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ABSTRACT 

A code developed recently by the authors, for counting and computing the eigenvalues of a complex tridiagonal matrix, 
as well as the roots of a complex polynomial, which lie in a given region of the complex plane, is modified to run in 
parallel on multi-core machines. A basic characteristic of this code (eventually pointing to its parallelization) is that it 
can proceed with: 1) partitioning the given region into an appropriate number of subregions; 2) counting eigenvalues in 
each subregion; and 3) computing (already counted) eigenvalues in each subregion. Consequently, theoretically speak- 
ing, the whole code in itself parallelizes ideally. We carry out several numerical experiments with random complex 
tridiagonal matrices, and random complex polynomials as well, in order to study the behaviour of the parallel code, es- 
pecially the degree of declination from theoretical expectations. 
 
Keywords: Complex Polynomial; Complex Tridiagonal Matrix; Eigenvalues; Numerical Methods; OpenMP; Parallel 
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1. Brief Description of the Method 

A code for “counting and computing the eigenvalues of a 
complex tridiagonal matrix, as well as the roots of a 
complex polynomial, lying in a given region of the com- 
plex plane” (CCE) has been developed by the authors in 
[1]. For convenience, we use here the symbols and ab- 
breviations adopted in [1]. 

The motivation for studying this problem arises in 
several issues of physics (e.g. quantum field theories, 
oscillating neutron stars, gravitational waves, modern 
cosmological theories). 

Given a complex tridiagonal matrix A of order n with 
characteristic polynomial  p   ([1], Equations (1), (2)), 
and a compact region  with closure     pre- 
scribed by the simple closed contour , C  C , the 
“argument principle” (see e.g. [2], Chapter 10, Section 
10.3) implies that the number N of the roots lying in , 
counted with their multiplicities, is given by (cf. [1], 
Equation (3))  
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where it is assumed that  is followed in the positive 
direction and 
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 p   has no roots on . Evaluating the 
contour integral (1) is equivalent to solving the complex 
IVP ([1], Equation (4))  
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along . We assume for simplicity that  is a rectan- 
gle with its “perimeter”  defined by five vertices (the 
first vertex coincides with the last one, since this contour 
is closed; cf. [1], Equation (3)),  
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  and C  can be symbolized as  
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 , , , , , , , .x y x y x y x y      C        (5) 

To solve the complex IVP defined by Equations (2) 
and (4), and thus find ,  N

 e=
2πi

f
N ,


                  (6) 

we use the Fortran package dcrkf54.f95: a Runge-Kutta- 
Fehlberg code of fourth and fifth order modified for the 
purpose of solving complex IVPs, which are allowed to 
have high complexity in the definition of their ODEs, 
along contours prescribed as continuous chains of straight- 
line segments; interested readers can find full details on 
dcrkf54.f95 in [3]. This package contains the subroutine 
DCRKF54, used in this study with KIND = 10, i.e. with 
high precision, and with input parameters as given in [1] 
(Section 3.1). 

To compute the roots of  p   in , we use the 
Newton-Raphson (NR) method in two versions: a dou- 
ble-precision NR code used as root-localizer, fed by 
random guesses lying in ; and a NR code modified to 
work in the precision of 256 digits with the “Fortran-90 
Multiprecision System” (MPFUN90) written by D. H. 
Bailey (Refs. [4,5] and references therein) used as a 
root-polishing code, fed by the approximate values of the 
first NR code. Since the number N of the roots in  is 
known, we compute these roots one by one, keeping each 
time the root which does not coincide with any previous 
one. If, however, NR signals that 









p   converges to 
zero, meaning that the current estimate   is probably a 
multiple root, then counting the roots within an elemen- 
tary square   centered at   reveals the multiplicity 
m  of this root. Numerical experiments show that using 
random guesses appears to be time-saving as long as 

; otherwise, we can partition  into 10N    




 
sub-rectangles ij , , , and 
then apply our method to each sub-rectangle . As in 
[1] (Section 3.3), we choose for simplicity ; then, 
an appropriate choice of the integer  can readily 
yield . All sub-rectangles are defined with 
base(s) 

 1, 2, ,i   1,j 
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point  ,i j x y  of the sub-rectangle  is then given by  ij
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Consequently, the sub-rectangle  and its perimeter 
 are written as  

ij
ijC

, , , , , , , .ij i j ij i jx y b h x y b h    C       (8) 

As discussed in [1] (Sections 3.4, 4), instead of the 
elements of a tridiagonal matrix, CCE can readily accept 
the coefficients of a complex polynomial, eventually of 
very high degree, with several roots of high multiplicity, 
as well as with closely spaced roots. 

