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ABSTRACT 

We show how the Koide relationships and associated triplet mass matrices can be generalized to derive the observed 
sum of the free neutron and proton rest masses in terms of the up and down current quark masses and the Fermi vev to 
six parts in 10,000. This sum can then be solved for the separate neutron and proton masses using the neutron minus 
proton mass difference derived by the author in a recent, separate paper. The oppositely-signed charges of the up and 
down quarks are responsible for the appearance of a complex phase exp(iδ) and real rotation angle θ which leads on an 
independent basis to mass and mixing matrices similar to that of Cabibbo, Kobayashi and Maskawa (CKM). These can 
then be used to specify the neutron and proton mass relationships to unlimited accuracy using θ as a nucleon fitting an- 
gle deduced from empirical data. This fitting angle is then shown to be related to an invariant of the CKM mixing an- 
gles within experimental errors. Also developed is a master mass and mixing matrix which may help to interconnect all 
baryon and quark masses and mixing angles. The Koide generalizations developed here enable these neutron and proton 
mass relationships to be given a Lagrangian formulation based on neutron and proton field strength tensors that contain 
vacuum-amplified and current quark wavefunctions and masses. In the course of development, we also uncover new 
Koide relationships for the neutrinos, the up quarks, and the down quarks. 
 
Keywords: Proton Mass; Neutron Mass; Baryons; Magnetic Monopoles; Koide; CKM Mixing Angles; Current Quarks; 

Constituent Quarks 

1. Introduction 

In an earlier paper [1] the author introduced the thesis 
that baryons are Yang-Mills magnetic monopoles. Using 
the t’Hooft magnetic monopole Lagrangian in (2.1) of [2] 
and a Gaussian ansatz for fermion wavefunctions from 
(14) of O’Hanian’s [3] to obtain energies according to  

3 3r dF F x


   

gauge

1
d T

2
E x   L , 

it became possible in Equation (11.22) of [1] to predict 
the electron rest mass as a function of the up and down 
quark masses, specifically: 

3

23 2πum

 

e dm m  ,            (1.1) 

with the factor 
3

22π  emerging from three-dimensional  

Gaussian integration. Based on a “resonant cavity” 
analysis of the nucleons whereby the energies released or 

retained during nuclear binding are directly dependent 
upon the masses of the quarks contained within the nu- 
cleons, it was also predicted that latent, intrinsic binding 
energies of a neutron and proton, see (12.12) and (12.13) 
of [1], are given by: 

   
3

22 4 4 2π

7.640679 MeV,

P u d d u d uB m m m m m m    


  (1.2) 

   
3

22 4 4 2π

9.812358 MeV.

N d u u u d dB m m m m m m    


  (1.3) 

These predict a latent binding energy of 8.7625185 
MeV per nucleon for a nucleus with an equal number of 
protons and neutrons, which is remarkably close to what 
is observed for all but the very lightest nuclides, as well 
as a total latent binding energy of 493.028394 MeV for 
56Fe, in contrast to the empirical binding energy of 
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492.253892 MeV. This is understood to mean that 
99.8429093% of the available binding energy in 56Fe is 
applied to inter-nucleon binding, with the balance of 
0.1570907% retained for the intra-nucleon quark con- 
finement. It was also noted that this percentage of energy 
released for inter-nucleon binding is higher in 56Fe than 
in any other nuclide, which further explains that although 
the quarks come closer to de-confinement in 56Fe than in 
any other nuclide (which also explains the “first EMC 
effect” [4]), they do always remain confined, as empha- 
sized by the decline in this percentage for elements with 
nuclear weights higher than 56Fe. 

In a second paper [5], the author showed how the 
thesis that baryons are Yang-Mills magnetic monopoles 
together with the foregoing “resonant cavity” analysis 
can be used to predict the binding energies of the 1s nu- 
clides, namely 2H, 3H, 3He and 4He to parts per hundred 
thousand for 3He and in all other cases to parts per mil- 
lion, and also to predict the difference between the neu- 
tron and proton masses according to: 

   
3

23 2πd um3 2N P u d μM M m m m m    . (1.4) 

This relationship, originally predicted in (7.2) of [5] 
to about seven parts per ten million in AMU, was later 
taken in (10.1) of [5] to be an exact relationship, and all 
of the other prior mass relationships which had been de- 
veloped were then nominally adjusted at the seventh 
decimal place to implement (1.4) as an exact relationship. 
The review of the solar fusion cycle in Section 9 of [5] 
served to emphasize how effectively this resonant cavity 
analysis can be used to accurately predict empirical 
binding energies, and suggested how applying gamma 
radiation with the right resonant harmonics to a store of 
hydrogen may well have a catalyzing effect for nuclear 
fusion. This relationship (1.4) will also play an important 
role in the development here. 

At the heart of these numeric calculations which 
accord so well with empirical data were the two outer 
products (4.9) and (4.10) in [5] for the neutron and the 
proton, with components given by (4.11) and related re- 
lationships developed throughout Sections 3 and 4 of [5]. 
In particular, the two matrices which stood at the center 
of these successful binding energy calculations were 3 × 
3 Yang-Mills diagonalized matrices K of mass dimension  
1

2
 with components    , ,diag N u d dK m m m  

for the neutron and    , ,diag P d u uK m m m

m
m

  for  

the proton, where u  is the “current” mass of the up 
quark and  is the current mass of the down quark. d

What is very intriguing about these K-matrices (which 
we designate with K to reference Koide), is that although 
they originate from the thesis that baryons are magnetic 
monopoles, they have a form very similar to matrices 

which may be used in the Koide mass formula [6] for the 
charged leptons, namely: 

 2

1 2 3

1 2 3

3

2

m m m
R

m m m

 
 

 

,m m m m

.       (1.5) 

Above, when we take 1 2e    and m3 = mτ 
to be the charged lepton masses, the ratio 3 2R 

0.510998928 0.000000011 MeV

105.6583715 0.0000035 MeV
em

m

 gives 
a very precise relationship among these masses. Indeed, 
if we use the 2012 PDG data 

 

 

1.500022828R

 

and mτ = 1776.82 ± 0.16 MeV [7], we find using mean ex- 
perimental data that  , very close to 3/2. 

Because the binding energies formulated in (1.2) and 
(1.3) are rooted in the thesis that baryons are Yang-Mills 
magnetic monopoles and specifically emerge from the  

calculation of energies via , see (11.7) of  3dE x L
[1] et seq., and because these binding energies can also 
be refashioned via Koide relationships as we shall show 
in the next Section, the author’s previous findings will 
provide us with the means to anchor the Koide relation- 
ships in a Lagrangian formulation. And, because Koide 
provides a generalization of the mass matrices derived by 
the author in [5], these matrices will provide us with the 
means to derive additional mass relationships as well, in 
particular, and especially, the free neutron and proton 
rest masses, which is the central goal of this paper. 

Specifically, after reviewing in Section 2 similarities 
between the author’s baryon/magnetic monopole matri- 
ces and the Koide matrices, we shall show in Section 3 
how to reformulate the Koide relationships in terms of 
the statistical variance of Koide mass terms across three 
generations. This will yield some new Koide relation- 
ships for the neutrinos, the up quarks, and the down 
quarks. We then show in Section 4 how to recast these 
Koide relationships into a Lagrangian/energy formulation, 
which addresses the question as to underlying origins of 
these relationships, so that these relationships are not just 
curious coincidences, but can rooted in fundamental 
physics principles based on a Lagrangian. 

Most importantly, in this paper, we combine the au- 
thor’s previous work in [1,5] as well as [8], using the 
generalization provided by Koide triplet mass matrices of 
the form (2.1) below, to deduce the observed rest masses 
938.272046 MeV and 939.565379 MeV of the free neu- 
tron and proton as a function of the up and down quark 
masses and electric charges and the Fermi vev. This mass 
derivation is presented in Sections 5 and 6. In Section 7 
we connect the masses obtained in Section 6 to the em- 
pirically-observed Cabibbo, Kobayashi and Maskawa 
(CKM) quark mixing matrices. In Section 8 we examine 
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AB

“constituent” and “vacuum-amplified” quark masses for 
the neutron and proton. Finally, in Section 9 we develop 
a Lagrangian formulation for these neutron and proton 
masses, which underscores that these relationships are 
not just close numerical coincidences, but originate from 
fundamental Lagrangian-based physics. 

author in [5] and those developed by Koide in [6] are 
highlighted if we define a Koide matrix K  generally 
as: 

Copyright © 2013 SciRes.    

