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ABSTRACT 

This work addresses the problem of Magnetohydrodynamic laminar unsteady flow of an incompressible electrically 
conducting fluid past an infinite vertical porous plate. It investigates how joule heating affects the velocity and tem-
perature profiles of the fluid flow subjected to transverse magnetic field. The research examines specific equations of 
MHD flow which are solved numerically by finite difference approximations, using computer programme. The nu-
merical results of this study reveal that an increase in joules heating parameter causes an increase in the velocity and 
temperature profiles uniformly near the plate but remain constantly distributed away from the plate, implying that the 
flow field of the MHD free convective flow is influenced substantially by the strength of Joules heating near the wall of 
the plate and at the mainstream. 
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1. Introduction 

MHD is the discipline that studies the dynamics of elec-
trically conducting fluids. Examples of such fluids in-
clude plasma, liquid metals and salt water. The word 
MHD (Magneto Hydrodynamics) is derived from mag-
neto-meaning magnetic field, and hydro-meaning liquid 
and dynamics meaning mechanical properties of fluid. 
Hydrodynamics on the other hand is the study of fluid 
flow and the forces that cause the flow in the absence of 
an electromagnetic field. We consider a fluid to be any 
matter that under goes deformation when an external 
force is applied. In MHD a current is induced when the 
fluid conductor moves in magnetic field. As a result, 
when a conducting fluid flows in the presence of a trans-
verse magnetic field, electromagnetic forces act on the 
fluid particles thereby altering their geometry of motion. 
The momentum equation describing the motion of fluid 
in MHD includes body forces which act on fluid particles 
from a distance. The applied magnetic fields act on both 
electronic and ionized atoms to produce dynamic effect. 
This mass motion in turn produces modification in the 
electromagnetic field. Heat transfer in fluid is by con-  

duction, convection and radiation. In convection an es-
sential step in the problem is to determine whether the 
boundary layer is Laminar or turbulence. Surface friction 
and convection transfer rates depend strongly on which 
of the conditions exists. Laminar fluid appears to move 
by sliding of lamination of infinitesimal thickness rela-
tive to adjacent layers. In most of the free convective 
flow investigations the heat transfer, temperature distri-
butions, velocity profiles and turbulence intensities are 
mostly obtained by means of either experimental meth-
ods or numerical methods which have comparatively 
large flexibility in geometry and boundary conditions 
governing motion. The mechanical motion of the system 
can then be described in terms of a single conducting 
fluid with hydro magnetic variables of density, velocity 
and pressure. At low frequencies it is customary to ne-
glect the displacement current in Amperes law. This is 
then the approximation called magneto hydrodynamics.  

Turbulent flow occurs when there are disturbances 
present in a fluid due to a variety of factors such as po-
rous plates, boundary roughness and variation in the 
physical properties of fluid motion among others. Joule 
heating means the heat produced when current flows 
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through a device (conductor), this heating can then lead 
to thermal stresses which will force the device to bend 
due to fact that the upper part is narrower than the lower 
part. The set of equations describing MHD is a combina-
tion of Navier-Stokes equations of fluid dynamics and 
Maxwell’s equations of electromagnetism (differential 
equations) which can be solved simultaneously either 
analytically or numerically. 

1.1. Definition of Terms 

1.1.1. Mass Transfer  
Convection mass transfer involves the transport of mate-
rials between boundary surface and moving fluid. Mass 
transport always plays an important role in many indus-
trial processes for example, removal of pollutants from 
plant discharge. 

1.1.2. Heat Transfer 
Convection heat transfer involves the energy exchange 
between a boundary surface and an adjacent fluid due to 
temperature variations. 

1.1.3. Free Convection  
In free convections, the fluid motion is as a result of den-
sity gradients created by temperature or concentration 
gradients existing in fluid. 

