
Applied Mathematics, 2013, 4, 797-802
http://dx.doi.org/10.4236/am.2013.45109 Published Online May 2013 (http://www.scirp.org/journal/am)

Parallelizing a Code for Counting and Computing
Eigenvalues of Complex Tridiagonal Matrices

and Roots of Complex Polynomials

Vassilis Geroyannis1, Florendia Valvi2
1Department of Physics, University of Patras, Patras, Greece

2Department of Mathematics, University of Patras, Patras, Greece
Email: vgeroyan@upatras.gr, fvalvi@upatras.gr

Received March 3, 2013; revised April 3, 2013; accepted April 11, 2013

Copyright © 2013 Vassilis Geroyannis, Florendia Valvi. This is an open access article distributed under the Creative Commons At-
tribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is prop-
erly cited.

ABSTRACT

A code developed recently by the authors, for counting and computing the eigenvalues of a complex tridiagonal matrix,
as well as the roots of a complex polynomial, which lie in a given region of the complex plane, is modified to run in
parallel on multi-core machines. A basic characteristic of this code (eventually pointing to its parallelization) is that it
can proceed with: 1) partitioning the given region into an appropriate number of subregions; 2) counting eigenvalues in
each subregion; and 3) computing (already counted) eigenvalues in each subregion. Consequently, theoretically speak-
ing, the whole code in itself parallelizes ideally. We carry out several numerical experiments with random complex
tridiagonal matrices, and random complex polynomials as well, in order to study the behaviour of the parallel code, es-
pecially the degree of declination from theoretical expectations.

Keywords: Complex Polynomial; Complex Tridiagonal Matrix; Eigenvalues; Numerical Methods; OpenMP; Parallel

Code; Parallel Programming

1. Brief Description of the Method

A code for “counting and computing the eigenvalues of a
complex tridiagonal matrix, as well as the roots of a
complex polynomial, lying in a given region of the com-
plex plane” (CCE) has been developed by the authors in
[1]. For convenience, we use here the symbols and ab-
breviations adopted in [1].

The motivation for studying this problem arises in
several issues of physics (e.g. quantum field theories,
oscillating neutron stars, gravitational waves, modern
cosmological theories).

Given a complex tridiagonal matrix A of order n with
characteristic polynomial  p  ([1], Equations (1), (2)),
and a compact region with closure    pre-
scribed by the simple closed contour , C  C , the
“argument principle” (see e.g. [2], Chapter 10, Section
10.3) implies that the number N of the roots lying in ,
counted with their multiplicities, is given by (cf. [1],
Equation (3))



 
 

1
d ,

2πi

p
N

p







 C (1)

where it is assumed that is followed in the positive
direction and

C

 p  has no roots on . Evaluating the
contour integral (1) is equivalent to solving the complex
IVP ([1], Equation (4))

C

 
 

          s s s re s im s re s im

d
,

d

, ,

pf

p

f f f f f if


 







    

 (2)

along . We assume for simplicity that is a rectan-
gle with its “perimeter” defined by five vertices (the
first vertex coincides with the last one, since this contour
is closed; cf. [1], Equation (3)),

C 
C

     
   
, , ,

, , ;

x y x x y x x y y

x y y x y

      

  

C
 (3)

thus

 
   

s e

s re s im

, and,

without loss of generality, 0, 0.

x y x iy

f f

    

 
 (4)

 and C can be symbolized as

Copyright © 2013 SciRes. AM

V. GEROYANNIS, F. VALVI 798

 , , , , , , , .x y x y x y x y      C (5)

To solve the complex IVP defined by Equations (2)
and (4), and thus find , N

 e=
2πi

f
N ,


 (6)

we use the Fortran package dcrkf54.f95: a Runge-Kutta-
Fehlberg code of fourth and fifth order modified for the
purpose of solving complex IVPs, which are allowed to
have high complexity in the definition of their ODEs,
along contours prescribed as continuous chains of straight-
line segments; interested readers can find full details on
dcrkf54.f95 in [3]. This package contains the subroutine
DCRKF54, used in this study with KIND = 10, i.e. with
high precision, and with input parameters as given in [1]
(Section 3.1).

