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ABSTRACT 

In this paper we will extend the well-known chain of inequalities involving the Pythagorean means, namely the har-
monic, geometric, and arithmetic means to the more refined chain of inequalities by including the logarithmic and iden-
tric means using nothing more than basic calculus. Of course, these results are all well-known and several proofs of 
them and their generalizations have been given. See [1-6] for more information. Our goal here is to present a unified 
approach and give the proofs as corollaries of one basic theorem. 
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1. Pythagorean Means 
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to denote the well known arithmetic, geometric, and 
harmonic means, also called the Pythagorean means 

PM

 1 2, , , n

. 
The Pythagorean means have the obvious properties: 
1) PM x x x

 , , ,
 

is independent of order 

2) PM x x x x
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4) 1 2,PM x x  is always a solution of a simple equa- 
tion. In particular, the arithmetic mean of two numbers 

1x  and 2x can be defined via the equation  
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The harmonic mean satisfies the same relation with 
reciprocals, that is, it is a solution of the equation 
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The geometric mean of two numbers 1x  and 2x can 
be visualized as the solution of the equation 

1

2

x GM

GM x


  

 

GM AM HM1)  

2) 1
1

1
1

1 1
,

1
,

HM x
x

AM x
x

 
 

  
 
 

 

 

3) 2
1 2

1 2

1 1 1
n

n

x x n
x x x

 
x        

 
   

This follows because 
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2. Logarithmic and Identric Means 

The logarithmic mean of two non-negative numbers x  
and 2x  is defined as follows: 

   2 10, ,0 0LM x LM x   

 1 1 1,LM x x x  

and for positive distinct numbers 1x  and 2x  
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The following are some basic properties of the loga- 
rithmic means: 

1) Logarithmic mean  ,LM a b


 can be thought of as 
the mean-value of the function  lnf x x


 over the 

interval ,a b . 
2) The logarithmic mean can also be interpreted as the 

area under an exponential curve. 
Since 
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We also have the identity 

LM x y  

Using this representation it is easy to show that 
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1) We have the identity 
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which follows easily:  
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To define the logarithmic mean of positive numbers 

0 1 nx x x


, we first recall the definition of divided dif- 
ferences for a function f x  at points 0 1, , , nx x x , 
denoted as 
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The identric mean of two distinct positive real num- 
bers 1 2,x x  is defined as: 
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So for example for n = 2, we get 
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with  1 1 1,IM x x x . 
 slope of the secant line joining the points  The

  , f a  and a   ,b f b  on the graph of the function  
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3. The Main Theorem 
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is the sharpest form of the above inequality. 
r all ,



Proof. By the Mean Value Theorem, fo s t  in 
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of generality ,s t  by the assumption of the theorem 
we have 
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and the inequality of the theorem follows. 
Let us now put 
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Note that 
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4. Applications to Mean Inequalities 

will extend the well-known chain of inequalities  We 

    , , , HM a b GM a b A a b   

to the more refined 

     , , ,

   , ,

HM a b GM a b LM a b 

IM a b A a b 
 

using nothing more than the mean value theorem of dif- 
All of these are strict inequalities 

unless, of course, the numbers are the same, in which 
case all means are equal to the common value he two 
numbers. 
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Hence the left-hand side of the inequality becomes 
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uently our inequality becomes Conseq or 
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