1.1.4. Joule Heating 
It is the process by which the passage of an electric cur-
rent through a conductor releases heat. It is caused by 
interaction between the moving particles that form the 
current (usually, but not always, electrons) and the 
atomic ions that make up the body of the conductor. 
Charged particles in an electric circuit are accelerated by 
an electric field but give up some of their kinetic energy 
each time they collide with an ion. The increase in the 
kinetic or vibration energy of the ions manifests itself as 
heat and a rise in the temperature of the conductor. 
Hence energy is transferred from the electrical power 
supply to the conductor and any material with which it is 
in thermal contact.  

The first research in magneto hydrodynamics was 
done by Faraday [1] who performed an experiment on 
the behavior of current in circuits placed in time-varying 
magnetic fields. In his experiment with mercury as the 
conducting fluid flowing in a glass tube placed in a 
magnetic field, he observed that a voltage was induced in 
a direction perpendicular to both the direction of the flow 
and magnetic field.  

When an electric field is applied to conducting fluid in 
a direction perpendicular to a magnetic field a force is 
exerted on the fluid in a direction perpendicular to both 
the electric field and magnetic field.  

Calvert L. [2] composed his research article on the 
fundamental principle of MHD where he showed that the 
effect of magnetic field on conducting fluid in motion is 
to exert a force perpendicular to the magnetic field that 
tends to make normal velocity equal to the E B  drifts. 
He asserted that the higher the conductivity, the stronger 
is this force and the closely is the magnetic field dragged 
by the fluid (and vice versa) and that the motion of the 
fluid along the direction of the magnetic field is unaf-
fected. Ramulu et al. [3] studied the effect of hall current 
on MHD flow and heat transfer along a porous flat plate 
with mass transfer. He applied numerical methods to 
obtain the solution. Cooker et al. [4] investigated the 
influence of viscous dissipation and radiation on problem 
of unsteady magneto hydrodynamics free-currents flow 
past an infinite heated vertical plate in an optically thin 
environment with time dependent suction. The results 
shows that increasing cooling  of the plate and 
Eckert members leads to arise in the velocity profile 
while increases in magnetic field, radiation and Darcy’s 
parameters are associated with decrease in the velocity. 
Jordan J. [5] analyzed the effect of thermal radiation and 
viscous dissipation and MHD free convection flow over 
a semi-infinite vertical porous plate. The network simu-
lation method is used to solve the boundary layer equa-
tions based on the finite difference formulations. It was 
found that increase in viscous dissipation leads to an in-
crease of both velocity and temperature profiles, an in-
crease in magnetic parameter leads to an increase in the 
temperature profiles and a decrease in the velocity pro-
files finally an increase in the suction parameter leads to 
an increase in the local skin friction and Nusselt number. 
Emad et al. [6] studied the effect of viscous dissipation 
and joule heating on MHD free convection flow past a 
semi-infinite vertical flat plate in presence of the com-
bined effect of Hall and Ion-slip currents for the case of 
power-law variation of the wall temperature. They found 
that the magnetic field acts as a retarding force on the 
tangential flow but has a propelling effect on the induced 
lateral flow. The skin-friction factor for the tangential 
floe and the Nusselt number decreases but the skin-fric-
tion factor for the tangential and lateral flows is in-
creased while the local Nusselt number is decreased if 
the effect of viscous dissipation, joule heating and heat 
generation are considered. Hall and Ion-slip terms were 
ignored in applying Ohm’s law as it has no marked effect 
for small and moderate values of the magnetic field. 

0Gr 

Kinyanjui et al. [7] investigated unsteady free convec-
tion in compressible fluid past a semi-infinite vertical 
porous plate in the presence of a strong magnetic field 
inclined at an angle to the plate with Hall and ion-slip 
currents effects. The effects of modified Grashof number, 
suction velocity, the angle of inclination, time, Hall cur-
rent, ion-slip current, Eckert number, Schmidt number 
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and heat source parameter on the convectively cooled or 
convectively heated plate restricted to Laminar boundary 
layer were studied. He found that an increase in mass 
diffusion parameter Sc cause an increase in the concen-
tration profile, an increase in Eckert number Ec causes 
an increase in temperature profile and also an increase in 
the angle of inclination leads to an increase in primary 
velocity profiles but a decrease in secondary profiles. 

