-Tarjan algorithm to find the 
closest dominator function for the set of functions 
that use a particular global variable. This closest 
dominator is determined by locating the first common 
dominator of all the functions that use that global. 
Thus, as an example, the global variable var that is 
used in two functions, bar1() and bar2(), in Figure 
1(a) has the function func() as its common dominator. 

 Simply localizing each global variable in its closest 
common dominator function may compromise the 
original program semantics, if this dominator function 
is called multiple times. In such cases, the corre- 
sponding localized variable will be re-declared and 
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4. Compiler and Benchmark Framework re-initialized on each invocation of the dominator 
function, which differs from the single initialization 
semantics of the original global. For instance, in the 
example program in Figure 1(a) the closest domina- 
tor function func() is called multiple times from 
main(), and therefore may not be a semantically legal 
choice to locate the global variable var. Consequently, 
for each global variable, we traverse the dominator 
tree upwards starting from its closest common domi- 
nator to main() to find the first legal dominator that is 
only invoked once by the program. 

We have implemented our algorithm to localize global 
variables as a source-to-source transformation using the 
Clang compiler framework. In this section we describe 
our compiler framework, existing framework limitations, 
and present the set of benchmark programs. 

4.1. Compiler Framework and Limitations 

We use the modern and popular Clang/LLVM [24,25] 
compiler for this work. Clang is a modern C/C++/Ob- 
jective-C frontend for LLVM that provides fast code 
transformation and useful error detection and handling 
ability. Clang also exposes an extensive library of func- 
tions that can be used to build tools to parse and trans- 
form source code. 

 Next, our transformation moves each global variable 
as a local variable to its closest legal dominator func- 
tion. The transformation also adds new instructions to 
this function to correctly initialize the new local vari- 
able. In Figure 1(a), the global variable var is moved 
to the function main() and initialized as the new local 
variable gbl_var. 

Clang/LLVM is a highly popular and heavily adopted 
compiler framework. However, the Clang frontend is still 
maturing and some less common compiler features/algo- 
rithms are not yet implemented in this framework. Such 
deficiencies impose a few restrictions on our current im- 
plementation. 

 The next step involves finding all the functions in the 
call-graph between the legal dominator and the func- 
tions where the global is used. We call this set of 
functions as the global variable’s frontier. The local 
copy for each global variable needs to be passed by 
reference to each of its frontier functions to reach 
their appropriate end locations where they are used. 
This requires modifying the calling interface of each 
frontier function. Thus, in program 1(a), the local 
variable gbl_var is passed by reference to all its fron- 
tier functions, namely func(), foo1() and foo2(). 

The first limitation is on account of Clang’s failure to 
generate precise call-graphs in the presence of function 
pointers. We circumvent this problem by supplementing 
the compiler-generated static call graph with runtime 
profiling-based information to map indirect function 
call-sites with their targets for each benchmark-input pair. 
Our framework for call-graph generation is illustrated in 
Figure 2. We modified GCC (version 4.5.2) to instru- 
ment each source file with additional instructions that 
output the (caller  callee) function relationships at 
every indirect call on program execution. This supple- 
mental indirect function call information is used to com- 
plete the static call-graph, when necessary. We note that 
the use of function pointers is not a limitation of our 
general technique, since precise function pointer analysis 
and call-graph construction has been shown to be feasi- 
ble for most programs in earlier studies [26]. 

 Our transformation then modifies the calling interface 
of the end functions for each global variable to get the 
additional arguments corresponding to the local vari- 
ants of global variables. Thus, the calling interfaces of 
functions bar1() and bar2() are updated to accept the 
address of the local variable gbl_var as an argument. 

 Finally, our tool automatically updates every use of 
each global variable in the program statements to in- 
stead use its corresponding local variants. Thus, we 
can see all sets/uses of the global variable var re- 
placed by the function argument gbl_var in the func- 
tion bodies of bar1() and bar2().  

Thus, our algorithm to eliminate global variables auto- 
matically transforms the program in Figure 1(a) to the 
program in Figure 1(c). Our tool has the ability to either 
transform all possible global variables in the program, or 
to selectively apply the transformation to individual glo- 
bals that are specified by the user. 

Another related limitation is Clang’s failure to cor- 
rectly deal with variable aliasing in all cases. Aliasing 
occurs when a data location in memory can be accessed 
through different symbolic names. Our transformation 
tool is able to detect simple aliasing cases when a global 
is passed as a parameter to another function. However, 
we do not yet handle more complex aliasing cases in the 
source codes. 