To compute the roots of  p  in , we use the
Newton-Raphson (NR) method in two versions: a dou-
ble-precision NR code used as root-localizer, fed by
random guesses lying in ; and a NR code modified to
work in the precision of 256 digits with the “Fortran-90
Multiprecision System” (MPFUN90) written by D. H.
Bailey (Refs. [4,5] and references therein) used as a
root-polishing code, fed by the approximate values of the
first NR code. Since the number N of the roots in is
known, we compute these roots one by one, keeping each
time the root which does not coincide with any previous
one. If, however, NR signals that









p  converges to
zero, meaning that the current estimate  is probably a
multiple root, then counting the roots within an elemen-
tary square  centered at  reveals the multiplicity
m of this root. Numerical experiments show that using
random guesses appears to be time-saving as long as

; otherwise, we can partition into 10N    




sub-rectangles ij , , , and
then apply our method to each sub-rectangle . As in
[1] (Section 3.3), we choose for simplicity ; then,
an appropriate choice of the integer can readily
yield . All sub-rectangles are defined with
base(s)

 1, 2, ,i   1,j 



2, ,
ij



10ij N
b  x  and height(s) h y   . The start

point  ,i j x y of the sub-rectangle is then given by ij
   1 , 1i j .x x i b y y j h        (7)

Consequently, the sub-rectangle and its perimeter
 are written as

ij
ijC

, , , , , , , .ij i j ij i jx y b h x y b h    C (8)

As discussed in [1] (Sections 3.4, 4), instead of the
elements of a tridiagonal matrix, CCE can readily accept
the coefficients of a complex polynomial, eventually of
very high degree, with several roots of high multiplicity,
as well as with closely spaced roots.

2. Parallelizing the Code

2.1. Theoretical Expectations

The main program of the code, so-called CCEDRIVER,
examines if partitioning the given rectangle is neces-
sary and sets accordingly the logical variable PARTI-
TION. In this case, CCEDRIVER proceeds with parti-
tioning by calling an appropriate subroutine, so-
called PARTITIONING. Furthermore, COUNTING is
the subroutine which calculates by Equations (7) and (8)
the perimeter ij of a sub-rectangle ij , calls repeat-
edly DCRKF54 to integrate along ij , and thus com-
putes the number ij of the roots lying in ij (cf.
Equation (6)); CNTALL is its driving subroutine which
repeats the counting of the roots for all sub-rectangles.
Next, ROOTFINDING is the subroutine which calls for a
sub-rectangle ij the code that implements the coop-
eration of the double-precision and the multiple-precision
NRs (so-called NR2; [1], Section 3.3), and thus computes
the ij roots lying in ij ; RTSALL is its driving
subroutine which repeats rootfinding for all sub-rec-
tangles.





C




C

N 

N

Algorithmically, the composed procedure has the fol-
lowing form.

PROGRAM CCEDRIVER
...
LOGICAL :: PARTITION
...
IF (PARTITION) THEN

CALL PARTITIONING(...)
CALL CNTALL(...)
CALL RTSALL(...)

ELSE
CALL COUNTING(...)
CALL ROOTFINDING(...)

END IF
...
END PROGRAM CCEDRIVER
:::
SUBROUTINE CNTALL(...)
...
DO I = 1, NMR

DO J = 1, NMR
CALL COUNTING(...)

END DO
END DO
...
END SUBROUTINE CNTALL
:::
SUBROUTINE RTSALL(...)
...
DO I = 1, NMR

DO J = 1, NMR
CALL ROOTFINDING(...)

Copyright © 2013 SciRes. AM

V. GEROYANNIS, F. VALVI 799

END DO
END DO
...
END SUBROUTINE RTSALL
:::

where , three colons indicate omitted code
outside a program unit, and three dots indicate omitted
code inside a program unit.

NMR 

Apparently, CCEDRIVER proceeds first with the
counting of the roots by calling CNTALL or COUNT-
ING (dependent on the value assigned to PARTITION)
and second with the rootfinding by calling RTSALL or
ROOTFINDING. Consequently, the execution inside
CCEDRIVER proceeds in serial. This has not to be the
case, however, inside CNTALL and RTSALL. Since
counting the roots and rootfinding are processes repeated
independently for each sub-rectangle ij , the corre-
sponding subroutines can run in parallel on multi-core
machines, with each available thread processing a part of
the sub-rectangles. 2

Thus, theoretically, it is expected that the code can be
efficiently parallelized inside the subroutines CNTALL
and RTSALL with respect to the sub-rectangles to
be processed. Such theoretical expectations are carefully
tested here by carrying out numerical experiments with
random complex tridiagonal matrices and high-degree
polynomials as well.