Duwairi G. [8] analyzed viscous and joule heating ef-
fect on forced convection flow of ionized gases adjacent 
to isothermal porous surfaces, he analyzed his equations 
numerically and found that heat transfer rate is decreased 
due to viscous dissipation effect in both the cases of suc-
tion or injection in the fluid.  

It is for this purpose that we investigate MHD free 
convective flow of an incompressible conducting fluid 
past an infinite vertical porous plate with joule heating in 
presence of a uniform transverse magnetic field. 

1.2. Application  

Velocity profiles play an important role in many indus-
trial processes, for example; the removal of pollutants 
from plant discharge streams by absorptions and strip-
ping of gases from waste water entirely depend on rela-
tive rate of velocity profiles distribution. Pollutant re-
moval is the process of reducing or eliminating the re-
lease of pollutants into the environment. It is regulated 
by the various environmental agencies which establish 
pollutant discharge limits for air, water and land. Air 
pollution control includes particulate emission and gase-
ous emission which can be done by many kinds of 
equipments which operate on the velocity distribution 
principle to reduce the emissions.  

Physical separation of the particulate from the air us-
ing settling chambers, cyclone collectors, impingers, wet 
scrubbers, electrostatic precipitators and filtration de-
vices are all processes that are typically employed. Set-
tling chambers use gravity separations to reduce particu-
late emissions. The air stream is directed through a set-
tling chamber which is relatively long and has large cross 
section causing the velocity of the air stream to be 
greatly decreased and allowing sufficient time for the 
settling of solid particles. Flaring and incineration take 
advantage of the combustibility of a gaseous pollutant. In 
general, excess air is added to these processes to drive 
the combustion reaction to completion forming carbon 
dioxide and water. 

In the physical water treatment systems which rely on 
physical forces to aid in the removal of pollutant like 
screening, filtration, sedimentation and flotation. Sedi-
mentation devices utilize gravity to remove the heavier 
particles from the water stream. The wide array of sedi-
mentation basins in use slow down the water velocity in 

the unit to allow time for particles to drop to the bottom. 
Likewise flotation uses difference in particle densities 
which in this case are lower than water, to effective re-
moval. 

Operating principles of certain MHD devices utilizes 
the interaction between velocity field, magnetic field and 
electric field. Any device designed in this manner is ca-
pable of performing the functions of various machines. 
The particular devices where these principles are applied 
include MHD generators, MHD flow meter, MHD pump 
and heat exchanger. 

2. Geometry of the Problem 

The Figure 1 below shows the geometry of the problem 
discussed. The x-axis is taken along the plate in verti-
cally upward direction which is the direction of flow. 
The y-axis is taken normal to plate. Since the plate is 
infinite in length and for a two dimensional free convec-
tive fluid flow the physical variables are functions of x, y 
and t. 

3. Specific Equations Governing Fluid Flow 

Free convection magneto hydrodynamic fluid flow past- 
infinite vertical porous plate subjected to a uniform 
magnetic field and constant suction velocity is consid-
ered. 

3.1. Momentum Equation  

The equation of momentum is derived from the Newton 
second law of motion which states that the total body 
force and surface forces acting on a system is equal to 
the time rate of change of the momentum of the system. 
In vector notation, the equation of motion considering 
the body force due to gravity and electromagnetic force 
only may be written as;  

  21q
q q P q F

t





       


       (1) 

In component form and in x-direction 
 

 

Figure 1. Flow configuration. 
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     (2) 

where F g J     since we are considering both 
gravitational force g and electromagnetic force in order 
to get the volumetric density of the external force. To 
determine the pressure gradient, the momentum equation 
is evaluated at the edge of the boundary layer where 
  0u   and . Pressure term in x direction  

 
2 2

2 2
2 2 y

u u u
u v

t x y

u u
g T T H u

x y

  
 

   
     
  

       


    (6) 

P
g

x
 


 Method of Solution  results from the change in the elevation.  