2. Parallelizing the Code 

2.1. Theoretical Expectations 

The main program of the code, so-called CCEDRIVER, 
examines if partitioning the given rectangle  is neces- 
sary and sets accordingly the logical variable PARTI- 
TION. In this case, CCEDRIVER proceeds with parti- 
tioning  by calling an appropriate subroutine, so- 
called PARTITIONING. Furthermore, COUNTING is 
the subroutine which calculates by Equations (7) and (8) 
the perimeter ij  of a sub-rectangle ij , calls repeat- 
edly DCRKF54 to integrate along ij , and thus com- 
putes the number ij  of the roots lying in ij  (cf. 
Equation (6)); CNTALL is its driving subroutine which 
repeats the counting of the roots for all sub-rectangles. 
Next, ROOTFINDING is the subroutine which calls for a 
sub-rectangle ij  the code that implements the coop- 
eration of the double-precision and the multiple-precision 
NRs (so-called NR2; [1], Section 3.3), and thus computes 
the ij  roots lying in ij ; RTSALL is its driving 
subroutine which repeats rootfinding for all sub-rec- 
tangles. 





C




C

N 

N

Algorithmically, the composed procedure has the fol- 
lowing form.  

PROGRAM CCEDRIVER  
... 
LOGICAL :: PARTITION  
... 
IF (PARTITION) THEN  

CALL PARTITIONING(...)  
CALL CNTALL(...)  
CALL RTSALL(...)  

ELSE  
CALL COUNTING(...)  
CALL ROOTFINDING(...)  

END IF  
... 
END PROGRAM CCEDRIVER 
::: 
SUBROUTINE CNTALL(...)  
...  
DO I = 1, NMR  

DO J = 1, NMR  
CALL COUNTING(...)  

END DO  
END DO  
...  
END SUBROUTINE CNTALL  
:::  
SUBROUTINE RTSALL(...)  
... 
DO I = 1, NMR  

DO J = 1, NMR  
CALL ROOTFINDING(...)  
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END DO  
END DO  
...  
END SUBROUTINE RTSALL  
:::  

where , three colons indicate omitted code 
outside a program unit, and three dots indicate omitted 
code inside a program unit. 

NMR 

Apparently, CCEDRIVER proceeds first with the 
counting of the roots by calling CNTALL or COUNT- 
ING (dependent on the value assigned to PARTITION) 
and second with the rootfinding by calling RTSALL or 
ROOTFINDING. Consequently, the execution inside 
CCEDRIVER proceeds in serial. This has not to be the 
case, however, inside CNTALL and RTSALL. Since 
counting the roots and rootfinding are processes repeated 
independently for each sub-rectangle ij , the corre- 
sponding subroutines can run in parallel on multi-core 
machines, with each available thread processing a part of 
the  sub-rectangles. 2

Thus, theoretically, it is expected that the code can be 
efficiently parallelized inside the subroutines CNTALL 
and RTSALL with respect to the  sub-rectangles to 
be processed. Such theoretical expectations are carefully 
tested here by carrying out numerical experiments with 
random complex tridiagonal matrices and high-degree 
polynomials as well. 

2

2.2. OpenMP Parallelization 

The Open Multi-Processing (OpenMP; http//openmp.org/) 
is an Application Program Interface (API), jointly de- 
fined by a group of major computer hardware and soft- 
ware vendors, supporting shared-memory parallel pro- 
gramming in C/C++ and Fortran, for platforms ranging 
from desktops to supercomputers. Several compilers 
from various vendors or open source communities im- 
plement the OpenMP API. Among them, the GNU Com- 
piler Collection (GCC; http://gcc.gnu.org/) includes a 
Fortran 95 compiler, so-called “gfortran” (http://gcc.gnu. 
org/fortran/), licensed under the GNU General Public 
License (GPL; http://www.gnu.org/licenses/gpl.html). The 
official manual of gfortran can be found at http://gcc. 
gnu.org/onlinedocs/gcc-4.7.0/gfortran.pdf. The GCC 4.7.x 
releases, including corresponding gfortran 4.7.x releases, 
support the OpenMP API Version 3.1. The official man- 
ual of this version can be found at http://www.openmp. 
org/mp-documents/OpenMP3.1.pdf. This OpenMP ver- 
sion is used here by gfortran. 

To enable the processing of the OpenMP directive 
sentinel !$OMP, gfortran is invoked with the “-fopenmp” 
option. If so, then all lines beginning with the senti- 
nels !$OMP and !$ are processed by gfortran. 

