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ABSTRACT

Let h(t) be a smooth function, B, a standard Brownian motion and 7, =inf {2'; B, =h (T)} the first hitting time. In
this paper, new formulations are derived to evaluate the probability density of the first hitting time. If u (x,t) denotes

the density function of x=B, for t<z,, then u, =2u, and u(h(t),t)=0. Morcover, the hitting time density

d,(t) is

for d, (t) . Two examples are demonstrated in this article.

%ux (h(t),t) . Applying some partial differential equation techniques, we derive a simple integral equation
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1. Introduction

Since the publication of Black and Scholes’ [1], and
Merton’s [2] papers in 1973, a stock price following a
geometric Brownian motion becomes the standard model
for the dynamics of a stock price. Therefore, the calcula-
tions for the first hitting time get important in the field of
finance recently [3].

Let h(t) be a smooth function for t>0, and B=
{B;t>0} a standard Brownian motion. The first hitting
time 7, is defined as inf{t; B, :h(t)| B, :O} It s
known that 7, has a continuous density [4]. Sometime
we call the function h(t) or the curve x=h(t) the
barrier. For a constant barrier, the result has been well-
known for a long time. In this case, the density is

2
|h| exp(—h—j ([5], Chapter 9). The distribution of the
\2nt? 2t

hitting time for non-constant barrier was considered by
many authors; for example in [6-9]. In [6], Cuzick de-
veloped an asymptotic estimate for the first hitting den-
sity with a general barrier. In [7,8], the authors’ formulas
contain an expected value of a Brownian function. The
formulations in [7] are hard to see how the density for a
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general barrier is evaluated. Although the expected value
in [8] can be evaluated by solving a partial differential
equation, using a numerical method to compute the value
is still not easy. In [9], the density function for parabolic
barriers was expressed analytically in terms of Airy func-
tions. In this article, we derive new exact formulations
for the hitting density with a general barrier. Thus, partial
differential equation (PDE) techniques may be applied to
evaluate the density function of the first hitting time. Let
u(xt) be the probability density of {Bt = x,t<z,|By= 0};
ie. u(xt)dx=P{B e(x,x+dx),t<z,|B, =0}. It will

be shown that u(x,t) is the solution of an initial-
boundary value problem of a heat equation, and the hit-

h(0) ﬁu(h(t),t). Our derivation re-
2|n(0)] ox
sults a simple integral equation for the density function.

In Section 2, we show that the density function of the
first hitting time can be evaluated though solving an ini-
tial-boundary value problem of the heat equation. Then,
the density function will be the solution of a simple inte-
gral equation. In Section 3, a couple of examples are
solved by PDE techniques to demonstrate the justifica-
tion of the new method. The last section is the conclu-
sion.

ting density is
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2. The Boundary Value Problem

Let B, B, =0, a standard Brownian motion, h(t) bea
smooth function and 7, =inf {t;B =h(t)} the first hit-
ting time. We consider h(0)>0 first. Let p(x,t) de-
note the probability P{B, <x,t<z,}, and u(xt) de-
note the density function % p(x.t). Surely, u(x,t) ful-

fills the heat equation, u,, =2u, ([10], p. 352). Never-

theless, in this section, it will be proven with another way.

To derive the formulations for u(x,t), we consider the

hitting problem at discrete times {tl,tz,u-,tn}, where
ti:i%.Let P (X) denote
P{Bti <x.(B, <h(t):] :1,2,---,i)},
and U;(x) denote %pi(x).Therefore,
U (x) = ["6 (. &)y, (£)de (1)
_(x=9)?

where G(X,&)=1v/2nAte 2 and At=t/n. Taking
the limit, we have

lim p, (x) = p(x.t) 2
and

limu, (x)=u(x,t) 3)

n—w

We will show that u(x,t) satisfies the heat equation.
Integrating Equation (1), we have

2

(x=¢
Pt (X I_w,[_w me My (&)dEdk, (4)

for x<h(t,,). The probability difference between two
steps is

P (X)= Py (X)

2

(x¢
_j_wj_w N — ¢ u; (&)dédx
(x-¢f
~[u(®[" me w gEdx (5)

(x-¢)

_J'%LO T o 2 (u; (&)-u,(x))d&dx

S

_(x=Ey
LJ N u; (X)d&dx.