Equations governing fluid flow in our study are non- 
linear, thus, their exact solutions are difficult to obtain. 
We thus employed a fast and stable method in order to 
solve these differential equations. 

The body force term in Equation (2) along negative 
x-direction is – g . Combining the two terms give  

–
P

g g 
x

  


  


. The current density  
The Finite difference method used in solving these dif-

ferential equations satisfied basic requirements such as 
consistency, stability and convergence. A method is 
convergent if as more grid points are taken or step size 
decreased, the numerical solution converges to the exact 
solution. A method is stable if the effect of any single 
fixed round off error is bounded. 

 J q B   where B H  . From the equation of 
conservation of electric charges , J = 0 = con-
stant, this constant must be zero, since  at the 
plate which is electrically non conducting, hence 

0J 
0ZJ 

0ZJ   
everywhere in the flow. 0yB   due to the geometrical 
nature of the problem. Thus x

2 2 2 2J B H  u   H u . 
Substituting in Equation (2), the momentum equation 
reduces to; 

Finally a method is consistent if the truncation error 
tends to zero as the step size decreases. The numerical 
error arises because in most computations we cannot 
exactly compute the difference solution as we encounter 
round off errors. In fact in some cases the exact solution 
may differ considerably from the difference solution. If 
the effect of the round off error remains bounded as the 
mesh points tend to infinity with fixed sizes, then the 
difference method is said to be stable.  
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u v
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x y



  
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  
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
    (3) 

and in y-direction the equation reduces to 
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In this study we use subscripts to indicate spatial 
points and superscript to indicate time    1

1, , ,n
i i nj iT y x t


t

. 
Let the mesh point variable at time n be denoted by 

 ,
n

j i . The forward difference for the first order deriva-
tives with respect to time t is given by 


    (4) 

if we define the volumetric coefficients of the thermal 
expansion by 

 
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1
, ,

,

n n
j i j in

j i Hot
t

 
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
          (7) 
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
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




 

, Use forward finite difference for the first order time 
derivative and central finite difference for the first and 
second spatial derivative. The final set of the governing 
equations from Equations (5) to (6) in finite difference 
form are 

then  T T      . Substituting in Equations (3) 
and (4) the final momentum equation for this study in the 
x and y directions respectively become; 
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            (11) 

 
respectively. 

The initial conditions take the form: 

       
0 0 0 0
0, 0, 0, 0,At 0, 1, 0, 1, 0i i i iy u v B        (12) 
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For  and all , the boundary condition take the 
form; 
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The initial and boundary conditions for non-dimen- 
sional form for energy equation with time t are: 

For 
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     0, 0, , 1, 0, , 1, 0, , 1t u y t v y t B y t    

For 

     0, , , 0, , , 0, , , 0t u y t v y t B y t        

The computations are performed using small values of 
. In our research, we set  and t 0.0012t  x   

. We fixed  that is  as corre-
sponding to . The velocities 

0.1y  4.1y  41j 


1
,

ny   j iu   and 
n


1
,j iv   are 

computed from Equations (10) and (11). 

This procedure is repeated until  that is 400n 
0.5t   for 1i  , 0.1x  . 

In our calculations the Prandtl number is taken as 0.71 
which corresponds to air, magnetic parameter  
which signifies a strong magnetic field. We consider one 
case, that is, when the  corresponding to 
convective cooling of the plate. 

2 5.0M 

0 0.4Gr   

To ensure stability and convergence of the finite dif-
ference method, Java computer program is run using 
smaller values of t , that is t  = 0 0007, 0.005, 0.0015. .

3.2. Energy Equation 

 

22 2
0

2 2 2

1

Pr

Bv
u v R

t x y x y x

                           
 

Solving it using the finite difference method yields; 

   
 

   

     

 

     

 

   

1n n n nu u     , , , 1 , 1

,

, 1 , , 1

2

1, , 1,

2

2

, 1 , 1

2

21

Pr

21

Pr

2

j i j i j n j in
j i

n n n
j i j i j i

n n n
j i j i j i

n n
j n j i

u
t x

x

y

B B
R

x

  

  

 

 

 

 

 
   

  
 
  
  
 
  

 
 
  

      (16) 
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4. Results 

To obtain numerical results in tables and graphs for this 
work, we solved equations by finite difference method 
(Equations (10), (11) and (16)) were run using Java com-
puter programme after setting the initial and boundary 
conditions as in Equations (14) to (15). Th
results are then discussed bellow. 