To parallelize the subroutines CNTALL and RTSALL, 

we apply to them several OpenMP directives. Concern- 
ing CNTALL, for instance, we write the code   

SUBROUTINE CNTALL(...)  
... 

!$OMP PARALLEL DEFAULT(...) PRIVATE(...) & 
!$OMP& FIRSTPRIVATE(...) REDUCTION(...)  
!$...  

... 
!$OMP DO SCHEDULE(...)  

DO I = 1, NMR  
!$...  

...  
DO J = 1, NMR  

!$...  
...  

CALL COUNTING(...)  
!$...  

...  
END DO  

!$...  
...  
END DO  

!$OMP END DO 
!$OMP END PARALLEL  

...  
END SUBROUTINE CNTALL  
The sentinel !$ followed by three dots, !$..., denotes 

code (omitted here) to be compiled only when OpenMP 
is invoked. The PARALLEL and END PARALLEL di- 
rectives define a parallel construct. The structured block 
of code enclosed in a parallel construct is executed in 
parallel by the machine’s available threads. The code 
placed directly in a parallel construct is its “lexical ex- 
tend”, while, in turn, the lexical extend plus all the code 
called by it is the “dynamic extend” of the parallel con- 
struct; for instance, COUNTING and all code called by it 
lie in the dynamic extend of the parallel construct shown 
above. Several data-sharing attribute clauses can be linked 
to a PARALLEL directive, like DEFAULT, PRIVATE, 
FIRSTPRIVATE, REDUCTION, etc. Three parenthe- 
sized dots, next to their names, denote clauses linked to 
such directives; for instance, we mostly declare DE- 
FAULT(SHARED), indicating that all variables in a par- 
allel construct are to be shared among the available 
threads, except, eventually, for variables (or common 
blocks) named explicitly in a PRIVATE directive. 

The DO and END DO directives define a loop work- 
sharing construct, which distributes the loop computa- 
tions over the available threads; so, each thread computes 
part of the required iterations. Several clauses are per- 
mitted to be linked to the DO directive, like SCHEDULE, 
PRIVATE, etc. Three parenthesized dots next to their 
names denote clauses linked to such directives. For in- 
stance, we write SCHEDULE (STATIC[,CHUNK]), in- 
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dicating that all iterations are to be divided into pieces of 
size CHUNK and then to be statically assigned to the 
available threads (if CHUNK is not specified, then the 
iterations are evenly divided contiguously among the 
threads). On the other hand, the mostly used SCHED- 
ULE(DYNAMIC[,CHUNK]) indicates that all iterations 
are to be divided into pieces of size CHUNK (if not pre- 
sent, then by default CHUNK = 1), and then to be dy- 
namically assigned to the available threads, so that when 
a thread finishes one chunk, it is dynamically assigned 
another. 

To parallelize the subroutine RTSALL, we follow a 
similar procedure. Parallel programming details are not 
analysed in this paper. We have mentioned only OpenMP 
directives that have been used in our code; certain sig- 
nificant issues, mainly concerning data environment, 
should be carefully taken into account by interested 
readers. 

3. The Computations 

3.1. Computational Environment and Software 
Used 

Our computer comprises an Intel® CoreTM i7-950 proc- 
essor with four physical cores. This processor possesses 
the Intel Hyper-Threading Technology, which delivers 
two processing threads per physical core. gfortran has 
been installed in this computer by the TDM-GCC “Com- 
piler Suite for Windows” (http://tdm-gcc.tdragon.net/), 
which is free software distributed under the terms of the 
GPL. To calculate  values of the Fortran intrinsic 
function SQRT, our computer needs  in 
double precision (i.e. KIND = 8) and almost the same 
time in high precision (i.e. KIND = 10), and  
in the precision of 256 digits with the MPFUN90 System 
(available in http://crd-legacy.lbl.gov/~dhbailey/mpdist; 
licensed under the Berkeley Software Distribution Li- 
cense found in that site). 

710
12 10 s

4 1 20 s

In the numerical experiments of this study, we use an 
efficient algorithm for computing the coefficients of the 
characteristic polynomial of a general square matrix [6], 
abbreviated to CPC as in [1] (Section 3). Thus, in all 
computations involving polynomials, CCE makes use of 
the time-saving Horner’s scheme. In [1] (Section 3.3), we 
have compared the eigenvalues computed by CCE with 
respective results of an efficient and very fast code, ab- 
breviated to CXR ([1], Section 3), solving general com- 
plex polynomial equations ([7]; this Fortran code, named 
cmplx_roots_sg.f90, can be found in http://www.astrouw. 
edu.pl/~jskowron/cmplx_roots_sg/; it is licensed under 
the GNU Lesser GPL, Version 2 or later, or under the 
Apache License, Version 2; details on these licences are 
given in the documents “LICENSE” and “NOTICE”, 
found in the same site). The CPC algorithm, as well as 

the subroutine CMPLX_ROOTS_GEN with its subsidi- 
aries CMPLX_LAGUERRE, CMPLX_LAGUERRE2 
NEWTON, and SOLVE_Quadratic_EQ (these four con- 
tained in cmplx_roots_sg.f90), have been modified so 
that to work in MPFUN90’s multiprecision. 