2

2.2. OpenMP Parallelization

The Open Multi-Processing (OpenMP; http//openmp.org/)
is an Application Program Interface (API), jointly de-
fined by a group of major computer hardware and soft-
ware vendors, supporting shared-memory parallel pro-
gramming in C/C++ and Fortran, for platforms ranging
from desktops to supercomputers. Several compilers
from various vendors or open source communities im-
plement the OpenMP API. Among them, the GNU Com-
piler Collection (GCC; http://gcc.gnu.org/) includes a
Fortran 95 compiler, so-called “gfortran” (http://gcc.gnu.
org/fortran/), licensed under the GNU General Public
License (GPL; http://www.gnu.org/licenses/gpl.html). The
official manual of gfortran can be found at http://gcc.
gnu.org/onlinedocs/gcc-4.7.0/gfortran.pdf. The GCC 4.7.x
releases, including corresponding gfortran 4.7.x releases,
support the OpenMP API Version 3.1. The official man-
ual of this version can be found at http://www.openmp.
org/mp-documents/OpenMP3.1.pdf. This OpenMP ver-
sion is used here by gfortran.

To enable the processing of the OpenMP directive
sentinel !$OMP, gfortran is invoked with the “-fopenmp”
option. If so, then all lines beginning with the senti-
nels !$OMP and !$ are processed by gfortran.

To parallelize the subroutines CNTALL and RTSALL,

we apply to them several OpenMP directives. Concern-
ing CNTALL, for instance, we write the code

SUBROUTINE CNTALL(...)
...

!$OMP PARALLEL DEFAULT(...) PRIVATE(...) &
!$OMP& FIRSTPRIVATE(...) REDUCTION(...)
!$...

...
!$OMP DO SCHEDULE(...)

DO I = 1, NMR
!$...

...
DO J = 1, NMR

!$...
...

CALL COUNTING(...)
!$...

...
END DO

!$...
...
END DO

!$OMP END DO
!$OMP END PARALLEL

...
END SUBROUTINE CNTALL
The sentinel !$ followed by three dots, !$..., denotes

code (omitted here) to be compiled only when OpenMP
is invoked. The PARALLEL and END PARALLEL di-
rectives define a parallel construct. The structured block
of code enclosed in a parallel construct is executed in
parallel by the machine’s available threads. The code
placed directly in a parallel construct is its “lexical ex-
tend”, while, in turn, the lexical extend plus all the code
called by it is the “dynamic extend” of the parallel con-
struct; for instance, COUNTING and all code called by it
lie in the dynamic extend of the parallel construct shown
above. Several data-sharing attribute clauses can be linked
to a PARALLEL directive, like DEFAULT, PRIVATE,
FIRSTPRIVATE, REDUCTION, etc. Three parenthe-
sized dots, next to their names, denote clauses linked to
such directives; for instance, we mostly declare DE-
FAULT(SHARED), indicating that all variables in a par-
allel construct are to be shared among the available
threads, except, eventually, for variables (or common
blocks) named explicitly in a PRIVATE directive.

The DO and END DO directives define a loop work-
sharing construct, which distributes the loop computa-
tions over the available threads; so, each thread computes
part of the required iterations. Several clauses are per-
mitted to be linked to the DO directive, like SCHEDULE,
PRIVATE, etc. Three parenthesized dots next to their
names denote clauses linked to such directives. For in-
stance, we write SCHEDULE (STATIC[,CHUNK]), in-

Copyright © 2013 SciRes. AM

V. GEROYANNIS, F. VALVI 800

dicating that all iterations are to be divided into pieces of
size CHUNK and then to be statically assigned to the
available threads (if CHUNK is not specified, then the
iterations are evenly divided contiguously among the
threads). On the other hand, the mostly used SCHED-
ULE(DYNAMIC[,CHUNK]) indicates that all iterations
are to be divided into pieces of size CHUNK (if not pre-
sent, then by default CHUNK = 1), and then to be dy-
namically assigned to the available threads, so that when
a thread finishes one chunk, it is dynamically assigned
another.

To parallelize the subroutine RTSALL, we follow a
similar procedure. Parallel programming details are not
analysed in this paper. We have mentioned only OpenMP
directives that have been used in our code; certain sig-
nificant issues, mainly concerning data environment,
should be carefully taken into account by interested
readers.