2. Similarities between Baryon/Magnetic 
Monopole Matrices and Koide Matrices 

The similarities between the matrices developed by the  

1

2

3

0 0

0 0

0 0

AB

m

K m

m

 
 
 
 
 
 

 

.          (2.1) 

Then, the two latent binding energy relationships (1.2) 
and (1.3) may be represented as: 

 

 
 

 

   

 

2
3 3

2 2

3

2

3

2

1 1
Tr Tr

2π 2π

2 4 4 2π 7.640679 MeV

0 0 0 0 0 0 0 0
1

0 0 0 0 Tr 0 0 0 0
2π0 0 0 0 0 0 0 0

P AB BA BB

u d d u d u

d d d d

u u u u

u u u u

B K K K K K

m m m m m m

m m m m

m m m m

m m m m

    

     

      
      
        
      
      
      

AAK K

  (2.2) 

Tr

 

   
   

   

 

21 1
Tr Tr

0 0

0 0

0 0

u

d

d

B K K K K K K K

m

m

m

    

 
 
 
 
 
 

1 dm m

3 3

2 2

3

2

3

2

2π 2π

2 4 4 2π 9.812358 MeV

0 0 0 0 0 0
1

Tr 0 0 0 0 Tr 0 0
2π0 0 0 0 0 0

N AB BA AA BB

d u u u d d

u u u

d d d

d d d

m m m m m m

m m m

m m m

m m m

     

    
    
     
    
    
    

  (2.3) 

 
where, starting with (2.1), in (2.2) we have set   
and  and in (2.3) we have set 1 u2 3 um m m  m m  
and 2 3 d . Again, these originate in the author’s 
thesis in [1] that baryons are Yang-Mills magnetic 
monopoles. Above,  designates an outer matrix pro- 

duct. 

1 2,em m m m
m m m 



On the other hand, setting    and 

3m m  in (2.1), we may write: 

 2
1 2 3Tr AB BA eK K K m m m m m m , (2.4)     

 

  

 

   2

1 2 3Tr AA BB eK K K K m m m m m m        
2

.                (2.5) 

 
Then, using (2.4) and (2.5), Koide relationship (1.5) for charged leptons may be written as: 

 

   
 

2

2

Tr 3

2Tr

e AA BB

e AB BA

m m m K KK K
R

m K K K

 

 

  
m m

   
 

.                         (2.6) 

 
Clearly then, the Koide matrices (2.1) provide a gen- 

eral form for organizing the study of both binding energy 
and fermion mass relationships which lead to very accu- 
rate empirical results. It thus becomes desirable to under- 
stand the physical origin of these Koide matrices and tie 
them to a Lagrangian formulation so that they are no 

longer just intriguing curiosities that yield tantaliz- 
ingly-accurate empirical results, but can also be rooted in 
fundamental physics principles based on a Lagrangian. 
And, it is desirable to see if these matrices can be ex- 
tended in their application to make additional mass pre- 
dictions and gain a deeper understanding of the particle 
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mass spectrum, especially the free neutron and proton 
masses to be explored here. 

We start in the next Section by showing how to refor- 
mulate the Koide relationships in terms of the statistical 
variance of the Koide terms across the three generations. 

3. Statistical Reformulation of the Koide 
Mass Relationship 

We continue to examine the charged leptons by setting 

1 2e ,m m m m m  and 3m   in (2.1). When we use 
the extremes of the experimental data ranges in [7], spe- 
cifically, the largest possible tau mass and the lowest 
possible mu mass, we obtain R = 1.5000024968. Al- 
though this is an order of magnitude closer to 3/2 than 
the ratio obtained from the mean data, is still outside of 
experimental errors. This means that while 3 2R   is a 
very close relationship, it is still approximate even ac- 
counting for experimental error. For this to be within 
experimental errors, it would have to be possible to ob- 
tain some 3 2R   for some combination of masses at 
the edges of the experimental ranges, and it is not. 

First, using (2.4), we write the average of masses 

i  in a Koide mass triplet 1 2 3 , i.e., the “aver- 
age of the squares” of the matrix elements in (2.1), as: 

m , ,m m m

 
 

2 2

1 2

Tr 3K K

m m

 

  3

3

3

AB BA

i

K K

m m 
         (3.1) 

Next, via (2.5), we write the “square of the average” of 
these matrix elements as: 

 

 

2 Tr K K

2

1 2 3

2

1 2 3

9 9

3

9

AA BBK K

m

m

 

  
  
 

 

K

m m

m m







          (3.2) 

So, combining (3.1) and (3.2) in the form of (1.5) al- 
lows us for the charged leptons to write: 

 
 

 

2

2 2

1 2

1 2

Tr
3

Tr

K K K

K K

m m

m m m


 

 

 

2

3

3

3

2

AA BB

AB BA

K K

K K

m
R  

     (3.3) 

This allows us to extract the relationship: 

2 R 2 21

3 2
K K K ,            (3.4) 

which naturally absorbs the 3 from the factor of 3/2. 

Now, we simply use (3.4) to form the statistical vari- 
ance  K

 

 in the usual way, as: 

2 22 2

22

3
1 1

3

3 1
1 .

2i i

R
K K K K K

R

m K K m
R

            
   

      
 

(3.5) 

The key relationship here, using first and last terms, is: 

 K im  .               (3.6) 

So the average i  of the charged lepton masses is 
approximately (and very closely) equal to the statistical 
variance 

m

 K

1.500022828R

 of Koide matrix (2.1) when used for 
the charged leptons. This is a much simpler and more 
transparent way to express the Koide mass relationship 
(1.5), it completely absorbs the factor of 3/2, and it is 
entirely equivalent to (1.5). 

Of course, as noted at the outset of this Section, this is 
a very close, but still approximate relationship. The exact 
relationship, also extracted from (3.5), and using 
  based on mean experimental data, is: 

  0.999969563
3

1 i i iK m m C m
R

      
 

, (3.7) 

where we have defined the statistical coefficient C and 
the inverse relationship for R as: 

3 3
1;

1
C R

R C
  


.            (3.8) 

Thus, we may rewrite the basic Koide relationship (1.5) 
more generally as: 

 2

1 2 3

1 2 3

3

1

m m m
R

m m m C

 
 

  
.     (3.9) 

In the circumstance where the statistical coefficient C 
= 1, i.e., where the average mass is exactly equal to the 
statistical variance, we have 3 2R 

0.999969563

. So the statistical 
variance of the square roots of the three charged lepton 
masses is just a tiny touch less    than 
the average of the three masses themselves. But the fac- 
tor of 3/2, which is somewhat mysterious in (1.5), is now 
more readily understood when we realize that it corre- 
sponds with C = 1 in (3.7). 

This means that the Koide relationship for any given  

triplet of numbers with mass dimension 
1

2
, may be al-  

ternatively characterized by the coefficient C. Thus, us- 
ing (3.7), the coefficient C for the charged lepton triplet 
is (we also include R for comparison): 

 
 

0.999969563 1;

1.5000228 8 32 2.R

C e

e












        (3.10) 
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So what about some other Koide triplets? For the neu- 
trinos, PDG in [9] provides upper limits 

e
, 


 and m


 for the neutrino 

masses. If we use these mass limits in a Koide triplet, we 
find that R = 1.202960231. But the significance of this is 
much more easily seen by using (3.8) to calculate: 

2eVm 
 180.19 MeVm .2 MeV

 
 

1.4

1.20

e

eR

C  

 

  

  





938480 ;

29602

3 2

3 6 5




        (3.11) 

Here, we have another ratio very close to 3/2, but now 
it is the coefficient C rather than the coefficient R. So, for 
the upper neutrino mass limits,    3 2K m  . 
This in an interesting “coefficient migration” as between 
the charged and uncharged leptons, wherein for the 
charged leptons masses 

 

3 2R   to parts per 100,000, 
while for the neutrino lepton upper mass limits, 3 2C   
within about 0.4%. As we shall see, this is the start of a 
new Koide pattern. 

Turning to quark masses, we use u  
and d  developed in (10.3) 

and (10.4) of [5] with the conversion 1u = 931.494061(21) 
MeV/c2. We also use , 

2.223792405
647

eV 95sm

m 
0335MeV

1.275 0.025 Gcm  

MeV 4.90m 

  
 t  and b   
 from PDG’s [10]. For Koide triplets of a sin-

gle electric charge type, we can then calculate that: 

5 MeV, 173.5m  
0.03 GeV

.6 .8 GeV m 4.18 

 
 

3 2688 ;

913486 6 5



 

1.54

1.177

C uct

uR ct


        (3.12) 

 
 

1.18741

1.371483

C dsb

dsR b

 6 5;

911 15 11



 

 

       (3.13) 

So we now see a distinctive pattern of coefficient mi- 
gration among (3.10) through (3.13). For the charged 
leptons in (3.10) which are the lower members of a weak 
isospin doublet, 3 2R e 



, as has long been known. 
For neutrinos which are the upper members of this dou- 
blet,  3 2

 

eC      , which migrates the 3/2 from the 
R to the C coefficient. Then, for the up quarks, we find 
another coefficient migration such that 3 2C uct 

 

, 
which is same as the C for the neutrinos. Both the up 
quarks and the neutrinos are the upper members of weak 
isospin doublets. Finally, we see that the 6 5R uct   
coefficient for the up quarks, now migrates to  C dsb  

6 5  for down quarks. 

So the migration is    3 2e C   3 2eR       

for leptons,    3 2eC       3 2C uct   provid- 
ing a “bridge” from “up” leptons to “up” quarks, and 
then    6 5R uct   6 5C dsb 

   

 migrating from the 
up to the down quarks. 