Using a substitution, v=X—-¢&, we have
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Pt (X)= P (X)
—J'_J_w N e X (u; (X)—u, (x—v

28y (X)) dXdv
j‘—soJ. ZTEA € '( )
where

if v>x—h(t)
if v<x-h(t).

Consequently,

P (X)— pi (X) At
e—mja(v) u; (X)—u, (X _V)didv

o -V
~ AtV 2mAt - v

2
® v — 1 x \ 1o
_Lo Atme 2t ;L(v)ui (X)dxdv (6)
2
a1 rav
e 2 V.[a(v)—v '(

|

)dxdv

_ J” -V
o At27At

Y Ly () axav
L‘"At\/21rAte vja(v) /(%)
Note that, if g(v) is continuous and bounded
1
lim [ ——e tg(v)dv=g
e T)i=9(0),

([11], p. 9) and, therefore, if g(v)eC'

v2

w 2V
li tg(v)dv=g'(0).
fim [ e 19 =g )
Let
ui(x), ifv=0
V)=
9(v) —j (X)dx, ifv=0.

The function g(v) is continuous and bounded. More-
over, g(v) is differentiable, since

9'(0)=lim (g (v)-u;(x))

v—>0\/

“lim L[y,
VA)OV ()*V

1 px _ _
_1V1E(}v— Ui (X) =y (x)dx
2

:um%[—uxx)gw(ﬁ)}%ﬁui(x)

V>0 \/

Thus, when At approaches 0, the first term of the
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right-hand side of Equation (6) is —%%ui(x). The

second term is 0, because Xx<h(t;) and, therefore,
a(v)=x when |v| is small. Letting At approach 0,
we have

0 1
ap(x,t)_zux(x,t). @)

Since % p(x,t)=u(x.t), differentiating both sides

of Equation (7) with respect to X, we have the partial
differential equation

ut(x,t):%uxx(x,t). (3)

The barrier h(t) is assumed to be differentiable, and,
therefore, there exists an positive number x not de-
pending on At such that |h(ti+1)—h(ti )|<K‘At. Con-
sider the probability density near the boundary h (t

U, (h(t)+sAt)

i+1

(h(t)+sat-¢)’

w1 Y, )
=I N u; (£)ds ©

o ) 1
= 2 J. ! —_—
= \/2mAt
where |s|<K.Note that
7(“(%)*1)2
lim | L o o !
At—09h(6) (/2 At

When s(At) _Ata)=N(H) )A_h(t‘) ,

Consequently,
. (1Y
limu, (h(t.)= LE{‘O(E] uy (h(ty))-
We have the boundary condition

u(h(t),t)=0. (10)

Therefore, we have a proposition as follows:

Proposition 1

The density function u(x,t) is subject to the initial-
boundary value problem:

U (X, 1) =2u, (X,1), (11a)
u(h(t),t)=0, (11b)
u(x,0)=25(x), (11c)
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where &(x) is the Dirac delta function. The initial-
boundary value problem is mathematically well-post.
The hitting probability p, (t),

b (1) =1-["u(x.t)ax. (12)
Then, the hitting density d, (t)
d
d. (t)=—np,(t
W (1) at P (1)
d h(t) O
=——nh(t)u(h(t),t)- — t)dx.
(0 (h(0).0)- " Zur)ox

Substituting Equations (8) and (10) into Equation (13),
we have

(13)

d, (t) =_jfi"%uxx(x,t)dx.

Using integration by parts, we have
1
dh(t)=—5ux(h(t),t). (14)

Similarly, if h(0)<0, the hitting density will be
%ux(h(t),t). There is an integral equation for the

boundary values of a heat equation ([12], p. 219).
u(h(t),t)=["u(£0)6" (£0,h(1),t)dé
+[ou, (h(r).7)G" (h(z).z.h(t).t)  (15)
—u(h(z'),r)G; (h(r),r,h(t),t)dr,

2

1 (x=%)
e ¥ H(t-7) and
2n(t—r)

H (t) is the Heaviside step function. For problem (11),
the integral equation becomes

where G*(&,7,x,t)=

G*(0,0,h(t).t)-[ 2d, (z)G" (h(z).z.h(t).t)dzr =0,

or

t 2 - 2(t-7)
——c d,(7)dr= e 2. (16)
'[0 2n(t—r) N 2mt
Equation (16) can be solved by a numerical method
easily.