3. The Computations

3.1. Computational Environment and Software
Used

Our computer comprises an Intel® CoreTM i7-950 proc-
essor with four physical cores. This processor possesses
the Intel Hyper-Threading Technology, which delivers
two processing threads per physical core. gfortran has
been installed in this computer by the TDM-GCC “Com-
piler Suite for Windows” (http://tdm-gcc.tdragon.net/),
which is free software distributed under the terms of the
GPL. To calculate values of the Fortran intrinsic
function SQRT, our computer needs in
double precision (i.e. KIND = 8) and almost the same
time in high precision (i.e. KIND = 10), and
in the precision of 256 digits with the MPFUN90 System
(available in http://crd-legacy.lbl.gov/~dhbailey/mpdist;
licensed under the Berkeley Software Distribution Li-
cense found in that site).

710
12 10 s

4 1 20 s

In the numerical experiments of this study, we use an
efficient algorithm for computing the coefficients of the
characteristic polynomial of a general square matrix [6],
abbreviated to CPC as in [1] (Section 3). Thus, in all
computations involving polynomials, CCE makes use of
the time-saving Horner’s scheme. In [1] (Section 3.3), we
have compared the eigenvalues computed by CCE with
respective results of an efficient and very fast code, ab-
breviated to CXR ([1], Section 3), solving general com-
plex polynomial equations ([7]; this Fortran code, named
cmplx_roots_sg.f90, can be found in http://www.astrouw.
edu.pl/~jskowron/cmplx_roots_sg/; it is licensed under
the GNU Lesser GPL, Version 2 or later, or under the
Apache License, Version 2; details on these licences are
given in the documents “LICENSE” and “NOTICE”,
found in the same site). The CPC algorithm, as well as

the subroutine CMPLX_ROOTS_GEN with its subsidi-
aries CMPLX_LAGUERRE, CMPLX_LAGUERRE2
NEWTON, and SOLVE_Quadratic_EQ (these four con-
tained in cmplx_roots_sg.f90), have been modified so
that to work in MPFUN90’s multiprecision.

The task of the present study is to compare execution
times when CCE runs in serial and in parallel (the accu-
racy of CCE has been tested and verified in [1]). This
task is accomplished by performing several numerical
experiments with random complex tridiagonal matrices,
and random complex high-degree polynomials as well.

3.2. Numerical Experiments and Comparisons

First, we perform numerical experiments with random
complex tridiagonal matrices, constructed in the MPFUN
90’s multiprecision environment, as described in [1]
(Section 3.3). We study tridiagonal matrices of order n =
128, 256, 400, and 512. In this work, the region is
assumed to be the “primary rectangle” ([1], Section
3.3),




 

12

, containing all n roots, eventually deter-
mined by the numerical results of the CXR code. In all
cases examined, the primary rectangle is partitioned
into sub-rectangles.


2 28 16,384 

Table 1 shows execution times for CPC, CXR, CN-
TALL-Serial, RTSALL-Serial, CCE-Serial, CNTALL-
Parallel(S), RTSALL-Parallel(S), CCE-Parallel(S), CN-
TALL-Parallel(D), RTSALL-Parallel(D), and CCE-Par-
allel(D). In these names, the label “Serial” denotes exe-
cution times when CCE runs in serial; the label “Paral-
lel(S)” denotes execution times when CCE runs in paral-
lel under the loop-construct directive SCHEDULE(STA-
TIC); and the label “Parallel(D)” denotes execution times
when CCE runs in parallel under the loop-construct di-
rective SCHEDULE(DYNAMIC).

To compare results of Table 1, called “present”, with
corresponding results of [1] (Table 2), called in turn
“previous”, we link: 1) the “present” group labeled “CN-
TALL-Serial” with the “previous” column labeled “DC-
RKF54()”, and 2) the “present” group labeled “RT-
SALL-Serial” with the “previous” column labeled “NR2
()”. We remark that the “present” times spent on count-
ing the roots are greater than the “previous” ones for the
cases n = 128, 256, and 400, since now  is partitioned
into 16,384 sub-rectangles; while, for instance, in the
“previous” case n = 128,  is partitioned into just 144
sub-rectangles.

