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ABSTRACT 

In many domains of science and technology, as the need for secured transmission of information has grown over the 
years, a variety of methods have been studied and devised to achieve this goal. In this paper, we present an information 
securing method using chaos encryption. Our proposal uses only one chaotic oscillator both for signal encryption and 
decryption, for avoiding the delicate synchronisation step. We carried out numerical and electronic simulations of the 
proposed circuit using electrocardiographic signals as input. Results obtained from both simulations were compared and 
exhibited a good agreement proving the suitability of our system for signal encryption and decryption. 
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1. Introduction 

During the last decades, the demand for cryptographic 
techniques to secure transmitted information has increased. 
For multiple reasons, the need to protect information 
arises. A number of attempts have been carried-out in 
research. Basically, the literature proposes two main ap- 
proaches of information encryption. The first is done 
through algorithms of encoding and decoding imple- 
mented in software. Several techniques were used to en- 
crypt data streams, but interception was possible in case 
of the encryption key hacking. Authors therefore mas- 
sively turned to the circuit-based approach. A particular 
class that has received much attention in research these 
last years is chaos-based techniques. The idea of using 
chaotic signals to transmit secured information appeared 
at the beginning of 90’s after it had been proved by Pec- 
cora and Carroll that the chaotic system can be synchro- 
nized [1-3]. The robustness in multipath environments, 
resistance to jamming, and low probability of intercep- 
tion are essential when dealing in communication sys- 
tems. Properties like sensitivity to initial conditions, ran- 
dom-like behaviour, nonlinear dynamics found in chaotic 
oscillators are an advantage to fight against interception. 
The principle of these techniques is to use oscillators that 
generate chaos to modulate the information signal that 

has to be transmitted. After reception, the signal is de- 
modulated and the secret information recovered. 

Some authors concentrated on designing different os- 
cillators for chaos generation. For example, chaotic be- 
haviours of Duffing, Chua, Colpitts and Van der Pol os- 
cillators [4-9], just to name a few, have been studied. 

A second group of authors was preoccupied by syn- 
chronization of chaotic oscillators involved in the emis- 
sion and reception parts, using a variety of techniques 
[1-4,10-16]. Some of these had secured communications 
as one of the applications. 

Mindful of the fact that synchronisation is very sensi- 
tive to noise, some authors have tried a number of tech- 
niques excluding any need for synchronisation. The first 
of this type is chaos shift keying (CSK) [17,18]. CSK is a 
method of digital modulation. Depending on the current 
value of the N-ary message symbol, the signal xi(t) (i = 1, 
···N) from one of N chaos generators with different char- 
acteristics is transmitted. The main drawback of the CSK 
is that the threshold level required by the decision circuit 
depends on the signal to noise ratio (SNR). A special 
case of CSK is the chaotic on-off keying (COOK) [19]. 
COOK uses one chaotic oscillator, which is switched on 
or off according to a binary message symbol to be trans- 
mitted. The major disadvantage of the CSK system, 
namely that the threshold value of the decision circuit 
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depends on the noise level, also appears in COOK. This 
means that by using COOK it is possible to maximize the 
distance between the elements of the signal set, but the 
threshold level required by the decision circuit depends 
on the SNR. 

However, the threshold value can be kept constant and 
the distance can be doubled by applying the differential 
CSK (DCSK) [20,21]. In DCSK, the two channels are 
formed by time division. For every message symbol, the 
reference signal is first transmitted, followed by the 
modulated reference carrying the message symbol. The 
principal drawback of DCSK arises from the fact that 
every information bit is transmitted by two sample func- 
tions because the bit rate is halved. 

This problem can be avoided using frequency modula- 
tion DCSK (FM-DCSK) [22,23], where the transmitted 
energy per bit belonging to one symbol, is kept constant. 
Here, as in the DCSK technique, every information bit is 
transmitted by two sample functions, where the first part 
serves as a reference, while the second part carries the 
information. The operation of the modulator is the same 
as in DCSK, the only difference is that not the chaotic, 
but the FM modulated signal is the input of the DCSK 
modulator. The limitation of standard FM-DCSK system 
is the fact that only one information-bearing is transmit- 
ted after the reference signal. 