 

 

Figure 2. Framework to obtain precise call-graph information for our analysis experiments. 
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We emphasize that none of these shortcomings are 

fundamental restrictions on the algorithm, and will be 
resolved by providing better compiler support. Extending 
Clang to provide such support is part of our future work. 

4.2. Benchmark Suite 

We have collected a rich and extensive set of benchmark 
programs to analyze the use of global variables in exist- 
ing programs and validate the behavior of our transfor- 
mation tool to eliminate global variables. Our benchmark 
set includes 14 benchmarks from the MiBench suite [27] 
and five benchmarks from SPEC CPU CINT2006 bench- 
mark suite [28]. The MiBench benchmarks include popu- 
lar C applications targeting specific areas of the embed- 
ded market. The standard SPEC suite allows us to experi- 
ment with larger and more complex general-purpose ap- 
plications. The following MiBench benchmarks were 
analyzed but not included in our experimental set since 
they do not contain any read/write global variables: ba- 
sicmath, crc32, fft, patricia, qsort, rijndael, sha, and 
susan. Additionally, rsynth from MiBench was not in- 
cluded as it produces no traceable output to verify the 
correctness of our transformation. 

Table 1 shows the static characteristics of global vari- 
ables in our selected benchmark programs. For each 
benchmark listed in the first column, the remaining col- 
umns successively show the total number of global vari- 
ables declared in the program (total), the number of 
read-only or write-only global variables (RO/WO), the 
number of unused global variables (Unused), and the 
number of globals that are both read as well as written by 
the program (RW). Our transformation algorithm only 
considers the variables in the RW category as potential 
candidates from moving as local variables. 

The final column in Table 1 shows the number of RW 
global variables that were successfully localized by our 
transformation algorithm. While our tool is able to local- 
ize most global variables, it fails in a small number of 
cases. We have categorized these failed cases into three 
primary sets: 1) Global variables used in calls to the 
sizeof function: After our transformation these calls fail 
to provide the correct size when using the corresponding 
function parameter pointers that are passed via reference. 
2) Global variables used in functions called indirectly: 
We do not yet update function pointer declarations. 3) 
Miscellaneous: Global variables that cause the compiler 
to generate incorrect code, if transformed. We found that 
most of the failed cases in the “miscellaneous” category 
occur due to the imprecise alias analysis performed by 
the Clang compiler. Please note that global variables be- 
longing to the first two sets are automatically detected 
and bypassed by our tool, with a message sent to the user. 
We expect that the future implementation of a more pre- 
cise alias analysis algorithm in the underlying compiler  

Table 1. Static number and type of global variables. 

Benchmark Total RO/WO Unused RW Moved

MiBench benchmarks 

adpcm 5 4 0 1 1 

bitcount 1 0 0 1 1 

blowfish 2 0 1 1 1 

dijkstra 10 0 0 10 10 

gsm 22 1 3 18 6 

ispell 97 5 14 78 69 

jpeg 15 5 7 3 3 

mad 38 5 24 9 2 

pgp 276 63 11 202 147 

stringsearch 8 0 5 3 3 

tiff2bw 44 10 24 10 9 

tiff2rgba 36 8 23 5 3 

tiffdither 39 12 14 13 7 

tiffmedian 51 7 25 19 17 

SPEC CINT benchmarks 

401.bzip2 30 9 13 8 8 

429.mcf 8 1 0 7 7 

456.hmmer 48 26 7 15 7 

458.sjeng 244 45 23 176 166 

462.libquan 10 0 0 10 8 

 
will enable our tool to automatically detect and correctly 
handle global variables in the third category. Figure 3 
plots the number of failed RW global variables in each of 
these three categories for benchmarks that contain at 
least one failed RW global variable. 

4.3. Properties of Global Variables 

One typical use of global variables is as a convenience 
feature when particular program state is set or accessed 
in multiple program locations, and it is difficult to deter- 
mine the best place to declare the variable and pass it as 
an argument to all program regions that need it. Global 
variables are also sometimes used to improve program 
efficiency by reducing the overhead of argument passing. 
Figure 4 plots the number of functions that use/set each 
global variable. For example, the first set of bars in Fig- 
ure 4 shows that 30 global variables in the MiBench 
benchmarks and 25 global variables in our set of SPEC 
benchmarks are only accessed by one function in the 
program. We uniformly accumulate all global variables  
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Figure 3. Categories and number of global variables that 
our tool fails to localize for our benchmarks. 
 