The net upshot of this coefficient migration is that we 
now have Koide-style close relations for all four sets of 
fermions (and anti-fermions) of like-electric charge Q, 

namely: 

     
     

2

6
0

5

e

e

m m m
R Q

m m m

    

    

 
  

 

 

. (3.14) 

 2

3
1

2

e

e

m m m
R Q

m m m

 

 

 
.    (3.15)    

 

 2

2 6

3 5

u c t

u c t

m m m
R Q

m m m

         
.   (3.16) 

 2

1 15

3 11

d s b

d s b

m m m
R Q

m m m

         
.  (3.17) 

Each of these relationships takes twelve a priori inde- 
pendent fermion masses and reduces by 1, their mutual 
independence. So with (3.14) through (3.17), to first ap- 
proximation, we have now eight, rather than twelve in- 
dependent fermion masses. 

For some other commonly-studied Koide triplets we 
have: 

 

 

0.69290 1 2 ;

3 2
1.772105341

21

C uds

udsR 





           (3.18) 

 
 

1.00939 1;

1.492994103 3 2

C ctb

ctR b 






              (3.19) 

   0.86795; 1.606042302C usc uR sc  ,   (3.20) 

 
   

1.02783 1;

1.479416975 i2 w th 3 s

C csb

c msbR



 




  (3.21) 

   0.81520; 1.652718083C dcs dR cs  .   (3.22) 

 C uds  We note that the relationship (3.18) for 
1 2

95 5 MeVm  

98.95303495 MeVm

 is accurate to within experimental errors. Spe- 
cifically, given the empirical s , (3.18) 
can be made into an exact relationship to ten digits (the 
accuracy of the up and down masses derived in [5]) if we 
set s  . Of course, even the rela- 
tionship (3.15) for the charged leptons is a close but not 
exact relationship, see the discussion at the start of this 
Section, so we ought not expect (3.18) to be exactly 
  1 2C uds  . But, similarly to (1.5), see also (3.10), it 

may well make sense to regard this as a relationship ac- 
curate to the first three or four decimal places, which 
would improve our knowledge of the strange quark mass 
by four or five orders of magnitude. 

But this main point of the foregoing is not about the 
specific Koide relationships (though the set of relation- 
ships (3.14), (3.16) and (3.17) are important steps for-
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If we generalize this to any three fermion wavefunc- 
tions 

ward in their own right), but about how the ratio pa-
rameter R which for the charged lepton triplet is 1 2 3, ,    such that (4.1) represents the specific 

case 1 2

pyright © 

3 2R 

 

, can be reformulated for any fermion triplet into 
the coefficient C in the statistical variance relationship 

iK C m
1


C

, which, for the charged leptons, is 
. And, as we see in (3.14) through (3.17), this can 

lead to additional rela- tionships via a cascading migra-
tion of coefficients. 

Turning back to the neutron and proton triplets, 

   
   

, , ,

, ,

u u

d d

m m

m m

92405 MeV,

diag

diag

P d

N u

K m

K m




 

which were so central to obtaining accurate binding en-
ergy predictions in [1,5], we find using the MeV equiva-
lents of the mass values   

d  obtained in (10.3) and (10.4) 
of [5] that: 

2.2237um 
6470335 MeV4.90m 

 
  2

C p duu

R p duu

 

 

0.0387876019;

.8879821000

0298844997;

2.9129480061

3R 

uuu 

0;

        (3.23) 

 
 

0.C n udd

n uddR

 

 
        (3.24) 

For these triplets which all have a small variance in 
comparison to the earlier triplets which cross generations, 
the Koide ratio . In the circumstance where the 
variance is exactly zero because all three quarks have the 
same mass, for example, for the triplets  and 

, using the Koide mass relationship for param- 
eterization, we have C . 

ddd 
3R 

4. Lagrangian/Energy Reformulation of the 
Koide Mass Relationship 

The appearance of Koide triplets originating from the 
thesis that Baryons are Yang-Mills magnetic monopoles 
can be seen, for example, by considering Equation (11.2) 
of [1] for the field strength tensor of a Yang-Mills mag- 
netic monopole containing a triplet of colored quarks in 
the zero-perturbation limit, reproduced below: 

Tr
'' ''

'' '' "

R R

R R

G G

G G

F i
p m

p m

 


 

   

    


    
 

"

B B

B Bp m

    
   

   
   

 (4.1) 

,R G     and 3 B  

,   

, and, as we did 
prior to (11.19) of [1], if we consider the circumstance in 
which the interactions shown in Figure 1 at the start of 
Section 3 in [1] occur essentially at a point, then  

         
0p 

,

 approaches an ordinary commu-  

tator, each of the , and the “quoted” denominator 
becomes an ordinary denominator, see (3.9) through 
(3.12) of [1] for further background. So also setting 

1 2R Gm m m m and 3 Bm m  , (4.1) generalizes for a 
point interaction to a Koide-style field strength tensor: 

1 1

1

2 2 3 3

2 3

,
Tr

, ,

F i
m

m m

 


   

   

       

    



        


   (4.2) 



Then, we form a pure gauge field Lagrangian 

   gauge

1 1
Tr Tr

2 2
F F F F
    L

2Tr

 

as in (11.7) of [1]. As discussed in Section 3 of [5], we 
consider both inner and outer products over the Yang- 
Mills indexes of F, i.e., we consider both F   

 Tr AB BC AB BAF F F F    and  TrTr AB CDF F F F  
AA BB

 
F F  . Note carefully the different index structures 

in AB BAF F  versus AA BBF F , and also contrast this to 
(2.2) through (2.5) in this paper, which we shall now 
seek to refashion into a Lagrangian formulation. 

To proceed, we use this Lagrangian gauge  to calcu-
late energies according to (11.7) of [1], also (1.8) of [5], 
which are reproduced below: 

L

3 3
gauge

1
d Tr d

2
E x F F x

   L

,

.    (4.3) 

In the case where 1 2 3d u        so that 

P
F F   represents the proton, then depending on 

whether we contact indexes using AB BAF F  or 

AA BBF F , we obtain the inner and outer products in (3.6) 
of [5]. When 1 2 3u d,       so N

F F  

AA BB

 
represents the neutron, we obtain the inner and outer 
products in (3.7) of [5]. Using (2.1), the Koide generali- 
zation of the outer products ( K K  index summation) 
is: 

 

   
 

3 3 3 3
3

2

1 1
2

2 2 1 2 33 3

2 2
3 3

1 1 1 1
d Tr d Tr d d

2 2 2 2π

0 0 0 0
1 1

Tr 0 0 0 0
2π 2π0 0 0 0

AB CD AA BB AA BBE x F F x F F x F F x K K

m m

m m m m m

m m


         

    
    
        
    
        

   L

      (4.4) 
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while the Koide generalization of the inner products ( KAB BAK  index summation) is: 
 

     
 1 2 3

1

3 3 3 3

1 1

2 23 3 3

2 2 2
3 3

1 1 1
d Tr d Tr d d

2 2 2

0 0 0 0
1 1

Tr 0 0 0 0
2π 2π 2π0 0 0 0

AB BD AB BA

AB BA

E x F F x F F x F F x

m m

K K m m

m m


      

   
   
     
   
      

   L

m m m 
      (4.5) 

 
This means that is now becomes possible to express 

the Koide relationship (3.9) entirely in terms of energies 
E derived from the Lagrangian integration (4.3). Specifi- 
cally, combining (3.9) with (4.4) and (4.5) allows us to 
write: 

3

2 3

3
d

2

3
Tr d 0

2

eE x

F F F x

 
   
 

    
 





L L

 

3 3

3 3

3

d

d

3

1

AA BB

AB BA

3

2 3

3

3

2

1 2

1 2 3

d Tr

d Tr

Tr d

Tr d

d

d

AA BB

AB BA

x F F xE

E x F F x

K K

K K

R
C










  


F F x

F x

F F x

F F x

m m m

m m m

  





 



 

 

 
 







L

L

     (4.6) 

This expresses the Koide mass relationship in multiple 
forms, in terms of an energy integral of the general La-
grangian density form 

 1
Tr

2
F F L , 

with general field strength (4.2). This means for any Ko- 
ide triplet of given empirical R, there is an energy RE

 2 3d 0

x

RF x 

 
which vanishes under condition: 

  3d

Tr

RE R

F F

 

 





L L
      (4.7) 

This is the Lagrangian/energy formulation of the Ko- 
ide relationship (3.9), and although different in appear- 
ance, it is entirely equivalent. So, for example, using the 
symbol   as in Figure 1 and Table 3 of [8] to repre- 
sent the three generations of the fermions for any given 
charge, the four Koide relationships (3.14) through (3.17) 
for the pole (low probe energy) masses may be written as 
in the entirely equivalent, alternative form: 

36
d

5

6
Tr

5

E x

F F

 
   
 

 





L L

       (4.9) 



3

2 3

6
d

5

6
Tr d 0

5

uE x

F F F x

 
   
 
    
 





L L

      (4.10) 



3

2 3

15
d

11

15
Tr d 0

11

dE x

F F F x

 
   
 
    
 





L L

, ,

     (4.11) 



Whether these become exactly equal to zero for 
masses at high-probe energies, and whether there is an 
underlying action principle involved here, are questions 
beyond the scope of this paper which are worth consid- 
eration. 