3. Examples

Example 1: Linear boundaries.

Let h(t)=a+bt with a>0. The initial-boundary
value problem (11) has a close-form solution. The
solution, which is a Green’s function for the boundary
Xx=a+bt,is
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1 R _(x—2a)2
u(x,t):\/z_nt e 2 _g2g 2t |

Thus, the hitting density d, (t) is
10

—E&u(h(t),t)

(a+bt)? (a-bt)?
1 [a+bte = +e‘2f‘b(a_tbt)e - J

B 2+/27t

_(a-bt)?
e 2t

a
t2at

consistent with that in [8].

Example 2: First-passage time probability in an inter-
val.

Let 7, =inf{r;z>1,,B, =a} and d,(t) be the den-
sity function for 7, =t . In this example, we evaluate the
probability density of the first passage time d, (t) .

Let r;(é):inf{r;r>t0, B.=2a|B, = } and d; (&)

be the density of 7;=t. Using u'(x,t;¢) and u’(x,t;¢)
to denote the probability density

iP{B <xt<r
OX

} for £<a and £>a re-

spectively, we have an initial-boundary value problem
for both functions, u' and u". From the proposition,
u' and u" fulfill the equations

62

P u(x,t) t>t

0
t)=2—
u(xt)=2-

u(a,t)=0,t>t,

and
u(x,t0)=5(x—§).

The solutions are

1 7()(—5) 7(x 2a+¢)

u'(x,t;8) = ———| ¢ A) _g A0 (g-x
(x1:8)= s (a-x)

and

1 7& 7(><—Za+,f)

U (X&) = e M0 ¢ 0 I (x-a
(11:8)= s (x-a)
The density function is

—%%u'(a,t;g}, if £<a
di (&)= 3
——u'(at;¢), ifé>a

Thus
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(¢-a)®

* |§_a| T2(t-tg)
d = o)
(¢) (t—to)\/Zn(t—tO)e

The density of 7, =t hastobe
)= a()uo(£)ds
= Lodf‘ E)Uy (£)dg+[d! (£)u,(£)de,

where U, (&) is the density function of B, =& i.e.

552

! e
\2at,

The integral in Equation (17) can be calculated.

[La(€)u (£

(amn

uo(éa):

x-a)? (%)
e M o e

“om(t-t )t (t-t,)
7(Y—Aa)2 a2

_ ! [* (x—a)e 0 2gx

where A:t—o and ¢=1_;L
t 2t

0

. Similarly,

J, 4 (€)u, (f)df

S (R

T4/ 2t gt

Therefore, the hitting rate

2
1 =1 > a
——e X e +—erf(«/¢a2) .
2t? [n\/a Jn
In the special case of a=0,

TN )

n2tgt mft—tt’

The probability of that the Brownian motion process
takes on the value 0 at least once in the interval (t,,t)

is
t \/'[7 _ 2 \F
Loﬁdf—;arccos TO .

This result is the same as in ([13], p. 191). In a simple
caseof t,=0,

d, (t)=—2—c 2.
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This is the well-known result of the density of the first
hitting time for a constant barrier.

4. Conclusions

The proposition proposed in Section 2 may offer a simple
way to evaluate the density of the hitting time with a
general barrier by solving an initial-boundary value
problem of the heat equation. The density function
u (X,t) locally satisfies the heat equation is well-known
[10]. The main contribution of this paper is the derivation
of the boundary condition (10). This result makes pro-
gress in the evaluation of hitting time density. Two ex-
amples with exact solutions are demonstrated in Section
3. Even though the examples may be solved by other
method, the new formulations in this paper can be ap-
plied to evaluate the hitting time distribution with any
smooth barrier numerically by using the integral Equa-
tion (16).

A similar result for two-dimensional problems may be
expected. Let B! and B’ be two standard Brownian
motion, h(x,t)=y a smooth surface and

7, =inf {t:h(B!,t) = B}
the first hitting time. If u(X,y,t) presents the probabil-

ity density of (B!,B’)=(x.y) for t<z,, the two-di-
mensional formulations may be as follows,

Uy +Uy, =20, (18a)
u(x.h(x.t),t)=0, (18b)
u(x.y,0)=5(x-8)5(y-B;). (18¢)

As long as Equation (18) is established, the probability
density of the first hitting time for two-dimensional
Brownian motion may be evaluated by an analytical or
numerical method.
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