The task of the present study is to compare execution 
times when CCE runs in serial and in parallel (the accu- 
racy of CCE has been tested and verified in [1]). This 
task is accomplished by performing several numerical 
experiments with random complex tridiagonal matrices, 
and random complex high-degree polynomials as well. 

3.2. Numerical Experiments and Comparisons 

First, we perform numerical experiments with random 
complex tridiagonal matrices, constructed in the MPFUN 
90’s multiprecision environment, as described in [1] 
(Section 3.3). We study tridiagonal matrices of order n = 
128, 256, 400, and 512. In this work, the region  is 
assumed to be the “primary rectangle”  ([1], Section 
3.3), 




 

12

, containing all n roots, eventually deter- 
mined by the numerical results of the CXR code. In all 
cases examined, the primary rectangle  is partitioned 
into  sub-rectangles. 


2 28 16,384 

Table 1 shows execution times for CPC, CXR, CN- 
TALL-Serial, RTSALL-Serial, CCE-Serial, CNTALL- 
Parallel(S), RTSALL-Parallel(S), CCE-Parallel(S), CN- 
TALL-Parallel(D), RTSALL-Parallel(D), and CCE-Par- 
allel(D). In these names, the label “Serial” denotes exe- 
cution times when CCE runs in serial; the label “Paral- 
lel(S)” denotes execution times when CCE runs in paral- 
lel under the loop-construct directive SCHEDULE(STA- 
TIC); and the label “Parallel(D)” denotes execution times 
when CCE runs in parallel under the loop-construct di- 
rective SCHEDULE(DYNAMIC). 

To compare results of Table 1, called “present”, with 
corresponding results of [1] (Table 2), called in turn 
“previous”, we link: 1) the “present” group labeled “CN- 
TALL-Serial” with the “previous” column labeled “DC- 
RKF54()”, and 2) the “present” group labeled “RT- 
SALL-Serial” with the “previous” column labeled “NR2 
()”. We remark that the “present” times spent on count- 
ing the roots are greater than the “previous” ones for the 
cases n = 128, 256, and 400, since now  is partitioned 
into 16,384 sub-rectangles; while, for instance, in the 
“previous” case n = 128,  is partitioned into just 144 
sub-rectangles. 

On the other hand, the “present” time spent on count- 
ing the roots for the case n = 512 becomes less than the 
“previous” one. Apparently, counting the roots on much 
more sub-rectangles turns to be time-saving for large n, 
since the perimeters of the 16,384 sub-rectangles, along 
which the integral (1) is now computed, decrease dra- 
matically in length; accordingly, the “present” times 
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Table 1. Execution times for the codes appearing in the left 
column, and corresponding time ratios, in numerical ex- 
periments with random complex tridiagonal matrices con- 
structed as in [1] (Section 3.3); n is the order of the tridi-
agonal matrix. Times less than 1 s are rounded to two 
decimal digits; times next to 1 s and less than 10 s are 
rounded to one decimal digit; times next to 10 s and less 
than 100 s are rounded to the nearest integer; times next to 
100 s are rounded to the nearest zero or five. 

n 128 256 400 512 

CPC 2.4 16 59 120 

CXR 13 65 155 350 

CNTALL-Serial 6.2 17 24 28 

RTSALL-Serial 3.9 16 39 70 

CCE-Serial 10 33 63 98 

CNTALL-Parallel(S) 3.4 4.4 5.2 6.0 

RTSALL-Parallel(S) 0.85 3.4 8.5 14 

CCE-Parallel(S) 4.3 7.8 14 20 

CNTALL-Parallel(D) 2.9 4.4 5.1 6.0 

RTSALL-Parallel(D) 0.85 3.4 8.2 14 

CCE-Parallel(D) 3.8 7.8 13 20 

CXR/CCE-Serial 1.3 2.0 2.5 3.6 

CXR/CCE-Parallel(D) 3.4 8.3 12 18 

CCE-Serial/CCE-Parallel(D) 2.6 4.2 4.8 4.9 

CCE-Parallel(S)/CCE-Parallel(D) 1.1 1.0 1.1 1.0 

 
spent on such computations become less than the “pre- 
vious” ones. Furthermore, working with much more sub- 
rectangles turns to be in favour of computing the roots, 
since, now, each sub-rectangle contains a significantly 
less number of roots to be computed, and feeding the 
Newton-Raphson code with random guesses ([1], Section 
3.2) is proved to be highly efficient. Thus all “present” 
times spent on computing the roots are less than the 
“previous” ones. Likewise, the “present” total execution 
times become less than the “previous” ones for the cases 

