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ABSTRACT 

The well-known Schrdöinger equation is reasonably derived from the well-known diffusion equation. In the present 
study, the imaginary time is incorporated into the diffusion equation for understanding of the collision problem between 
two micro particles. It is revealed that the diffusivity corresponds to the angular momentum operator in quantum theory. 
The universal diffusivity expression, which is valid in an arbitrary material, will be useful for understanding of diffusion 
problems. 
 
Keywords: Diffusion Coefficient; Diffusion Equation; Schrödinger Equation 

1. Introduction 

For micro particles such as atoms or molecules in the 
homogeneous time and space of 1 2 3 , the macro 
behavior of their collective motions is presented by the 
well-known diffusion equation of 
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where  is the concentration of them and  

D D   the diffusivity when it does not  

depend on  [1]. 1 2 3

The motion of a micro particle is presented by quan- 
tum mechanics and its behavior is investigated by using 
the Schrödinger equation of 
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where  is  2πh h using the Plank constant ,   
the state vector and   the Hamiltonian meaning the 
total energy in the given physical system [2]. In case of a 
free particle, it is given by 
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where  is the particle mass and p

D

 the momentum. 
In the present study, the correlation between (1) and (2) 

was investigated. It was found that the Schrödinger equa- 
tion (2) is reasonably derived from the diffusion equa- 

tion (1) by means of using the imaginary time for (1). As 
a result, we revealed that the diffusivity  in (1) cor- 
responds to the angular momentum operator L  in 
quantum mechanics. The obtained new diffusivity will be 
useful for understanding of an elementary process of dif- 
fusion [3]. 

2. Necessity of Imaginary Time 

The micro particle in a solid crystal jumps instantly to 
the nearest lattice site through an energy barrier when it 
obtains an activation energy caused by the thermal fluc- 
tuation. The micro particle in a fluid collides with an- 
other one via the movement of the averaged free path and 
the particle jumps to a neighbor site. 

For a Brownian particle of mass m, the well-known 
Langevin equation is 
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where the velocity  and the viscosity resistance f are  
d
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, respectively [4]. In (4), the  

F ttime-averaged value of external force  satisfies  

  0F t  in a collision problem. Hereafter, we do  

 F tnot discuss  but the acceleration in a collision 
problem between two micro particles. In the three di- 
mensional space  †

1 2 3, ,r x x x , the acceleration is 
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expressed as: 
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Since the physical essence is still kept even if we con- 
sider the simplest collision problem of one dimensional 
case, we thus investigate a perfect elastic collision prob- 
lem between a micro particle A and a particle B of the 
same kind. When the particle A moves at a velocity v

0t 
 

and collides at time  with the particle B in the 
standstill state, if we can clarify the distinction between 
A and B after the collision, the particle A decelerates 
from the velocity v  to the velocity zero and the parti- 
cle B accelerates from the velocity zero to the velocity 
v  between 0 . On the other hand, if we cannot 

clarify the distinction between A and B after the collision, 
it seems that the particle A decelerates from the velocity 

t t  

v 0 to the velocity zero between t    and subse- 
quently accelerates again from the velocity zero to the 
velocity v  between t t   

0 t t  

. In other words, the 
particle motion seems as if there is no collision process. 

If we notice the acceleration of  in the 
above latter case, the relation of a a 

t
 between 

0 t t       is valid in the three dimensional 
collision process, using a probabilistic parameter   of 
0 

it t

. Therefore, this indicates that the impossibility of 
discrimination between the particles A and B yields 

 or  between it t tt     , as can be seen 
from the expression of (5). 

In the present study, we thus accept the imaginary time 
it   as an essential characteristic of a micro particle 

caused by the impossibility of discrimination between 
micro particles. In a collision problem, the acceleration is 
meaningless, although t a  is finite at the limit of 

 and 0t  a 

 , , ,C t x x x

.  

3. Diffusion Equation of Imaginary Time 

Rewriting the concentration 1 2 3  of diffusion 
particles into a quantity of state expressed by a complex 
function  1 2 3, , ,x x x  , (1) is presented as: 
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Assuming 1 2 3 1 2 3, , ,x x x T  

n

S x x x , (6) can 
be solved by the separation method of variables. Using 
complex numbers jk ,i and iA A

 exp ,n n
j j jk x

   determined from 
the initial and boundary conditions, the general solution 
of (6) is obtained as; 
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where . Substituting  
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and using the real function 1 1 2 3  and 
 , , ,t x x x 2 1 2 3 , we rewrite the complex function   

into the complex-value function yielding 
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Further, substituting (8) and  
2i 

 into (6) and mul- 
tiplying the both-side of (6) by , (1) is rewritten as: 
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4. Diffusion Coefficient of Micro Particle 