From Table 1 and Figure 2, for, , we observe 
that, the primary velocity profile increases rapidly with 
an increase in joules parameter R near the plate and 
maintains constant velocity profile distribution far away 
from the plate. 

From Table 2 and Figure 3, for  we observe 
ndary velocity profile distribution remain 

 reason  

Conti

e computed 

0Gr 

0,Gr 
that, the seco
constantly zero near the plate up to a certain distance 
from the plate when they begin to increase uniformly 
with an increase in joules parameter R before resuming a 
constant distribution far away from the plate.  

From Table 3 and Figure 4, for 0Gr  , we observe 
that, very close to the plate the rate of Temperature pro-
files distribution is zero but after some able distance 
 

Table 1. Table for primary velocity. 

U 

I II III 

0 0 0 

1.00E−05 2.00001E−05 3.00002E−05 

1.81E−05 3.6121E−05 5.41814E−05 

2.46E−05 4.9115E−05 7.36725E−05 

82.98E−05 5.95887E−05 93831E−05 

3.40E−05 6.80309E−05 0.000102046 

3.74E−05 7.48357E−05 0.000112254 

.

4.02E− 20481 

4.24E−05 8.4741 −05 0.000127112 

4.42 05 8.830 −05 0.00 458 

4.56 05 9.117 −05 0.000 766 

5.09E−05 0.000101732 0.000152598 

05 8.03206E−05 0.0001

6E

E− 52E 0132

E− 75E 136

4.67E−05 9.34927E−05 0.000140239 

4.77E−05 9.53589E−05 0.000143038 

4.84E−05 9.68631E−05 0.000145295 

4.90E−05 9.80755E−05 0.000147113 

4.95E−05 9.90528E−05 0.000148579 

4.99E−05 9.98405E−05 0.000149761 

5.02E−05 0.000100475 0.000150713 

5.05E−05 0.000100987 0.000151481 

5.07E−05 0.0001014 0.0001521 

nued  

5.10E−05 0.000102 0.000153 

5.11E−05 0.000102216 0.000153324 

5.12E−05 0.00010239 0.000153586 

5.13E−05 0.000102531 0.000153796 

5.13E−05 0.000102644 0.000153966 

5.14E−05 0.000102735 0.000154103 

5.14E−05 0.000102809 0.000154213 

5.14E−05 0.000102868 0.000154302 

5.15E−05 0  0  

5 0.000102985 0.000154478 

0  0.  

.000102916 .000154373

5.15E−05 0.000102954 0.000154431 

5.15E−0

5.15E−05 .00010301 000154515

5.15E−05 0.00010303 0.000154545 

5.15E−05 0.000103047 0.00015457 

5.15E−05 0.00010306 0.000154589 

5.15E−05 0.00010307 0.000154605 

5.15E−05 0.000103079 0.000154618 

5.15E−05 0.000103086 0.000154628 

5.15E−05 0.000103091 0.000154637 

5.15E−05 0.000103096 0.000154643 

5.15E−05 0.000103099 0.000154649 

5.16E−05 0.000103102 0.000154653 

5.16E−05 0.000103104 0.000154657 

5.16E−05 0.000103106 0.000154659 

5.16E−05 0.000103108 0.000154662 

5.16E−05 0.000103109 0.000154663 

5.16E−05 0.00010311 0.000154665 

5.16E−05 0.000103111 0.000154666 

5.16E−05 0.000103111 0.000154667 

5.16E−05 0.000103112 0.000154668 

5.16E−05 0.000103112 0.000154668 

5.16E−05 0.000103113 0.000154669 

5.16E−05 0.000103113 0.000154669 

5.16E−05 0.000103113 0.00015467 

5.16E−05 0.000103113 0.00015467 

5.16E−05 0.000103113 0.00015467 

5.16E−05 0.000103114 0.00015467 

5.16E−05 0.000103114 0.000154671 

5.16E−05 0.000103114 0.000154671 

5.16E−05 0.000103114 0.000154671 
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Figure 2. Primary velocity profile. 
 