Several different methods have been proposed in the 
literature to increase the data rate of DCSK, of which one 
of the most efficient is the quadratic chaos shift keying 
(QCSK) [24,25] scheme. The basic idea underlying the 
QCSK scheme is the generation of chaotic signals which 
are orthogonal over a specified time interval. This allows 
the creation of a basis of chaotic functions from which 
arbitrary constellations of chaotic signals can be con- 
structed. For instance, in QCSK, a linear combination of 
two chaotic basis functions is used to encode four sym- 
bols. The key point for exploiting this idea in a commu- 
nication system is that one must be able to generate the 
chaotic basis functions starting from a single chaotic 
signal. The same concept holds for conventional digital 
communication schemes such as QPSK, where the quad- 
rature component can be obtained from the phase one by 
means of a simple phase shifter. The main drawback of 
this method is its high complexity. 

Among several systems proposed, one of the best per- 
formances has been achieved by the differential chaos 
shift keying (DCSK) scheme and its variation utilizing 
frequency modulation, which is FM-DCSK. This is the 
reason why, our method draws its inspiration from this 
technique. 

In this paper, we suggest a very simple encryption- 
and-decryption system organized around a multiplexer 
and demultiplexer and based on the DCSK philosophy. 
Apart from its great simplicity, our system provides, as 

will be seen later a good signal to noise ratio. Finally, 
unlike in many of the aforementioned systems where the 
decrypted signal is obtained by estimation, in our pro- 
posal the final signal is actually deducted from the sent 
signal. 

In the next section, we describe and model the circuits 
used in our system. This is followed in Section 3 by re- 
sults obtained during our simulations. These results are 
discussed in Section 3. The conclusion of the paper is the 
object of Section 4. 

2. Circuit Description and Modelling 

The general diagram of the secured transmission system 
is given in Figure 1. 

We shall now briefly describe the different elements of 
the system and their functioning. 

2.1. Basics of Signal Encryption by Chaos 

There are basically two classes of signal encryption with 
chaos. In the first class of systems, which is generally 
more complicated, the information to be hidden is in- 
jected in the system producing the chaotic signal. This 
approach has the disadvantage of imposing the modifica- 
tion of the decoding system and is more suitable when 
the signal to be coded is of high amplitude. The second 
class of systems would allow generation of the chaos 
which is then added to or multiply by the signal to be 
hidden. This technique, which is simpler in its design is 
appropriate for low amplitude signals like ECG and 
would not need the modification of the receiving system. 

The central element of the encrypting bloc is the chaos 
generator which, in our case, is a colpitts oscillator. Let’s 
describe the model of the chaotic oscillator used. 

2.2. Colpitts Oscillator and Circuit Equations 

The Colpitts oscillator is one of the most researched and 
easiest oscillators. Figure 2 gives its representation. It is 
made of an LC oscillator, a capacitor-based voltage di- 
vider and an amplifier. The resonant circuit has three 
elements, namely: the inductor L and the capacitor C1 
and C2. The non linear component of the circuit is the 
Bipolar Junction Transistor (BJT) Q2N2222. 

 

 

Figure 1. Bloc diagram of the secured transmission system 
(STS). 
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Figure 2. The colpitts oscillator. 
 

The current source 0I , of conductance 0  polarizes 
the BJT. Applying Barkhausen criterium to this oscillator, 
the resonance frequency 
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Let’s introduce some dimensionless variables for con- 
venient numerical analysis: 
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where the dot denotes the differentiation. 
Changing origins, (4) becomes: 
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In order to study stability around the equilibrium point, 
let’s rewrite the system above using the formalism 

 X F X  where X is a three-dimensional vector and F, 
a function of X and of time. Performing a first order de- 
velopment in equilibrium point’s  0X  neighbourhood 
by means of the Jacobian matrix MF, we can have an 
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The characteristic equation of the Jacobian matrix 
about the equilibrium is: 
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mines a notion of predictability for a dynamical system. 
The Lyapunov exponents give the average exponential rates 
of divergence or convergence of nearby orbits in the phase- 
space. 

the first two lead to oscillations while the last pulls the 
system towards equilibrium. The bifurcation diagram is 
given in Figure 3. The bifurcation diagram is a plot of the 
maximum value (Max) of the dimensionless variable 