 

Figure 4. Number of functions accessing globals. 
 
from each of our benchmark suites for this plot. Thus, 
most global variables are only used in a small number of 
functions. While this usage pattern is counter-intuitive, 
we reason that such usage trends indicate either poor 
programming practices or scenarios where the developer 
may not be comfortable with a large program code base. 
We believe that our automatic source-to-source trans-
formation tool to localize globals will be very useful to 
resolve such improper uses of global variables. 

5. Experimental Results 

In this section we quantify the static and dynamic prop- 
erties of our transformation to eliminate global variables. 
Our experiments employ the set of standard benchmark 
programs described in Section 4 to determine properties 
regarding the use of global variables in typical C pro- 
grams, and static (source code visible) and dynamic 
(performance) effects of our localizing transformation. 

5.1. Static Characteristics of Our  
Transformation Algorithm 

Our transformation to eliminate global variables can af- 
fect many static aspects of the high-level program. In this 
section we analyze some effects of our transformation on 
static program properties. Our experiments in this section 
use the algorithm described in Section 3 to localize all 
the global variables in the Moved column of Table 1. 

5.1.1. Effect on Number of Function Arguments 
After localizing the global variables, our algorithm makes 

their state available to all functions that set/use the origi- 
nal global variable. We make the new local variable ac- 
cessible by passing it as an argument to all functions that 
need it. This scheme adds additional parameters to sev- 
eral function declarations in the transformed program. 
Figures 5 and 6 respectively plot the average and maxi- 
mum number of function parameters over all the func- 
tions in each of our benchmark programs.  

Thus, we can see that the average and maximum 
number of function arguments is not significantly af- 
fected for most of the benchmark programs, although this 
number increases substantially for a few programs. On 
average, we find that the average number of function 
arguments increases from 1.95 to 3.33 for MiBench 
benchmarks and from 2.59 to 7.45 for SPEC programs. 
Similarly, the maximum number of function arguments 
increase, on average, from 6.78 to 16.50 for MiBench 
programs and from 10.4 to 40.4 for SPEC benchmarks. 
An important and desirable side-effect of our transforma- 
tion is that it makes the declarations of all variables 
used/set in any function explicit in each function header. 
This property is particularly important both from the as- 
pects of program maintainability and verifiability. Un- 
fortunately, passing additional function arguments can  
 

 

Figure 5. Average number of function parameters before 
and after applying our localizing transformation to elimi- 
nate global variables. 
 

 

Figure 6. Maximum number of function parameters before 
and after applying our localizing transformation to elimi- 
nate global variables. 
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have an adverse effect on program efficiency. We ex- 
plore the dynamic performance properties of our trans- 
formations in Section 5.2. 

5.1.2. Number of Frontier Functions 
In order to make each new local variable available in all 
the functions that used/set the corresponding global va- 
riable in the original program, we may need to pass the 
local as an argument to intermediate (or frontier) func- 
tions that do not themselves use the local variable apart 
from sending them to other functions (functions foo1() 
and foo2() in Figure 1). Figure 7 presents the number of 
frontier functions for every transformed variable. The 
first set of bars in Figure 7 reveal that 12 of the new lo- 
cal variables in the MiBench benchmarks and no new 
local variable in the SPEC benchmarks have zero frontier 
functions. Thus, we can see that most local variables 
have only a small number of frontier functions. This ob- 
servation shows that many global variables are used in 
functions that are located close to each other in the static 
program call-graph. However, some globals are used in 
functions that are considerably dislocated in the program 
call-graph. Thus, at the other extreme, we find that there 
is one function in the MiBench benchmarks that has 58 
frontier functions and another in SPEC with 45 frontier 
functions respectively. Global variables employed in 
such dislocated call-graph functions will likely require 
more user effort to manually eliminate, and also seem to 
be more sensible scenarios for the developer to use glob- 
al variables. By automatically handling such scenarios, 
our tool allows the programmer the convenience of using 
global variables in difficult situations, but eliminates 
them later to satisfy software engineering goals. 