Table 2. Table for secondary velocity. 

V 

I II III 

0 0 0 

0 0 0 

1.31E−54 1.31E−54 1.31E−54 

8.50E−16 4.25E−15 8.50E−15 

4.18E−15 2.09E−14 4.18E−14 

1.15E−14 5.74E−14 1.15E−13 

2.37E− −13 

4.13E−14 2.06E−13 4.13E−13 

6.40E −13 

9.15E−14 4.5 13 9.15E−13 

1.23 13 6.1 13 1.2 12 

1.58 13 7.89 13 1.5 12 

1.95 13 9.73 13 1.9 12 

14 1.19E−13 2.37E

−14 3.20E−13 6.40E

8E−

E− 5E− 3E−

E− E− 8E−

E− E− 5E−

2.33E−13 1.16E−12 2.33E−12 

2.72E−13 1.36E−12 2.72E−12 

3.11E−13 1.55E−12 3.11E−12 

3.49E−13 1.74E−12 3.49E−12 

3.86E−13 1.93E−12 3.86E−12 

4.21E−13 2.11E−12 4.21E−12 

4.55E−13 2.27E−12 4.55E−12 

4.87E−13 2.43E−12 4.87E−12 

5.16E−13 2.58E−12 5.16E−12 

nued  

5.44E−13 2.72E−12 5.44E−12 

5.69E−13 2.84E−12 5.69E−12 

5.92E−13 2.96E−12 5.92E−12 

6.13E−13 3.07E−12 6.13E−12 

6.32E−13 3.16E−12 6.32E−12 

6.50E−13 3.25E−12 6.50E−12 

6.65E−13 3.33E−12 6.65E−12 

6.79E−13 3.40E−12 6.79E−12 

6.92E−13 3.46E−12 6.92E−12 

7.03E−13 3.51E−12 7.03E−12 

7.13E−13 3.56E−12 7.13E−12 

7.83E−13 3.92E−12 7.83E−12 

7.22E−13 3.61E−12 7.22E−12 

7.30E−13 3.65E−12 7.30E−12 

7.36E−13 3.68E−12 7.36E−12 

7.42E−13 3.71E−12 7.42E−12 

7.48E−13 3.74E−12 7.48E−12 

7.53E−13 3.76E−12 7.53E−12 

7.57E−13 3.78E−12 7.57E−12 

7.60E−13 3.80E−12 7.60E−12 

7.63E−13 3.82E−12 7.63E−12 

7.66E−13 3.83E−12 7.66E−12 

7.69E−13 3.84E−12 7.69E−12 

7.71E−13 3.85E−12 7.71E−12 

7.72E−13 3.86E−12 7.72E−12 

7.74E−13 3.87E−12 7.74E−12 

7.75E−13 3.88E−12 7.75E−12 

7.77E−13 3.88E−12 7.77E−12 

7.78E−13 3.89E−12 7.78E−12 

7.78E−13 3.89E−12 7.78E−12 

7.79E−13 3.90E−12 7.79E−12 

7.80E−13 3.90E−12 7.80E−12 

7.81E−13 3.90E−12 7.81E−12 

7.81E−13 3.91E−12 7.81E−12 

7.81E−13 3.91E−12 7.81E−12 

7.82E−13 3.91E−12 7.82E−12 

7.82E−13 3.91E−12 7.82E−12 

7.82E−13 3.91E−12 7.82E−12 

7.83E−13 3.91E−12 7.83E−12 

7.83E−13 3.91E−12 7.83E−12 

7.83E−13 3.92E−12 7.83E−12 
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Figure 3. Secondary velocity profile. 
 