What ties all of this together, is that we model the ra- 
dial behavior of each fermion in the triplet 1 2 3    
using the Gaussian ansatz borrowed from Equation (14) 
of [3] and introduced in (9.9) of [1] which is reproduced 
below with an added label  for each of the 
fermions and masses in (4.2): 

1, 2,3i 

      

2 3d 0F x
   
 

       (4.8) 

23
02 4

2

1
π exp

2
i

i i i
i

r r
r u p 

  
  
 
 

 m

, (4.12) 

and that we also relate each reduced Compton wave- 
length i  to its corresponding mass i  via the De- 
Broglie relation i im c  , see [1] following (11.18). 
This is what makes it possible to precisely, analytically 
calculate the energy in integrals of the form (4.3), spe- 
cifically making use of the mathematical Gaussian rela- 
tionship (9.11) of [1]: 

 2

0 3
3 2

32

1
exp d 1

π

r r
x

 
  
 
 

 


,    (4.13) 

and variants thereof. It is (4.12) and (4.13) and 
1 mi i 1c (in    units) which tie everything 

together at the “nuts and bolts” mathematical level when 
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(4.2) is employed in (4.3) through (4.11). And this is 
what leads to accurate mass relationship (1.1) and bind- 
ing energy predictions (1.2) and (1.3), as well as the 
binding energy predictions for 2H, 3H, 3He and 4He and 
the proton-neutron mass difference (1.4) found in [5]. 

The final piece which also ties this together at nuts and 
bolts level, is the empirical normalization for fermion 
wavefunctions developed in (11.30) of [1], namely: 

 
 

 
 

2 2

2 2

1

242 2

E m

m m

 

24n 

4 1

f

E m
N

n
  ,      (4.14) 

where f  is the total number of fermions over 
three generations including three colors for each quark.  

Now, it is important to emphasize that the Gaussian 
ansatz (4.12) is not a theory, but rather, it is a modeling 
hypothesis that allows us to analytically perform the 
necessary integrations and calculate energies which for- 
tuitously turn out to correlate very well with empirical 
data. That is, explicitly in [1] and implicitly in [5], we 
hypothesized that the fermion wavefunctions can be 
modeled as Gaussians with specific Compton wave- 
lengths 1 m i i  defined to match the current quark 
masses, we performed the integrations in (4.3), and we 
found that the energies predicted matched empirical 
binding data to—in most cases—parts per million. This, 
in turn, tells us that for the purpose of predicting binding 
energies, it is possible to model the current quarks as 
Gaussians (which means they act as free fermions), with 
masses and wavelengths based on their undressed, cur- 
rent quark masses, and to thereby obtain empirically- 
validated results. 

But, as also discussed at the end of Section 11 in [1], 
this use of a current quark mass does not apply when it 
comes predicting the short range of the nuclear interac- 
tion which we showed at the end of Section 10 in [1] is 
indeed short range with a standard deviation of 

1 2  
85.65

. For, if we use the current quark masses that 
work so well for binding energies, we find u F

41.04
 

and d F , and the predicted short range is still 
not short enough. If, however, we turn to the constituent 
quark masses which, at the end of Section 11 in [1], for 
estimation, we took to be 939 MeV/3 = 313 MeV, then  

we have 0.63F  and 0 4
1

2
. 5F  

4 3 2

, which tells  

us that the nuclear interaction virtually ceases at about 
F  

, ,m m m

2 d um m

. This is exactly what is observed. 
In both cases—for nuclear binding energies and for the 

nuclear interaction short range—we found that the Gaus- 
sian ansatz (4.12) does yield empirically-accurate results. 
But for binding energies, it was the undressed, current 
quark masses which gave us the right results, while for 
nuclear short range, it was the fully dressed, constituent 
quarks masses that were needed to obtain the correct re- 

sult. 
Because we shall momentarily embark on a prediction 

of the fully dressed rest masses 938.272046 MeV and 
939.565379 MeV of the free neutron and free proton, 
what we learn from this is that while we might also be 
able to approach the neutron and proton masses using a 
Gaussian ansatz for fermion wavefunctions, we will, 
however, need to be judicious in the fermion wavefunc- 
tions we choose and in the masses that we assign to the 
fermions. That is, the focus of our deliberations will be, 
not whether we can use the Gaussian ansatz, but on how 
to select the fermion wavefunctions and masses that we 
do use with the Gaussian ansatz, in order to obtain em- 
pirically accurate results. 

Now, with all of the foregoing as background, let us 
see how to predict the neutron and proton masses. 

5. Predicting the Neutron plus Proton Mass 
Sum to within about 6 Parts in 10,000 

Because we can connect any Koide matrix products to a 
Lagrangian via (4.4) and (4.5), let us work directly with 
the Koide matrix (2.1) to determine how to assign the 
masses 1 2 3 so as to predict the neutron and proton 
masses. Then at the end (in Section 9), we can backtrack 
using the development in Section 4 to connect these 
masses to their associated Lagrangian. In other words, 
we will first fit the empirical mass data, then we will 
backtrack to the underlying Lagrangian. 

Each of the neutron and proton contains three quarks. 
The sum of the current quark masses is    

 for the neutron and 12.0367331 MeV 2 u dm m 
9.35405514 MeV

2.223792405 MeVm

 
 for the proton, using  

u   and d  
earlier introduced before (3.12) as developed in (10.3) 
and (10.4) of [5]. For a free neutron and proton, none of 
this rest mass is released as binding energy, and so these 
quark mass sums are fully included in  

N

4.906470335 MeVm 

939.565379 MeVM   and P  
respectively, where we use an uppercase M to denote 
these fully-dressed, observed masses. As demonstrated in 
Sections 11 and 12 of [1] and throughout [5], these rest 
masses are reduced when the neutron and proton fuse 
with other nucleons. But for free protons and neutrons, 
the entire rest mass is retained and all of the latent bind- 
ing energy is used to confine quarks. 

938.272046 MeVM 

928.91799152 MeVP P u dm M m m

This means the “mass coverings” m (using a lowercase 
m) for the neutron and proton may be calculated to be: 

   

927.52864572 MeVN N u dm M m m

,   (5.1) 

.   (5.2)    

1 2 3AB BA

These mass coverings m represent the observed, 
fully-dressed neutron and proton masses M, less the sum 
K K m m m   of the current quark masses, 
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1 2 3d m m m  
3m m

Copyright © 20

,m m
,um m m 

with u  for the proton, and  

1 2 d  for the neutron, see (2.4). One 
may think of P

release energies of all the 1s nuclides with very close 
precision. We shall wish to add to this toolkit here, and in 
particular, will wish to refine our use of the Fermi vev vF 

= 246.219651 GeV beyond what is shown in (5.4). Spe- 
cifically, as noted after (3.8) of [8], we need to put (5.4) 
“and like expressions into the right context and obtain the 
right coefficients. And where do such coefficients come 
from? The generators of a GUT!” 

m  and Nm

37 

3

MeV

3P u dm m 

 as weights of rather heavy 
“clothing” “covering” “bare” quarks. The sum of these 
two mass covers is: 

1856.4466
N P Nm m M M  


       (5.3) 

Now, at the end of Section 10 of [5], after deriving the 
neutron minus proton mass difference (1.4), we noted 
that the individual masses for the neutron and proton 
could now be obtained by deriving some independent 
expression related to the sum of their masses, and then 
solving these two simultaneous equations—sum equation 
and difference equation—for the two target masses, 
namely, those of the neutron and proton. We shall do 
exactly that here. In particular, it will be our goal to de- 
rive the sum N PM M

n u d

 of these two masses, and then 
use (1.4) as a simultaneous equation to obtain each sepa- 
rate mass. The benefit of this approach using a sum, re- 
ferring to the so-called mass “toolbox” in (4.11) of [5] 
and also the discussion of the alpha nuclide following 
(5.4) of [5], is that in selecting mass terms to consider, 
we can eliminate any candidates not absolutely symmet- 
ric under  and  interchange, because the 
sum 

p 
N PM M  contains three up quarks and three down 

quarks, as well as one neutron and one proton. Our em- 
pirical target, therefore is the mass sum N PM M 

1856.446637

 
 But we can alternatively find this by 

finding the mass cover sum P N  
 of (5.3) to which we can then readily add 

. These sums are what we now seek to predict. 