5.1.3. Effect on Program State Visibility 
Global variables are visible and accessible to all func- 
tions in the program. It is often argued that such global 
visibility makes it more difficult for automatic program 
verification and maintainability. One goal of our localiz- 
ing transformation is to reduce the visibility of all vari- 
ables to only the program regions where they are needed  
 

 

Figure 7. Number of frontier functions needed for the trans- 
formed local variables. 

to assist verification and maintainability tasks. Figure 8 
plots the percentage visibility of each transformed local 
variable as a ratio of the number of functions where the 
corresponding program state is visible to the total num- 
ber of functions in the program. There is a point-plot for 
each transformed variable in Figure 8, sorted by its per- 
centage visibility over all MiBench and SPEC bench- 
marks. Note that global variables are visible throughout 
(100%) the program. Thus, this figure shows that, after 
transformation, visibility is drastically reduced for most 
program state that was originally held in global variables. 
For example over 81% of the (original) global variables 
in MiBench programs and 68% of variables in SPEC 
benchmarks are visible in less than 10% of their respec- 
tive program after the transformation. 

5.2. Dynamic Characteristics of Our  
Transformation Algorithm 

The transformation algorithm to eliminate global vari- 
ables can have the following effects on memory con- 
sumption and program performance. 
 Localizing global variables will move them out of the 

data region to the respective function activation re- 
cords (or the stack region) of the process address 
space. This movement may reduce the size of the data 
region, but will supplement this reduction with a cor- 
responding increase in the size of the stack. 

 Each localized variable may need to be passed to 
functions that access it. This operation may increase 
the function call overhead, as well as increase the size 
of the function activation records (stack). 

 Global variables are initialized statically or implicitly 
by the operating system. After localization, the cor- 
responding locals will need to be explicitly initialized 
in the program. This initialization may be a source of 
additional overhead at runtime. 

In this section we present results that quantify the 
memory space and runtime performance of the program 
before and after our transformation. For these experi- 
ments all our benchmark programs were compiled with 
GCC (version 4.5.2) using the “-O2” optimization flag  
 

 

Figure 8. Percentage reduction in visibility of transformed 
variables compared to globals visible throughout the pro- 
gram. 
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for the x86 32-bit platform running the Linux operating 
system. We also built a simple GCC-based instrumenta- 
tion framework to measure the maximum stack space 
requirement and dynamic instruction counts for each 
benchmark. This framework is described in the next sec- 
tion. The MiBench and SPEC benchmarks were run with 
their small and test inputs respectively. The program 
outputs with and without our transformations were com- 
pared to validate the correctness of our tool. 

5.2.1. GCC-Based Instrumentation Framework 
We updated the GCC compiler to instrument the program 
during code generation. Our instrumentations can gener- 
ate two types of profiles at program runtime. 1) To out- 
put the stack pointer register on every function entry, 
after it sets up its activation record. The difference be- 
tween the minimum and maximum stack pointer values 
gives us the maximum extent of the stack for that par- 
ticular program run. 2) Our other set of instrumentations 
is added to the start of every basic block to produce a 
linear trace of the blocks reached during execution. We 
also modified GCC to generate a file during compilation 
that contains a list of all program basic blocks along with 
their set of instructions. The knowledge of the blocks that 
are reached at runtime and the number of instructions in 
each block allow us to compute the dynamic instruction 
counts for a particular program run. Since our instru- 
mentations only modify the compiled code, we can only 
count the dynamic instructions executed in the applica- 
tion program and not in the library functions. Dynamic 
instruction counts are a good supplement to program 
run-times since they are deterministic and not affected by 
any hardware and operating system effects. 

5.2.2. Effect on Maximum Stack and Data Size 
For most existing systems, global variables reside in the 
data region of the process address space, while local 
variables and function arguments reside in the function 
activation record on the process stack. Therefore, our 
transformations to convert global variables into locals 
(that are passed around as additional function arguments) 
have the potential to reduce the data space and expand- 
ing the process stack. We use our GCC based stack- 
pointer instrumentation to gather the maximum required 
stack space (in bytes) for each benchmark run with its 
standard input. We also employ the Linux size tool to 
determine the space occupied by the data region of each 
program. Figure 9 plots the ratio of the total data and 
maximum stack requirement for each of our benchmark 
programs before and after the transformation to eliminate 
global variables. 