On the other hand, the “present” time spent on count-
ing the roots for the case n = 512 becomes less than the
“previous” one. Apparently, counting the roots on much
more sub-rectangles turns to be time-saving for large n,
since the perimeters of the 16,384 sub-rectangles, along
which the integral (1) is now computed, decrease dra-
matically in length; accordingly, the “present” times

Copyright © 2013 SciRes. AM

V. GEROYANNIS, F. VALVI 801

Table 1. Execution times for the codes appearing in the left
column, and corresponding time ratios, in numerical ex-
periments with random complex tridiagonal matrices con-
structed as in [1] (Section 3.3); n is the order of the tridi-
agonal matrix. Times less than 1 s are rounded to two
decimal digits; times next to 1 s and less than 10 s are
rounded to one decimal digit; times next to 10 s and less
than 100 s are rounded to the nearest integer; times next to
100 s are rounded to the nearest zero or five.

n 128 256 400 512

CPC 2.4 16 59 120

CXR 13 65 155 350

CNTALL-Serial 6.2 17 24 28

RTSALL-Serial 3.9 16 39 70

CCE-Serial 10 33 63 98

CNTALL-Parallel(S) 3.4 4.4 5.2 6.0

RTSALL-Parallel(S) 0.85 3.4 8.5 14

CCE-Parallel(S) 4.3 7.8 14 20

CNTALL-Parallel(D) 2.9 4.4 5.1 6.0

RTSALL-Parallel(D) 0.85 3.4 8.2 14

CCE-Parallel(D) 3.8 7.8 13 20

CXR/CCE-Serial 1.3 2.0 2.5 3.6

CXR/CCE-Parallel(D) 3.4 8.3 12 18

CCE-Serial/CCE-Parallel(D) 2.6 4.2 4.8 4.9

CCE-Parallel(S)/CCE-Parallel(D) 1.1 1.0 1.1 1.0

spent on such computations become less than the “pre-
vious” ones. Furthermore, working with much more sub-
rectangles turns to be in favour of computing the roots,
since, now, each sub-rectangle contains a significantly
less number of roots to be computed, and feeding the
Newton-Raphson code with random guesses ([1], Section
3.2) is proved to be highly efficient. Thus all “present”
times spent on computing the roots are less than the
“previous” ones. Likewise, the “present” total execution
times become less than the “previous” ones for the cases

. 400n 
Next, the time ratio CCE-Serial/CCE-Parallel(D) seems

to be significant for checking the degree that theoretical
expectations are fulfilled in the implementation of
OpenMP parallelization on multi-core machines. In par-
ticular, since this time ratio takes values larger than 4 and
up to ~5 (with the exception of the case n = 128), it be-
comes apparent that there is an almost equal sharing of
the computational volume among the 4 cores available in
the processor of our computer. Apparently, the additional
gain is due to the hyper-threading technology possessed
by this processor.

Table 2. Execution times for the codes appearing in the left
column, and corresponding time ratios, in numerical ex-
periments with random complex polynomials constructed
under prescriptions similar to those of [1] (Section 3.3); n is
the degree of the polynomial. Times less than 1 s are
rounded to two decimal digits; times next to 1 s and less
than 10 s are rounded to one decimal digit; times next to 10
s and less than 100 s are rounded to the nearest integer;
times next to 100 s are rounded to the nearest zero or five.

n 400 512 768 1024 1512

CXR 147 260 715 1300 3590

CNTALL-Serial 11 13 20 25 86

RTSALL-Serial 35 57 130 225 555

CCE-Serial 46 70 150 250 640

CNTALL-Parallel(S) 3.4 4.0 4.9 5.7 14

RTSALL-Parallel(S) 9.5 17 35 57 150

CCE-Parallel(S) 13 21 40 63 165

CNTALL-Parallel(D) 3.2 3.6 4.5 5.4 11

RTSALL-Parallel(D) 7.5 12 29 54 115

CCE-Parallel(D) 11 16 34 59 125

CXR/CCE-Serial 3.2 3.7 4.8 5.2 5.6

CXR/CCE-Parallel(D) 13 16 21 22 29

CCE-Serial/CCE-Parallel(D) 4.2 4.4 4.4 4.2 5.1

CCE-Parallel(S)/CCE-Parallel(D) 1.2 1.3 1.2 1.1 1.3

Comparing execution times for Parallel(S) and Paral-

lel(D) processing, we find that the corresponding values
deviate slightly each other, i.e. the corresponding time
ratio deviates slightly from unity. It is worth remarking,
however, that in all cases examined the (even small) gain
is on the side of Parallel(D); in simple words, it seems
better to leave the machine to decide how to share the
computational work.