1877.837425

MeV
3 3u dm m

MeV
m m 

We now return to use the “clues” laid out in (3.6) 
through (3.8) of [8]. We start in the simplest way possi- 
ble by focusing our consideration on (3.8) of [8], repro- 
duced below, but multiplied by a factor of 2 and sepa- 
rated into 4

F uv m  and 4
F dv m  in the second term, 

thus: 

2424 42 2

MeV1803.670518

F u d F u F d F u dm v m v m v m d  



v m
   (5.4) 

Here, vF = 246.219651 GeV is the Fermi vev. Because 
this is about 3% smaller than P N  in (5.3) and is 
closer to 

m m
P N  than either (3.6) or (3.7) of [8], and 

also is symmetric under  interchange, we shall 
see if (5.4) can be used, by itself, to provide the founda- 
tion for hitting the  mass 
target (5.3). As we shall, it can be so used! 

m m

m m

u d

.446637 MeV

1856.446637 MeV

1856P N 

Now it is time to “cash in” on the GUT we developed 
in [8] to obtain the coefficients needed to bring (5.4) 
closer to the target mass of  in (5.3). 
Because the vev that seems based on (5.4) to bring us 
into the correct “ballpark” is the Fermi vev, we focus on 
electroweak symmetry breaking which occurs at the 
Fermi vev, and which, in (8.2) of [8], is specified by 
breaking electroweak symmetry using electric charge 
generator Q via:  

  

In (4.11) of [5], we developed a “toolkit” of masses 
which we used for calculating the binding and fusion  

diag diag

2 1 1 1 2 2
0, , , , 1, , , diag

3 3 3 3 3 3

i
F iF

F F

T

v v Q

 

       
 

 , ,d u u

    (5.5) 

For the proton with a fermion triplet , the 
corresponding eigenvalue entries in (5.5) above are 

1 2 2
, ,

3 3 3F F Fv v v
  
 

 , ,u d d

. 

For the neutron and its  triplet, the entries 
are 

2 1 1
, ,

3 3 3F F Fv v v
   
 

. 

We now wish to use these to establish Koide triplet 
matrices for the neutron and proton which can then be 
used to generate the sum of their masses. 

Looking at these vacuum triplets 

1 2 2
, ,

3 3 3F F Fv v v
  
 

 

and 
2 1 1

, ,
3 3 3F F Fv v v

   
 

, 

we see that to match the mass dimension 
1

2
 of the terms  

with 4 vmu  and 4 vm

 , ,m m m

d  in (5.4) and use these as Koide 
triplets, we will need to take the fourth roots of these 
vacuum triplets. So we do exactly that, and pair these 
triplets with the mass triplets d u u  and 
 , ,m m mu d d  for which we also take the fourth root to 
match (5.4). Thus, we use 

0.5 4 4 4
1 2 2 1 2 2

, , , ,
3 3 3 3 3 3F F F F d F u F uv v v i v m v m v m

           
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and 

0.54 4 4
2 1 1 2 1

, , ,
3 3 3 3 3F F F F u F dv v v v m i v m    

 
0.5 1

,
3 F di v m

 
  
 

 

 

to define two new Koide triplets, one for the neutron and 
one for the proton, as follows: 

 

4

0.5 4

2

3

1

3

0 0

F u

AB F d

v m

K N i v m











0.5 4

0 0

0 0

1

3 F di v m





 
 
 
 





 (5.

6) 

 

0.5 4

4

1

3

2
0

3

0 0

F d

AB F u

4

0 0

0

2

3 F u

m

v m












i v m

K P v












   (5.7) 

What we have done here is simply develop (5.6) and 
(5.7) to match the mass dimensionalities in (5.4) while 
bringing in the coefficients from (5.5) which reflect the  

electric charges of the up and down quarks. We see that 
because of the negatively-signed (-) charge for the down 
quark, of which we have taken the fourth root, each of 
these triplets contains components with the complex co- 
efficient  

 0.54

2
1 1

1
i i    . 

In recent years, consideration has been given to having 
negative square root terms in Koide mass relations, see for  

example (3.21) in which one uses sm  to derive a  

close relation for the csb

0.5i

0.5i

   

 triplet (see Rivero’s original 
finding of this in [11]). The above, (5.6) and (5.7) take this 
a step further, because they raise the specter of Koide 
triplets with complex square root coefficients! In the next 
Section we explore the profound implications of these 
complex coefficients, which arise from the oppositely- 
signed charges of the up and down quarks. But for the 
moment, we ignore  in the above and examine mag- 
nitudes only, and form and calculate the following Koide 
matrix product from (5.6) and (5.7) with  excised: 

 

4 4

4 4

4 4

24

1 2
0 0 0 0

1857.570635 Me

3 3

2 1
Tr

V

0 0 0 0
3 3

2 1
0 0 0 0

3 3

2
3

9

F d F u

AB BA F u F d

F u F d

F u d

v m v m

K P K N v m v m

v m v m

v m m

    
    
    
    
     
    
    
    
   

         (5.8) 

     

  

 Observed
1856.446637 MeVP Nm m 

   
 

 

Comparing to (5.3) which tells us that  

 

we see that we have hit the target to within about 0.06%! 
That is: 

Observed

1857.570635 MeV

1856.446637 MeV

1.000605457!

BA

N P

K P K N

m m






AB

   (5.9) 

This is extremely close, and in particular, we now see 
that the sum of the neutron and proton mass coverings 
may be expressed solely as a function of the up and down 
quark masses and charges and the Fermi vev to within 
about 6 parts in 10,000! So if we use this close relation- 
ship to hypothesize that a meaningful relationship is given 
by    m m K P K N 

3 3m m
N P AB BA , then using the above 

with (5.3) to add the current quark masses u d  to 
this mass cover sum, we see that to within about 0.06%: 

 

    24
2

3 3 3 3 3 3 3
9

M N P N P u d AB BA u d F u d u dM m m m m K P K N m m v m m m m           .       (5.10) 

 

So it appears as though we have now discovered the 
correct coefficients for the “clue” in (5.4). These coeffi- 
cients, which are based on none other than the electric 

charges of the quarks, yield the neutron plus proton mass 
sum to 6 parts in 10,000! 

Further qualifying (5.10) as a proper and not merely 
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coincidental expression for the neutron plus proton mass 
sum, we see that this is symmetric under  inter- 
change, and that it is formed by taking the inner product 

AB BA

u d

   K P K N  of the Koide proton matrix  K P  
and the Koide neutron matrix  K N , which product is 
symmetric under  interchange. Further, both of 
these fully embed the electric charges and mass magni- 
tudes of the current quarks as well as the Fermi vev. So 
in sum, (5.10) makes sense on multiple bases: it yields an 
empirical match to within 6 parts in 10,000; it is the 
product of a proton matrix with a neutron matrix; the 
proton matrix contains the masses and charges of two up 
quarks and one down quark while the neutron matrix 
contains the masses and charges of two down quarks and 
one up quark; and it is fully symmetric under both 

 and  interchange. 

p 

p n

n

u  d
Furthermore, if we divide (5.8) by 2, we see that: 

   
24

2

3 2

2 9
928.785

AB BA

F u d

K P K N

v m m  3174 MeV

179915 MeV

    (5.11) 

This actually falls between  
and N  from (5.1) and (5.2), so 
(5.10) clearly appears to be a correct expression for the 
leading terms in the neutron and proton masses. Based on 
this close concurrence and “threading the needle” be- 
tween the neutron and proton masses with (5.11) and all 
of the appropriate symmetries noted in the previous 
paragraph, we now regard (5.10) as a meaningful (rather 
than coincidental) close expression for 

928.9Pm 
6457 MeV927.528m 

P NM M  to 
0.06%. 

It will simplify and clarify the calculations from here 
to use an uppercase M notation to define what we shall 
hereafter refer to as “vacuum-amplified” up and down 
quark masses according to: 

604.1
2

3u F uM v m  751345 MeV ,    (5.12) 

634.5
1

3d F dM v m  784463 MeV .    (5.13) 

Consequently: 

24 619.1
2

9u d F u dM M v m m  902116 MeV . (5.14) 

With these definitions, the neutron plus proton mass 
sum (5.10) may be rewritten more transparently as: 

 
3 3

3

N P N P u d

u d u d

M M m m m m

M M m m

 

 

 

  


     (5.15) 

0.5 0 0

0 0

0 0

d

AB u

u

i M

K P M

M

 
 
 
 
 
 

 

while the Koide mass matrices (5.6) and (5.7) for the 
neutron and proton become: 

,      (5.16) 

0.5

0.5

0 0

0 0

0 0

u

AB d

d

M

K N i M

i M

 
 
 
 
 
 

.   (5.17) 

These matrices now restore the  0.5 1
1

2
i i   coef-  

ficient that we excised to calculate (5.8). Thus, as in (5.8), 
but including this complex factor, we now take: 

   

 

0.5

0.5

0.5

0.5

0 0

Tr 0 0

0 0

0 0

0 0

1
1857.570635

0

M V1
2

0

3 e

AB BA

d

u

u

u

d

d

u d

K P K N

i M

M

M

M

i M

i M

i M M i

 
 
 
 
  

 
 
 
 

  

  

 (5.18) 

Having found a very close magnitude, we could make 
use of a 2  factor and continue to match the empirical 
data by writing     2 Re AB BA P NK P K N m m  . 
But this just sidesteps understanding the meaning of this 
complex coefficient and it does not help us past the 
0.06% difference that still remains between the predicted 
and the empirical data. 

We now need to find a more fundamental way to un-
derstand this complex factor, as well as how to close the 
remaining 0.06% gap between the predicted and the ob-
served neutron plus proton mass sum. That will be the 
subject of the next two Sections. 