Table 3. Table for temperature. 

Θ 

I II III 

0 0 0 

1.10E−51 1.10E−51 1.10E−51 

2.13E−12 1.06E−11 2.13E−11 

8.75E−12 4.37E−11 8.75E−11 

2.03E−11 1.01E−10 2.03E−10 

3.61E−11 1.81E−10 3.61E−10 

5.54E− −10 

7.69E−11 3.85E−10 7.69E−10 

9.98E−1 98E−10 

1.23E−10 6.1 10 1.23E−09 

1.46 10 7.3 10 1.4 09 

1.69 10 8.44 10 1.6 09 

11 2.77E−10 5.54E

1 4.99E−10 9.

6E−

E− 2E− 6E−

E− E− 9E−

1.90E−10 9.51E−10 1.90E−09 

2.10E−10 1.05E−09 2.10E−09 

2.29E−10 1.14E−09 2.29E−09 

2.46E−10 1.23E−09 2.46E−09 

2.62E−10 1.31E−09 2.62E−09 

2.76E−10 1.38E−09 2.76E−09 

2.89E−10 1.44E−09 2.89E−09 

3.00E−10 1.50E−09 3.00E−09 

nued  

3.10E−10 1.55E−09 3.10E−09 

3.19E−10 1.59E−09 3.19E−09 

3.27E−10 1.63E−09 3.27E−09 

3.34E−10 1.67E−09 3.34E−09 

3.40E−10 1.70E−09 3.40E−09 

3.45E−10 1.73E−09 3.45E−09 

3.50E−10 1.75E−09 3.50E−09 

3.54E−10 1.77E−09 3.54E−09 

3.58E−10 1.79E−09 3.58E−09 

3.61E−10 1.80E−09 3.61E−09 

3.63E−10 1.82E−09 3.63E−09 

3.68E−10 1.84E−09 3.68E−09 

3.73E−10 1.87E−09 3.73E−09 

3.78E−10 1.89E−09 3.78E−09 

3.66E−10 1.83E−09 3.66E−09 

3.70E−10 1.85E−09 3.70E−09 

3.71E−10 1.86E−09 3.71E−09 

3.72E−10 1.86E−09 3.72E−09 

3.74E−10 1.87E−09 3.74E−09 

3.75E−10 1.88E−09 3.75E−09 

3.76E−10 1.88E−09 3.76E−09 

3.77E−10 1.88E−09 3.77E−09 

3.77E−10 1.89E−09 3.77E−09 

3.78E−10 1.89E−09 3.78E−09 

3.78E−10 1.89E−09 3.78E−09 

3.79E−10 1.89E−09 3.79E−09 

3.79E−10 1.89E−09 3.79E−09 

3.79E−10 1.90E−09 3.79E−09 

3.79E−10 1.90E−09 3.79E−09 

3.79E−10 1.90E−09 3.79E−09 

3.80E−10 1.90E−09 3.80E−09 

3.80E−10 1.90E−09 3.80E−09 

3.80E−10 1.90E−09 3.80E−09 

3.80E−10 1.90E−09 3.80E−09 

3.80E−10 1.90E−09 3.80E−09 

3.80E−10 1.90E−09 3.80E−09 
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Figure 4. Temperature distribution. 
 
from the plate temperature profiles begin to increase 
uniformly with increase in joules parameter before they 
resume constant distribution very far away from the 
plate.  

5. Discussion of the Results  

An increase in the Joules parameter R increases the s
ondary velocity and temperature profiles uniformly
some distance from the plate, but as the distance tends far 
away from the plate the curves exhibit constant vel
and temperature profile distributions as shown in
curves above. While in the case of primary velocity pro-
files, the velocity increases rapidly with an increase in 
Joule param d ex
onstant pr

 of the effects of various Joule parameters on the
tion on unsteady 

w past an infinite

e fluid which refers to cooling of the 

ES 

al Jou al for Engi-
neering Science, Vol. 24, No. 7, 2007, pp. 1183-1193. 