Second, we accomplish numerical experiments with
random complex polynomials of degree n = 400, 512,
768, 1024, and 1512. They are constructed in the
MPFUN90’s multiprecision environment as described in
[1], with the clarification that the n successively derived
random complex numbers 1 are assigned to the
corresponding polynomial coefficients of the degree-n
polynomial

, , na a

 np z , z ; while, as usual, the  1n  -
th coefficient is assigned the value .  1 1,0na 

Concerning the results of Table 2, we arrive at con-
clusions similar to those above. We emphasize on the
fact that CCE running in parallel is proved ~13 times
faster than the CXR code in the case of a degree—400
complex polynomial, and increases gradually up to ~30
times faster than CXR in the case of a degree—1512

Copyright © 2013 SciRes. AM

V. GEROYANNIS, F. VALVI

Copyright © 2013 SciRes. AM

802

complex polynomial.
A Fortran package implementing the parallelized CCE

code, called parcce.f95, is available on request to the first
author (vgeroyan@upatras.gr); it is licensed under the
GNU General Public License, Version 3 (GPLv3, http://
www.gnu.org/licenses/gpl-3.0.html). Note that the pack-
age parcce.f95 does not include the MPFUN90 System;
interested readers can download MPFUN90 from the site
given in Section 3.1. Note also that the CXR code, which
has been used in the numerical experiments of this study
for the purpose of comparing execution times, is not in-
cluded in the package parcce.f95; readers interested in
using CXR can download this code from the site given in
Section 3.1.

4. Conclusion

In this study, we have pointed out that the CCE code
presented in [1] can be parallelized. Our numerical ex-
periments have shown that, for all cases examined, the
parallelized CCE code took full advantage of the four-
core processor of our computer. It has been also verified
that there was an additional gain due to the hyper-
threading technology of this processor.

5. Acknowledgements

The authors acknowledge the use of: the Fortran-90 Mul-
tiprecision System (Refs. [4,5]); the algorithm for com-
puting the coefficients of the characteristic polynomials
of general square matrices (Ref. [6]), abbreviated to CPC
in both [1] and the present study; and the general com-
plex polynomial root solver (Ref. [7]), abbreviated to
CXR in both [1] and the present study.

REFERENCES
[1] F. N. Valvi and V. S. Geroyannis, “Counting and Com-

puting the Eigenvalues of a Complex Tridiagonal Matrix,
Lying in a Given Region of the Complex Plane,” Interna-
tional Journal of Modern Physics C, Vol. 24, No. 2, 2013,
Article ID: 1350008(1-10).
doi:10.1142/S0129183113500083

[2] W. W. Chen, “Introduction to Complex Analysis,” 2008.
http://rutherglen.science.mq.edu.au/wchen/lnicafolder/lni
ca.html

[3] V. S. Geroyannis and F. N. Valvi, “A Runge-Kutta-
Fehlberg Code for the Complex Plane: Comparing with
Similar Codes by Applying to Polytropic Models,” Inter-
national Journal of Modern Physics C, Vol. 23, No. 5,
2012, Article ID: 1250038(1-15).
doi:10.1142/S0129183112500386

[4] D. H. Bailey, “A Fortran 90-Based Multiprecision Sys-
tem,” ACM Transactions on Mathematical Software, Vol.
21, No. 4, 1995, pp. 379-387.
doi:10.1145/212066.212075

[5] D. H. Bailey, “A Fortran-90 Based Multiprecision Sys-
tem,” RNR Technical Report, RNR-94-013, 1995, pp. 1-
10.

[6] S. Rombouts and K. Heyde, “An Accurate and Efficient
Algorithm for the Computation of the Characteristic Poly-
nomial of a General Square Matrix,” Journal of Compu-
tational Physics, Vol. 140, No. 2, 1998, pp. 453-458.
doi:10.1006/jcph.1998.5909

[7] J. Skowron and A. Gould, “General Complex Polynomial
Root Solver and Its Further Optimization for Binary Mi-
crolenses,” arXiv:1203.1034v1 [astro-ph.EP], 2012, pp.
1-29.

http://dx.doi.org/10.1142/S0129183113500083
http://dx.doi.org/10.1142/S0129183112500386
http://dx.doi.org/10.1145/212066.212075
http://dx.doi.org/10.1006/jcph.1998.5909