6. Exact Characterization of the Neutron 
and Proton Masses via a Mixing Angle θ 
and Phase Angle δ 

The complex factor  0.5 1
1

2
i i  which arises from   

the oppositely-signed up and down quark charges, as we 
shall now see, is actually like the subtle clue in a good 
detective story which, when pulled like a small thread 
and pursued to its logical end, eventually cracks the en- 
tire mystery. So, let us start to pull on this thread and see 
where it leads us. 

Copyright © 2013 SciRes.                                                                                 JMP 
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  0.5

1 1 1

1 1

exp 0 0 0 0

0 cos sin 0 1 0

0 sin cos 0 0 1
AB

i i

U


 
 

  
        
    

13 SciRes.    

We first represent this factor  1
1

2
  in te0.5i i rms 

of a phase angle    defined such that π 4   , so that:  
 

. (6.5) 

   0.5 1 exp
1

2
cos sini i i i         .  (6.1) 

Then, we br me 

So (6.5) sandwich-multiplied by (6.4) simply general-  

iefly rena K K   and use this phase 
to rewrite (5.18) as: 

   

 

e 0 0

0

0 0

0 0

0

e

u

u

i
d

N P

K N

M

M

M

M

M

M

i M M m m

















 
 
 
 
  

 
 
 
 

  
    

     (6.2) 

 expi i

Tr 0

0 e

0 0

3exp

AB BA

i
d

u

i
d

u d

K P

with 0.5    in separate matrices (5.16), (5.17) 
en we use thalso. is to rewrite mass sum (5.15) with 
 0.5 expi i

Th
   restored as: 

  
3

3 exp

N P u d

u d u d

M M m3N Pm m m

M M i m m

  

  
   (6.3) 

where we have also br d 

   

iefly rename M M   and 

, ,P N P Nm m , all with π 4   . 
is importaNow, ( nt, because it gives us an oppor- 

tu
atrix

6.3) 
nity to define a new Koide matrix AB  which we shall 

refer to as the “electron generation m ”   as such: 

4 0 0M M

3 0 0

0 0

u d

AB u

d

m

m


 
  
 
 
 

.     (6.4) 

Then, making note o se  exp if the pha    which mul-
tiplies u dM M  in (6.3) and keep ind how the 
Kobaya askawa mixing matrices are formed for 
three generations, we introduce a new angle 1

ing in m
shi and M

  such 
that 1 0    and form a unitary matrix 1U   with ie   : 

izes the appearance of the term 0.5
u di M M  in (5.18). 

But now let us permit both   and   to rotate freely, 
   ,   

0

. Then, using (6.4) and (6.5), we may 
form the neutron plus proton mass sun according to 
Equation (6.6) at the bottom of the page. 

    and  For the special case where 
π 4    , (6.6) precisely reproduces (6.3). But in 

(6.6) we have removed the approximation sign   that 
was in (6.3), because we are now going to define the an-
gles , 

,

 so as to precisely match up with the empirical 
values of the neutron and proton masses. That is, just as 
(1.4) is an exact formula for the proton-neutron mass 
difference, we shall now regard (6.6) as an exact formula 
for the neutron plus proton mass sum, with the numerical 
values of    defined by empirical data so as to make 
this an exact fit. 

Now before we proceed, let us pause to make clear, 
the cascading detective work we have just done: We have 
used the matrix  0.5diag ,1,1U i  implicit in (6.3) and 
explicit in (6.5) as a hint that there exists a matrix 

   diag exp ,1,1U i   with π 4   . Then we use 
   diag exp ,1,1U i   as a further hint that there exists 

a matrix (6.5). Then we allow both of these angles to 
freely rotate to form (6.6) which generalizes (6.3). Fol-
lowing all of this, we will use these freely rotated angles 
to permit the otherwise close relationship (6.3) to be fit-
ted exactly by empirically choosing these angles so as to 
yield an exact fit. 

But before we do this, however, there is a final, deep 
cascade to this hint, which is to recognize that (6.5) with 
angles free to rotate is one of the three matrices used to 
define the CKM matrices used for electroweak genera- 
tion mixing, see (7.11) in [8], and in particular, is the 
matrix that is use to introduce the phase angle response- 
ble for CP violation. We also see that (6.4) is strictly a 
function of the first (electron generation) quark masses 
and the Fermi vev which makes its upper left component 
4

u dM M  containing the “vacuum-enhanced” quark 
 

 

 
 

4 4

1 1 1

1 1

1 1 1

1 1

0 0 0 0exp 0 0

3Tr 0 0 0 cos sin 0 0

0 sin cos0 0 0 0

0 0

3Tr 0 cos sin 3 exp cos co

0 sin cos

u d u d

N P AB BC CA u u

d d

u d

u u d u d u d

u d d

M M M Mi

M M U m m

m m

M M

m m m M M i m m

m m m


 
 

   

 

                            
 
 
    
 
  

 1s

 (6.6)
exp i
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masses substantially larger than its middle and lower 
righ onen 168,758 MeV

2

3t tM vm  ,        (6.10) t comp ts u  and m dm . 
KM mixing has two more matrices and also 

mixes two more generations, let us now form two more 
  and   analogous to (6.4) for the muon 

and ta n generation of quarks, following the pattern for 
mi  the original parameterization of Kobayashi and 
Ma . Thus, we put the large nts 

Because C

18,522 Me
3

V
1

b bM vm  ,        (6.11) 

which yields the higher-generation analogues to (5.14): 

matrices 
uo

xing in
skawa  compone 4

c sM M  
and 

6356 MeVc sM M  ,             (6.12) 
4

t bM M  into the And, as a 
atter of convention, we keep th ic charge = 

n and n matrices as: 

lower right positions. 
e up (electrm

+2/3) series of mass terms in the middle position. Thus 
we define the muo  tauon generatio

4

4

0 0

3 0 0 ;

0 0

0 0

3 0 0 .

0 0

s

AB c

c s

b

AB t

t b

m

m

M M

m

m

M M

 
 
  
 
 
 
 
 
  
 
 
 

       (6.7) 

55,908 MeVt bM M  .            (6.13) 

These values are calculated from the
laid out prior to (3.12), rounded to the nearest MeV 
(recognizing substantial experimental un

We also define two more matrices an
s 
 

in [8]: 

2 2

2 2 2

cos sin

sin cosABU

 
 

 
   

, analogously to (6.6), for the second and third 
generations, respectively, we form: 

At the same time, analogously to (5.12) and (5.13), we 
define the vacuum-enhanced higher-generation quark 
masses: 

14,467 MeV ,  
3

2
c cM vm         (6.8) 

 PDG data [10] 

certainties). 
alogous to (6.5) 

for the second and third generations in same manner as i
used to form the CKM mixing matrices, again see (7.11)

3 3

0 0 1

cos sin 0 

 
 

 
        (6.14) 

3 3 3sin cos 0 .

0 0 1
ABU     

 
 

Then

0

0 ;

2792 MeVm  ,           (6.9) 
1

3s sM v

 

 
2 2

2

cos sin 0

0 3 cos co

s s c

c s c s

c s

m m m

M M m m

M M

 

2 2 23Tr sin cos

0 0

AB BC CA s c cU m m m 2s    


 

 



 
 

   



 ,    (6.15) 

 
3 3

3 3 3

cos 0

3Tr sin cos 0

0

b b

b t t

m m

U m m m

 

3 33 cos cost b t b

t b

M M m m

M M

sintm

0

AB BC CA   

 
 
  

 
 

iply all three of (6.6), (6.15) and (6.16) 
together in the same manner that the Cabibbo mixing 
matrices are formed, again see (7.11) in [8], to obtain a 

master “mass and mixing matrix”   with mass dimen-
sion +3, defined as: 

 

  


.      (6.16)  

 

Then, we mult

2 1 3

1 2 3 1 2 3

1

2 3 2 3

1 2 31 2 3

e e

  
27

u s c b t u s c t

u d s c t bi i
u d s b u d s b t

u c tu c b t

t

s

U U U

m m m m m c s s m m m m c s c
m m m m M M s s

M M m m c c M M m m m c s

m m m c c cm m m m c c s
m m m M M s c

m

 

         



 




2

1 2

2 32 3
ee

u d c bii
u d c b tu d s c b

u d c s b t

M M m m m s sM M m m m s c

m m M M m m s

 

1 3 1 3u c s ts m m M M m s c

 
 




1d d c s t bm M M M M c

 
 


 
 




 

    (6.17) 

 



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This master matrix contains all six of the quark masses 

in all three generations, all three of the real mixing an- 
gles and the one phase angle that appears when the three 
generations are mixed, and implied in the vacuum-en- 
hanced mass terms, the Fermi vev and the electric 

charges of all of these quarks. If all of the masses are set 
to equal 1, this reduces to the usual generational mixing 
matrix in the original parameterization of Kobayashi and 
Maskawa, seen in, e.g., (7.11) in [8]. In the circumstance 
where 2 30, 0s s  , this reduces to: 

 

1 1

1 1

e 0 0

27 0            cos sin

0 sin cos

i
u d s b

u c t u d c t b

u d c s t d c s t b

M M m m

m m m m m m M M

m m M M m m M M M M



 

 

 
 
  
 
  

.          (6.18) 

 
and in the further circumstance where all of the second and rd generation masses are set to 1, this further reduces to 9 
times the matrix shown in (6.6): 
 

 thi

e 0 0i
u dM M 

1 1

1 1

27 0 cos sin

0 sin cos

u u d

u d d

m m m

m m m

 

 



  
 
  

.                                  (6.19) 

 
 neutron plus proton mass sum of (6.6): 


 

So in this particular special case, (6.17) even contains the
 

  1
Tr 3 exp cos cos

9 u d 1 1u d N PM M i m m M M        !                          (6.20) 

 
So this neutron plus proton mass sum now is a special 

case of (6.17) which includes all the generation mixing 

a

shion from the simple hint of a matrix with 
 0.5diag ,1,1U i  in the neutron plus proton mass for- 

mula (6.3), with the 0.5i  itself having emerged from the 
simple f

d angles and all the quark masses and their electric charges 
and the Fermi vev! 