In systems exhibiting exponential orbital divergence, 
small differences in initial conditions which we may not 
be able to resolve get magnified rapidly leading to loss of 
predictability. Such systems are chaotic. In Figure 4 is 
plotted the dynamic of Lyapunov exponents for the col- 
pitts oscillator used. For initial conditions (x = 0.2, y = 
0.5, z = 0.5), the system being solved by means of 4th 
order Runge Kutta technique, with Step 0.01, three val- 
ues of Lyapunov exponents (Lamda 1, Lamda 2, Lamda 
3) are obtained: Lamda 1 0.1  (positive value), Lamda 
2 = 0.0, Lamda 3 = −0.70 (negative value). These results 
validate the bifurcation diagram of Figure 3 and prove 
the chaotic nature of the oscillator. 

1c

s

v
x

v
  (Equation (3)) as a function of μ. It can be noticed 

that for: 
- 2.75   the system tends to stabilize around a sin- 

gle frequency value; 
- 2.75 3.5   the system oscillates between two 

frequency values; 
- from  many bifurcations 

points appear and the system exhibits a chaotic behaviour. 
 03.9 2.25 mAI  

A usual test for chaos is calculation of Lyapunov ex- 
ponents. It is common to refer to the largest one as the 
Maximal Lyapunov exponent (MLE), because it deter- 

 

 

Figure 3. Bifurcation diagram of the system. 
 

 

Figure 4. Dynamic of Lyapunov exponents. 
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2.3. Description of Encryption and Decryption 

Techniques 

The chaotic signal studied above is used to encrypt the 
ECG signal. Encryption and decryption techniques which 
are described below are depicted in Figure 5. 

The informative signal (ECG) is added to the chaotic 
signal. The output of the adder, which is the encrypted 
signal, is multiplexed with the same chaotic signal and 
yields Signal C. The latter is transmitted to the receiver 
through a physical link (copper wire in our case). At the 
receiver end, decryption is obtained by first of all demul- 
tiplexing Signal C and then subtracting the two output of 
the demultiplexer. A low pass filter is added at the output 
of the subtractor to discard noise from the decrypted sig- 
nal. 

2.4. Circuit Implementation 

The different functional units of our system are indicated 
in Figure 6. The 2N2222 transistor is used to build the 
colpitts oscillator that generates the chaotic signal. This 
component is a common NPN bipolar junction transistor 
used for general purpose low-power amplifying or switch- 
ing applications. It is designed for low to medium current, 
low power, medium voltage, and can operate at moder- 
ately high speeds. These features explain why it was 

chosen in this work. The adder and the subtractor were 
built using a classical TL082 Operational Amplifier. It is 
a high speed J-FET input dual operational amplifier in- 
corporating well matched, high voltage J-FET and bipo- 
lar transistors in a monolithe integrated circuit. The de- 
vice features high slew rates, low input bias and offset 
currents. The MUX/DMUX that appears in the system is 
the ADG659YCPZ integrated circuit. 

 
 

 

 

 

Informative 
signal 

Chaotic signal

Encrypted 
signal Signal C 

transmission

Multiplexer 

Demultiplexer

Subtractor

Decrypted signal

Decrypted and 
filtered signal 

Low Pass Filter 
 

Figure 5. Encryption and decryption schemes. 
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Figure 6. The circuit implemented. 
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3. Simulation Results 

3.1. Signal Waveforms 

The overall circuit was built according to the scheme 
shown in Figure 6. The simulations were carried-out 
using MULTISIM which is an electronic circuit simula- 
tor. This section is dedicated to results yielded by our 
system. We inserted side by side results obtained from 
numerical (using MATLAB) and electronic (using MUL- 
TISIM) simulations. 

C1 and C2 are the two capacitors found on the colpitts 
oscillator (Figure 2). In Figure 7, the value of the volt- 
age across C1 and C2 were plotted as a function of time. 
One can easily notice that both from Matlab (a, c) and 
Multisim (b, d) simulations, the waveforms obtained are 
chaotic. 

Using the value 3.9   the system (5) was solved 
numerically using Matlab by means of fourth-order 
Runge-Kutta algorithm and yielded the phase portrait of 
Figure 8(a). On the other hand, plotting the voltage 

 

 
(a) 

 
(b) 

  
(c)                                                         (d) 

Figure 7. Chaotic signals from C1 and C2 from numerical (a, c) and electronic (b, d) simulations. 
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across C1 as a function of the voltage across C2 under 
Multisim, the phase portrait of Figure 8(b) was obtained. 
We can notice the resemblance between the two phase 
portraits of Figure 8. 