Thus, we can see that our transformation increases the 
stack requirement while reducing the data space size for 
most programs. While some benchmarks, including dijkstra,  

 

Figure 9. Ratio of the total data and maximum stack area 
consumed by each process at runtime before and after our 
localizing transformation. 
 
pgp and 429.mcf, may experience a large increase in 
maximum stack usage, many of these also notice a cor- 
relating reduction in the data region size. At the same 
time, note that while a program only maintains one copy 
of any global variable, multiple copies of the corre- 
sponding local variable/argument may reside simultane- 
ously on the stack for the transformed program. There- 
fore, there also exist programs, such as adpcm, bitcount, 
and blowfish, that show no discernible reduction in data 
size, but still encounter significant increases in maximum 
stack space use. 

5.2.3. Effect on Dynamic Performance 
In this section we present experimental results that quan- 
tify the effect of eliminating global variables on program 
performance. We employ two metrics for performance 
estimation. First, we use the GCC instrumentation frame- 
work to measure each program’s dynamic instruction 
count before and after applying our transformation. Dy- 
namic instruction counts can provide a good and deter- 
ministic estimation of actual program performance, but 
cannot account for differing instruction latencies, and 
variations due to memory, cache, and other micro-archi- 
tectural effects. Second, we execute each benchmark 
natively on a x86-Linux machine to gather actual pro- 
gram run-time. Each benchmark is run in isolation to 
prevent interference from other user programs. To ac- 
count for inherent timing variations during the bench- 
mark runs, all the performance results in this paper report 
the average over 15 runs for each benchmark.  

Figure 10 shows the results of these performance ex- 
periments. For the actual program run-times, we employ 
a statistically rigorous evaluation methodology, and only 
present results that show a statistically significant per- 
formance difference (with a 95% confidence interval) 
with and without our transformation. Thus, we can see 
that the localizing transformation does not produce a 
large performance overhead for most benchmarks. The 
dynamic instruction counts for most benchmarks with a  
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Figure 10. Ratio of dynamic instruction counts and program 
run-time before and after our localizing transformation. 
 
small number of Moved global variables typically do not 
undergo a substantial change. However, the dynamic 
instruction counts do show large degradations in cases 
where the transformation localizes a large number of 
global variables and/or significantly increases the num- 
ber of function arguments (as seen in Figure 5). Several 
benchmark programs including dijkstra, ispell, string- 
search, and 458.sjeng fall into this category. Interestingly, 
we observe that, in most cases, the increases in dynamic 
instruction count do not produce a corresponding in- 
crease in the actual benchmark runtime. The most nota- 
ble exception to this observation is tiff2rgba that de- 
grades substantially over the original program run-time 
after our localizing transformation. Remember that 
tiff2rgba is the only program not compiled with GCC’s 
-O2 optimizations. Thus, it seems that optimizations per- 
formed by GCC and the x86 micro-architecture do a 
good job of reducing the overhead caused by our trans- 
formation to localize and eliminate global variables. 

6. Future Work 

There are a number of possible improvements. First, we 
plan to improve pointer analysis and alias analysis in the 
Clang compiler, to appropriately resolve indirect function 
calls and build precise call-graphs. Second, we are de- 
veloping an Eclipse-based interactive framework to en- 
able the user to selectively localize only the important 
global variables. We also plan to develop machine-learn- 
ing algorithms to automatically find the most promising 
globals to localize. Third, we will further investigate the 
causes of performance overhead and develop optimiza- 
tions to reduce the overhead of the localizing transforma- 
tion. Finally, we require good metrics to evaluate the 
benefit of our tool for program development, mainte- 
nance, verification, and thread-safety. We plan to de- 
velop such metrics in the future. 

7. Conclusion 

In this paper we present our compiler-based source-to- 

source transformation and refactoring tool to automati- 
cally convert global variables into locals. Our transfor- 
mation algorithm automatically detects each global vari- 
able, finds the best place to redefine each as a local, ap- 
propriately initialize it, pass it as an argument to all the 
functions that set/use it, and then modify all program 
statements that used the original global variable to now 
instead use the corresponding local or argument. We also 
analyze the static and runtime effects of our localizing 
transformation. We found that many benchmarks make 
generous use of global variables. However, most globals 
are only used in a very small number of program func- 
tions that are located close to each other in the function 
call-graph. Localizing such global variables greatly re- 
duces the percentage visibility of global program state, 
which can assist code verification efforts. While the lo- 
calizing transformation can affect the amount and distri- 
bution of memory space consumed by the data and stack 
regions of the process address space, localizing most 
global variables only has a minor degrading effect on 
runtime performance. 
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