[4] I. C. Cooker a fluence of Viscous 
Dissipation an y MHD Free-Con-

from the plate to th
plate by free convection currents. 

We found that an increase in Joule parameter number 
leads to an increase in velocity and temperature is uni-
formly distributed near the plate, but away from the plate, 
the velocity and temperature profiles remain constantly 
distributed. This reveals that the overall heat transfer in 
MHD free convective fluid flow depends on the strength 
of d decre Joule heating an ases with an increase in Joule 
heating parameter and that the lowest average tempera-
ture in the flow field is obtained for 0.R   

REFERENC
[1] M. Faraday, “Electricity Researches in Electricity,” 1st 

Series Philosophical Transactions of the Royal Society, 
1831, pp. 125-162.  

[2] L. Calvert and C. Santos, “Research Article on the Fun-
damental Principle of MHD,” Applied Mathematics and 
Computation, Vol. 108, 2002, pp. 11-21. 

[3] G. S. Ramulu and S. K. Ghosh, “Effect of Hall Current on 
MHD Flow and Heat Transfer a Long a Porous Flat Plate 
with Mass Transfer,” Internation rn

nd O. Mubo-Pepple, “In
d Radiation on Unstead

ec-
 after 

13, 2003, pp. 2305-2311.  

vection Flow past an Infinite Heated Vertical Plate in a 
Porous Medium with Time Independent Suction,” Inter-
national Journal of Heat and Mass Transfer, Vol. 46, No. 

doi:10.1016/S0017-9310(02)00544-6 

[5] J. Jordan, “Network Simulation Method to Radiation and 
Viscous Dissipation Effect on MHD Unsteady Free Con-
vection over Vertical Porous Plate,” Applied Mathematics 
Modeling, Vol. 31, No. 9, 2007, pp. 2019-2033. 
doi:10.1016/j.apm.2006.08.004 

ocity 
 the 

[6] M. E. Abo-Eldahab and A. M. El Aziz, “Viscous Dissipa-
tion and Joule Heating Effects on MHD Free Convection 
from a Vertical Plate with Power-Law Variation in Sur-
face Temperature in the Presence of Hall and Ion-Slip 
Currents,” Applied Mathematical Modeling, Vol. 29, No. 
6, 2005, pp. 579-595. doi:10.1016/j.apm.2004.10.005 

[7] M. Kinyanjui and N. Chaturvedi, “MH

eter is very close to the plate an
ofiles distribution far away from the plate as

hibits 
 

 

c
shown in Figure 2. 

6. Conclusions 

Analysis
D Stokes Problem 

for a Vertical Infinite Plate in a Dissipative Rotating Fluid 
with a Hall Current,” Energy Conversion and Manage-
ment, Vol. 39, No. 5-6, 1998, pp. 541-548. 
doi:10.1016/S0196-8904(96)00107-0 

[8] G. C. Duwahiri and D. P. Das, “Viscous and Joule Heat-

velocities and temperature distribu
convection incompressible fluid flo

free 
 

vertical porous flat plate has been carried out. In all the 
cases considered, the velocity was resolved into two 
components and temperature in one component, our 
work was restricted to the laminar boundary layer. 

The results for 0Gr   when the temperature of the 
plate is greater than that of the fluid in the free stream 
region, which implies that the heat will be transferred 

ing Effect on Forced Convection Flow of Ionized Gases 
along a Plane Wall with Periodic Suction and Heat Source, 
Model,” Simulation and Control B, Vol. 27, No. 2, 2005, 
pp. 47-55. 

 

http://dx.doi.org/10.1016/S0017-9310(02)00544-6
http://dx.doi.org/10.1016/S0017-9310(02)00544-6
http://dx.doi.org/10.1016/j.apm.2006.08.004
http://dx.doi.org/10.1016/j.apm.2006.08.004

	1.1.1. Mass Transfer 
	1.1.2. Heat Transfer
	1.1.3. Free Convection 
	1.1.4. Joule Heating
	Method of Solution