Figure 9 shows the original input ECG signal used in 
our simulations while the encrypted signal is plotted in 
Figure 10. Observing Figure 10, we can notice that the 
ECG signal which was clearly identifiable in Figure 9, 
can no more be seen. It has been hidden by our encryp- 
tion system. After decryption, we obtained the wave- 
forms in Figure 11. Both from the numerical and elec- 
tronic simulations results, the form of the ECG signal can 
be recognized. 

3.2. Decrypted ECG Signal Analysis 

The decrypted ECG signal (Figure 11) yielded by our 
system was analyzed and compared to the initial signal in 
terms of mean frequency distortion (MFD) and signal to 

noise ratio (SNR). The mean frequency (MF) is given 
below: 

 dMF fSx f  f               (9) 

where  Sx f  is the spectral power density of the ECG 
signal. 

 

2

original reconstructed

original reconstructedmax ,

F F
MFD

F F

 
 
 
 

      (10) 

The MFD is a very important metric that indicates how 
much the reconstructed signal has shifted from the origin- 
nal one, frequency-wise. For each frequency of the initial 
ECG signal, we obtained a frequency for the recon- 
structed signal. The MFD is then computed. This work 
was carried out for ECG signal frequencies ranging from 
25 Hz to 100 Hz. The mean value of the different MFDs 
obtained was calculated and we obtained 44 10 .This 

 

 
(a) 

 
(b) 

Figure 8. Phase portraits simulated with MATLAB (a) and MULTISIM (b). 
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(a) 

 
(b) 

Figure 9. Original ECG signal in MATLAB (a) and MULTISIM (b) respectively. 
 

very low value proves that the signal frequency is con- 
served. The SNR used here is given by: 

2
original

2
noise

20 logSNR



 
 

  
              (11) 

where  is the original signal’s power and  
that of the noise. The noise is defined as follows: 

2
original 2

noise

original reconstructednoise S S          (12) 

where  is the original ECG signal while  originalS reconstructedS

is the reconstructed or decrypted ECG signal. 
Figure 12 gives the evolution of the SNR as the fre- 

quency of the original signal varies from 25 Hz to 100 
Hz. 

As can be seen on the plots, the SNR is always greater 
than 10. It reaches its maximal value for a frequency of 
80 Hz. We evaluated the SNR from 25 to 100 Hz. This 
upper value was chosen because we targeted signals of 
frequency lower than 100 Hz which is what medical doc- 
tors use for diagnosis. The minimal value of the SNR 
may be explained by the fact that the different parasite 
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(a) 

 
(b) 

Figure 10. Encrypted ECG signal in MATLAB (a) and MULTISIM (b). 
 

elements in the system are arranged in such a way that 
they build up a rejection filter centered on the frequency 
75 Hz. This deserves a more careful study that we shall 
carry out in future works. We have a relatively high SNR 
as can be seen in Figure 12. This is an asset for our sys- 
tem. It can be explained by the fact that in our case, the 
real signal is transmitted whereas in works in the litera- 
ture [17-25], the reconstructed signal is computed through 
an estimation. It is also obvious that our system using 
analog circuits, will surely be faster than those of the 
works mentioned above. Finally, it is worth noting that 

the proposed system uses very basic and simple elec- 
tronic circuits (MUX and DMUX) to carry out the job 
while conserving the original signal frequency. 

4. Conclusion 

We have developed and proposed a very simple system 
for secured transmission of ECG signals. It can be noted 
that the original signal is recovered almost without fre- 
quency distortion and with a good SNR. There is a good 
agreement between the numerical and electronic simula- 
tions results. In future works, we plan amongst other 
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(a) 

 
(b) 

Figure 11. Decrypted ECG signal from MATLAB (a) and MULTISIM (b). 
 

     
(a)                                                    (b) 

Figure 12. SNR plots in MATLAB (a) and MULTISIM (b). 
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things, to implement the system developed and get ex- 
perimental results and to take into account non-linear per- 
turbations in the transmission line. 
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