. 400n 
Next, the time ratio CCE-Serial/CCE-Parallel(D) seems 

to be significant for checking the degree that theoretical 
expectations are fulfilled in the implementation of 
OpenMP parallelization on multi-core machines. In par- 
ticular, since this time ratio takes values larger than 4 and 
up to ~5 (with the exception of the case n = 128), it be- 
comes apparent that there is an almost equal sharing of 
the computational volume among the 4 cores available in 
the processor of our computer. Apparently, the additional 
gain is due to the hyper-threading technology possessed 
by this processor. 

Table 2. Execution times for the codes appearing in the left 
column, and corresponding time ratios, in numerical ex- 
periments with random complex polynomials constructed 
under prescriptions similar to those of [1] (Section 3.3); n is 
the degree of the polynomial. Times less than 1 s are 
rounded to two decimal digits; times next to 1 s and less 
than 10 s are rounded to one decimal digit; times next to 10 
s and less than 100 s are rounded to the nearest integer; 
times next to 100 s are rounded to the nearest zero or five. 

n 400 512 768 1024 1512

CXR 147 260 715 1300 3590

CNTALL-Serial 11 13 20 25 86

RTSALL-Serial 35 57 130 225 555

CCE-Serial 46 70 150 250 640

CNTALL-Parallel(S) 3.4 4.0 4.9 5.7 14

RTSALL-Parallel(S) 9.5 17 35 57 150

CCE-Parallel(S) 13 21 40 63 165

CNTALL-Parallel(D) 3.2 3.6 4.5 5.4 11

RTSALL-Parallel(D) 7.5 12 29 54 115

CCE-Parallel(D) 11 16 34 59 125

CXR/CCE-Serial 3.2 3.7 4.8 5.2 5.6

CXR/CCE-Parallel(D) 13 16 21 22 29

CCE-Serial/CCE-Parallel(D) 4.2 4.4 4.4 4.2 5.1

CCE-Parallel(S)/CCE-Parallel(D) 1.2 1.3 1.2 1.1 1.3

 
Comparing execution times for Parallel(S) and Paral- 

lel(D) processing, we find that the corresponding values 
deviate slightly each other, i.e. the corresponding time 
ratio deviates slightly from unity. It is worth remarking, 
however, that in all cases examined the (even small) gain 
is on the side of Parallel(D); in simple words, it seems 
better to leave the machine to decide how to share the 
computational work. 

Second, we accomplish numerical experiments with 
random complex polynomials of degree n = 400, 512, 
768, 1024, and 1512. They are constructed in the 
MPFUN90’s multiprecision environment as described in 
[1], with the clarification that the n successively derived 
random complex numbers 1  are assigned to the 
corresponding polynomial coefficients of the degree-n 
polynomial 

, , na a

 np z , z ; while, as usual, the  1n  - 
th coefficient is assigned the value .  1 1,0na 

Concerning the results of Table 2, we arrive at con- 
clusions similar to those above. We emphasize on the 
fact that CCE running in parallel is proved ~13 times 
faster than the CXR code in the case of a degree—400 
complex polynomial, and increases gradually up to ~30 
times faster than CXR in the case of a degree—1512 
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complex polynomial. 
A Fortran package implementing the parallelized CCE 

code, called parcce.f95, is available on request to the first 
author (vgeroyan@upatras.gr); it is licensed under the 
GNU General Public License, Version 3 (GPLv3, http:// 
www.gnu.org/licenses/gpl-3.0.html). Note that the pack- 
age parcce.f95 does not include the MPFUN90 System; 
interested readers can download MPFUN90 from the site 
given in Section 3.1. Note also that the CXR code, which 
has been used in the numerical experiments of this study 
for the purpose of comparing execution times, is not in- 
cluded in the package parcce.f95; readers interested in 
using CXR can download this code from the site given in 
Section 3.1. 

4. Conclusion 

In this study, we have pointed out that the CCE code 
presented in [1] can be parallelized. Our numerical ex-
periments have shown that, for all cases examined, the 
parallelized CCE code took full advantage of the four- 
core processor of our computer. It has been also verified 
that there was an additional gain due to the hyper- 
threading technology of this processor. 
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