Consequently, one expects that (6.17) can be used to 

signe

g in substantial new insights into fermion and baryon 
asses generally. And all of this emerges in cascade m

fa

act that up and down quarks have oppositely- 
charges which led to terms containing 4 1  

when
Such is t

 we formed Koide matrices to represent masses. 
he nature of this detective mystery! 

igression of (6.7) 
eturn to solve (1.4) 

and (6.6) as simultaneous equations, that is, we now 
solve the simultan

 

With the important contextual d
through (6.20) as backdrop, we now r

eous equation set: 

  
   

1 1

3

2

cos

2π  

dm3 exp co

3 2 3

P N u d u

N P u d μ d

M M M M i m

M M m m m m m

s

u

  
                               (6.21) 

We now need no more than elementary algebra to determ e that the neutron and proton masses, separate
given by: 
 

   


     

 
in ly, are each 

       
3

3 2 3d u d μ d um m m m m m
   

        

2

3

1

2π

1
3 exp cos

2

u

P u d u d uM M M i m m m 

 

      
 

      (6.22) 

 
These can be made into exact theoretical expressions 

fo

1

1
3 exp cos

2N u dM M M i m  
 

23 2 3 2πd μ d um m m m 

r the neutron and proton mass by solving for 1,  , to 
find their 

will need to form the square modulus magnitude 
empirical values based on the empirical neu- 

 and proton masses. Let’s now do so. on

Because each of (6.22) contains a complex phase, we 
 

2
M M M  of these masses. So first we deduce: 

   tr
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     

     

     

     

3
2

2
1

23

2
1

3
2

4 9 6cos 3cos 3 2 3 2π

3cos 3 2 3 2π ;

3 2π

N u d u d u d u d μ d u

u d u d μ d u
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m m m m m m m

m

m m

 



 

        
 

       
 

       



        (6.23) 

 

1

23 2 3 2πd u d μ d um m m m m 


Now we solve these as simultaneous equations for 

1

1

4 9 6cos 3cos

3cos 3 2

P u d u d u

u d u d μ

M M M M M m

m m m m m




    


23

2



  and . First we restructure (6.2  terms of 3) in   to arrive 
at: 
 

     

     

     

     

23

2

3

2

23

2

3

4 9 3cos 3 2 3 2π
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6 3cos 3 2 3 2π

4 9 3cos 3 2 3 2π
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u d u d u d μ d u

P u d u d u d μ d u
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







        
 

      
 

        
 

 

           (6.24) 

We now set t ese two cos

2

1

1

2

1

2
16 3cos 3 2 3 2πu d u d u d μ d uM M m m m m m      

 
 

h   equal to one another to 
eliminate   and solve for  . It will be easier to see the 
underlying e of these equations as well as solve 
them if we write (6.24) above as: 

 
 

 structur

 
 

2

1

1

2

1

1
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A
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A
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





 


 


           (6.25) 

using the following substitution of variables: 

cos
N B

C

P B

 



   

 

2

2

3

4 9 ;

4 9

3 2 3

3 ; 6

N u d
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B m m C M M



 

 

   

  

   (6.26) 

Next, we reduce the second and third terms of (6.25) 
successively in five steps as follows: 

 



    

22π ;
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  

   



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In the final step, we arrive at a quadratic for 1cos

1 1 1

2 2
1 1 1

1

1) : cos cos cos

2) : cos cos cos

cos
3) :

N B A A P B

N B A B A B A

N B A P
A

  

  



     

    


 

1cosB A 

1 1cosA P B  

3

   (6.27) 

 , 
and so obtain a solution via the quadratic equation. Then, 
we use the variables (6.26) including the empirical 
masses of the neutron and proton, to calculate that: 

    2 2 4

1

0.94745412

8 2
os

4
2

c

4

N P N P A N P A

AB


     




(6.28) 

Additionally, 0.3198sin 91671  . In the above, we 
use the negative root, because this yields 11 cos 1   . 
This means the empirically-determined value of 1  is: 

1 0.32561515rad 18.65637386

π 9.64817715

 

 

     (6.29) 

We shall refer to 1 0.947454co 2s 124   in (6.28) 
used to precisely fit (6.22) to the observed neutron and 
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proton masses as the “nucleon fitting angle”. In the next 
Section we shall show how to tie this angle to the ob- 
served CKM mixing angles, so it is not a “new” angle, 

but is related to other known mixing data. 
Now, we use (6.28) in (6.25) to solve for  , and cal- 

culate to find that: 
 

     
     
     
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2
2 2 4

2 2 4

2
2 2 4

2 4

8 2 4
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

         
 
        
 

         
 
   


                  (6.30) 

This numerical calculation reveals that cos 1

2
8C N P N P A


    


 
  , ex- 

actly, to all decimal places, so the phase factor 0  . 
This means that when the variables in (6.26) are 
tuted into (6.30), the extremely unwieldy-looking result- 
in ill reduce to 1 ident

substi- 

g expression w ically! So to the ex- 
tent that   may be a CP-violating phase t 

0
, and given tha

   is a deduced result for the neutron and proton 
m this deductively tells us that there are no asses (6.22), 
CP-violating effects associat n and proton. 

in the circum-
st

24

ed with neutro

This is validated by empirical data which shows the mass 
of the antiproton is equal to that of the proton, and the 
mass of the antineutron is equal to that of the neutron, 
see, e.g., [12,13]. So, we take (6.22) to be exact formula-
tions of the neutron and proton masses, 

ance where empirically-determined angle  

1 0.947454cos 12   and CP-violating phase 0  . 
So we now return to (6.22), set 0  , and so obtain 

our final expressions for the neutron and proton masses: 
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which are exact relations with th rical substitution 

1 0.947454 2s 124

3
           (6.31) 

N u

P u

 

 

e empi
 . 

able us to

back to the masses (nuclear weights) for the 1s nuclides 
predicted in [5] to high accuracy and rewrite (8.6), (8.1), co 

These relationships (6.31), in turn, now en  go (8.3) and (8.5) of [5], respectively, as: 
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
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Now, 0 ,A A

Z P N ZB ZM NM M    which is binding 
energy B  for any given nuclide with Z protons and N 

neutrons hence A = Z + N nucleons, thus 2N Z A Z   , 
may also be rewritten generally in relation to nuclear 

3

210 10 16 2πu d d u u dm m m m m m  
       (6.35) 

u m m m m   

0
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weights using (6.31), in the form: 
 

    
 

0 1

3 21
3 cos 2

2 2π

d μA A
Z Z u d u d u
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2
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         (6.36) 

 
One final exploratory exercise of interest is to return to 

he master mass and mi g matrix  in (6.17) and set 
2 3 0

t xin
     while using 1 0.947454co 2s 124    
found in (6.28). In this circumstance, (6.17) reduces to: 
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.                  (6.37) 

 
Th

root, an
ated with the neutron plus proton mass sum) to get mass 

nu that should be related to ind

is is in dimensions of mass3. If we take the cubed 
d divide by 2 (because we know that this origi- 

n
mbers ividual baryons, we 

find  

 31
diag MeV939.72 ,1163 MeV  ,17 MeV73

2
 

(and we also get a coefficient 3 27 2 3 2 , back to 
e neutron mass 

 expected a priori, 
Koide!). This first entry is very close to th
939.565379 MeV which would not be

ut this is because b 630 MeVs bm m   which is not too 
far from 619 MeVu dM M  . Perhaps this is yet an- 
other close relationship among ferm n masses!? The io
eco would become smaller s nd entry at 116

 2 30,
3 MeV, which 

0when   
ss of the 0

d readily be com

, is only ab
  1115.68uds 

pensated by 

out 4% larger than the 
3 MeV  baryon, which 
non-zero 2 3,

ma
coul    angles 

 charm and top quark 
eV, is perhaps sugges- 

ply pointed out in an 
ted that   in (6.17) 

is just one representation of a mass/mixing matrix and  

that one can also vary the way in which o
Koide triplets (6.4) and (6.7), so as to be able to obtain 
this 

as 
a

tiv

explo

well as experime
sses. The final e

e (6.37) rela
ratory spirit, an

ntal errors in the
ntry at 1773 M

tionships are sim
d it is to be 

m
e of the   1672.45 MeVsss   baryon mass, 

however, contra, there are no omitted angles and some- 
where we should expect to come across a baryon with a 
third generation quark. 