 ,j jf t rThe function  is defined as a probability den- 

sity which a diffusion particle in the initial state of 
 ,t r0 0  exists in the state of  j j  after j times 
jumps. A diffusion particle moves at random and it is, 
therefore, considered that the jump frequency 

,t r

1 t  and  

1j jr r r rjump displacement       are equi-  

valent in probability to their mean values of all diffusion 
particles in the collective system. Since it is also consid- 
ered that the probability of diffusion-jump from the state  

of 1 1,j jt r   2,j jt r  to  is equivalent to one from  
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is thus valid. 
The Taylor expansion of the left-hand side of (10) 

yields 
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The Taylor expansion of the right-hand side of (10) 
also yields 
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The substitution of (11) and (12) into (10) gives 
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Since the probability density function f of a diffusion 
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particle corresponds to the normalized concentration C, 
the comparison of (1) with (13) gives the diffusion co- 
efficient yielding 
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as a relation satisfying the well-known parabolic law [5]. 

5. Diffusion Coefficient and Angular 
Momentum 

When a micro particle randomly jumps from a position to 
another one, the jump orientation becomes the spherical 
symmetry in probability. Using the equation of  

L r p     

relevant to the angular momentum L r p   defined 

by a position vector r  and a momentum p m v , 

the right-hand side of (14) is re- written as: 
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where 
1 2 3x x x  is valid in the spherical 

symmetry space. Considering the eigenvalue, the relation 
of (14) is thus rewritten as an operator relation of 
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Substituting (15) into (9) gives 
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Here, if we define the relation given by 
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In mathematics, it was clarified that we can transform the 
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Further, the substitution of (3) into (18) yields the 
well-known Schrödinger equation (2).The defined equa- 
tion (17) is one of the basic operators in quantum me- 
chanics. 

Hereinbefore, the Schrödinger equation was reason- 
ably derived from the diffusion equation. It was also 
found that the diffusivity corresponds to the angular mo- 
mentum operator in quantum mechanics. The relation of 
(15) is concretely investigated in the following section. 

6. Discussion and Conclusion 

diffusion equation for the collective motion of micro 
particles into the Schrödinger equation for a micro parti- 
cle. In physics, energy E, momentum p  and angular 
momentum L  are expressed as operat  yielding  ors
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We cannot observe imaginary physical quantities. There- 

tioned in a collision problem, the 
im

fore, the eigenvalues of their operators are meaningful in 
quantum mechanics. 

As previously men
possibility of identification between micro particles 

corresponds to introducing the imaginary time it   
into those motions and also it corresponds to yieldin  
meaningless acceleration. It is considered that the physi- 
cal concept obtained here is generally valid for the micro 
particle motions. Thus, the concept of acceleration dis- 
appears in quantum mechanics.  

Except constant physical quantities, ph

g the

ysical variables 
containing an imaginary number i should be accepted as 
physical operators in quantum mechanics. Here, note that 
the kinetic energy 2kE p p m  in Hamiltonian is 

acceptable as an operat
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xistence probability of a micro particle in a col- 
le

tation. 
The e

ctive system of heat quantity Q and absolute tem- 
perature T is given by the well-known Boltzmann factor 
of 

 exp ,BQ k T                (19) 

where Bk  is the Boltzmann constan
rri

l de- 
pe

t [6]. There is an en- 
ergy ba er for a diffusion particle in order to jump from 
a site to another site. Therefore, it is necessary for a dif- 
fusion particle to obtain the activation energy Q from the 
thermal fluctuation. In a collective system composed of 
micro particles, the diffusion coefficient D is thus di- 
rectly proportional to the probability factor of (19). 

The jump of a diffusion particle in a solid crysta
nds on a factor   derived from the atomic configura- 

tion and on the en opy S derived from an elastic strain. 
In a solid crystal, therefore, (15) is rewritten as 

tr
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where AN  and  310 An mN  are the Avogadro con- 
d t cular or the stant an he mole atomic weight. Here, (20) 

was obtained as a new representation of diffusion coeffi- 
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cient. 
If we consider    , exp BS S k   in the given 

di itrary material



 
 an arbffusion system of , the universal 

diffusivity expression of 
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tained, where N AD N   . 
n the diffusio equation a

Sc
The correlation betw n ee nd 
hrödinger equation was clarified. We revealed that the 

diffusion coefficient D in classical mechanics corre- 
sponds to the angular moment L  in quantum mecha- 
nics. The physical constant of  

 11 2 16.35 10 m sAN        in (20) is an essential 

tity in the diffusion problem
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