Thes
no

ne sets up the 

  matrix in several different representations. 

uld be clear that the 
master matrix (6.17) and like matrices that can be simi- 
larly constructed are an exceedingly useful tool for trying 
to develop and fit mutual relationships among mixing 
angles, CP violating phases, and quark an

7. Relation of the Nucleon Fitting Angle θ to 
the CKM Mixing Angles 

- 
cleon fitting angle 1 0.947454co 2s 124

Whatever the correct fits may turn out to be with various 
higher-generation baryons, it sho

d baryon masses. 

Following the development in the last Section, the nu
   found in 

(6.28) is a new empirical parameter that enables us to 
precisely formulate the neut
(6.31). While this is an imp
standing the neutron and proton masses, it would be even 
better if this angle could be related in some way to the 

wn CKM quark mixing

ron and proton masses using 
ortant step forward in under- 

empirically-kno  angles, which 
could then relate the neutron and proton masses them- 
selves to the CKM angles. This is highly preferable to 
having 1cos  be a new, separate parameter. 

12

12 23

12 23 12

0.97427 0.00015 0.2253

ud us ub

cd cs cb

tb

V c c

V V V V s c c

V s s c

Toward this end, we first write the CKM matrix with 
the “standard choice” of angles and its empirical values 
from PDG’s [14] as: 

 

13 12 13 13

12 23 13 12 23 12 23 13 23 13

23 13 12 23 12 23 13 23 13

0.

e

e e

e e

4 0.00065 0.00351

i

i i

i i
td ts

V V s c s

s s c c s s s s c

V V c s c s s c s c c



 

 








 
   

 0.00015
00014

0.0011
0.0005

0.0011 0.000021
0.0005 0.000046

4 0.00016 0.0412

404 0.999146






 
 


 




.            (7.1) 

e lo angles are between 0 and 

 
     

   




0.00029
0.00031

0.22520 0.00065 0.9734

0.00867 0.0


 

 
  

 
(We use a negative sign for the thre wer-left 

empirical entries to match the negative values in the 
terms which the standard CKM matrix takes on when the 

π 2 .) Now, 1cos    
0.9474541242  does not fit any particular one of these 
elements. But what is of interest is the determinant 
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V which may be calculated from the CKM mixing and 
phase angles ij  and   to be: 

1
ud cs tb us cb td ub cd ts

ub cs td us cd tb ud cb ts

V V V V V V V V V V

V V V V V V V V V

  

   
     (7.2) 

and which contains invariant expressions of interest (See 
also [15] which cleverly connects this determinant, when 
real as in the standard angle choice (7.1), to the Jarlskog 
determinant). Specifically, if we employ the mean ex- 
perimental values in (7.1), we find that sum of the three
positively-signed (+) terms in the determinant, denoted

 
 

V ning all nine matrix 

rminant,” is determined from the empirical data in (7.1) 
to be: 


elements, and which we shall refer to as the “major de- 

, which is an invariant contai

te

0.947535

ud cs tb us cbV V V V V V

 


td ub cd tsV V V V

      (7.3) 

This major determinant is  to 1cosvery close    
0.947454 , truncated to the k n of nown precisio V


. In 

fact we find 1cos 0.000 
perimental

0.947192 262V


  if we 
use the lower bounds of all the ex  error ranges 
in (7.1), and 1

e upper bounds. So this is within experimental errors. 
Therefore, using 1 0.94cos 7454

cos 0.0 0.947854 00400V    if we 
us

   as the baseline 
against which to compare V


, we find that: 

0.000400 0.000400
0.1 000262 0.0002620.947454cosV  



  .     (7.4) 

This means that the nucleon mixing angle 1cos



  is 
ated to the invariant scalar rel V


 according to: 

1cos V V V   ud cs tb

us cb td ub cd ts

V

V V V V V V


 
         (7.5) 

which is well within experimental errors! If we now 
take this to be a meaningful relationship given that it falls 
well within experimental errors, this means that we can 
go back to (6.31) and use (7.5) to rewrite the neutron and 
proton masses completely in terms of the CKM matrix 
elements, and specifically in terms of the major determi- 
nant V


, according to: 

  

   

  

   

3

2

2

3 2 3 2π

1
3

2 3 2π

d μ d u

d μ d u

3

2

3

P u d u d u

1
3

2N u d u d uM M M V m m m



    



m m m m

M M M V m m m

m m

   



    

 

nnects the proton and neutron ma

m m




 


This now co sses to 
the major determinant 

  (7.6) 

V


 which is an invariant of the 

CKM mixing matrix V  the 0.06% 
difference of (5.18) between the predicted and the em- 
pirical neutron and proton masses using 1cos

. This not only closes

 , but it 
connects 1cos  to the CKM mixing angles so that (7.6) 
now specifies the exact masses of the free neutron and 
proton as a function of the up and down masses and 
charges and the Fermi vev and the CKM quark mixing 
angles without introducing any new physical parameters 
to do so! Because 1 0.947454co 2s 124   is known  
with better ecision than pr 0.947535V  , w



1cos

e then use  

  as the basis for specifying V


, i.e., we now set: 

1 0.947s 4541242  ,        (7.7) 

which is then a further ingredient used to tighten the em-
pirical data in (7.1). 

Further, because 

coV



V


 injects into the proton and neu- 
tron masses an imaginary term with a Jarlskog deter- 
minant 2

13 12 23 12 13 23 sin CKMJ c c c s s s 
culated using the angles in (7.1) with CKM

 (which may be cal- 
   ), and if 

we wish to maintain the proton and neutron masses to be 
entirely real based on cos 1   (the “nucleon phase 
angle” CKM   ) deduced in (6.30), then we can 
achieve this by restoring the phase to the vacuum-en- 

 as in (6.21), ihanced mass term .e., by restoring 
 expu d u dM M M M i  and then choo, sing  in 

sinu di M M   to absorb the terms with t

det he Ja
ne 

s f V ... 
when the whole determinant is made real” as it is in (7.2). 
Specifically, referring to (7.6), this mean

set 

he Jarlskog  

erminant, again see [15] which shows how t rl-
skog determinant is “the imaginary part of any o ele-
ment among the six component of determinant o

s that one would  

 sin Im 0i M M V m m  u d u d
     to maintain  

CP symmetry for the neutron and proton. Given that 
Im 3V J


  , this means that: 

2
13 12 23 12 13

sin 3

3

u d

u d

u d

m m
J

M M

m m
c c c s s 23 sin CKM

u d

s
M M



 





    (7.8) 

will define a very tiny phase in the term  
 expu dM M i  in the proton and neutron masses such 

that these masses remain real and thus maintain CP 
symmetry. While beyond the scope of this paper, this 
could provide additional insight into the so-called 
CP problem. 

Finally, as regards fermion masses, if we write each 
elementary fermion mass 

“strong 

fm  in terms of the Fermi vev 
using a dimensionless coupling fG  as 2 f f Fm G v , 
see, e.g., (15.32) of [16], then use these relationships in 
(6.17) for   or a similarly-formed matrix in a CKM 
representation (such as 1)), we find that the matrix 
entries will contain terms of the form 3 3 3 4,

 (7.

f F f FG v G v  and 
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depending on representation, 3 5
f FG v . This may help us 

gain further insight into fermion masses as well as 
high-order angian vacuum terms 3 4 5, ,

which specify how much of the observed neutron and 
proton masses arise from each of th  and te quarks heir 
in

much does each down 
masses? In ot

, for 

 Lagr    . 
All of this mystery cracking is the result of the detec- 

tive work embarked upon at the start of Section 6, of 
pulling on the tiny thread of the complex factor 

teractions with the vacuum. The question we now ask, 
referring to the neutron and proton mass formulas (6.31), 
is how much does each up quark contribute, and how 

quark contribute, to these total 
her words, what are the “constituent” 

 

 0.5 1
1

2
i i   which  fourth root   arises from

at em

ide matrices (

 604 MeV

ses whic

on ma

 taking the

anates fro
sitely e up  
in order to form 5.6) a

lues al  
ese “vacu

h qua

the neutron pl

masses of the up quarks and down quarks in each of the 
neutron and proton, as opposed to their bare “current” 
masses? 

Referring to the neutron and proton masses (6.31)

of the minus (−) sign th m the oppo- 
-signed electric charges of th  and down quarks,

nd (5.7). the Ko

 

l between

rk c

us prot

the square root terms u dM M  and μ dm m , w
not directly segregate the up quark mass contri

m that of the down 

e can- 
bution 

fro quark. In these square root terms, 8. Vacuum-Amplified and Constituent 
Quark Masses the up and down are coequal mass contributors. So we 

shall allocate instead. For the term 3 u dM M  in the  

neutron mass, we allocate a 1 u dM M  contribution to  

the one up quark and a total 2 u dM M  contribution to 
the two down quarks. For the proton, we allocate  

1 u dM M  to the one down quark and 2 u dM M  to  

the two up quarks. We similarly allocate the μ dm m  
terms. But as to terms which contain um  alone, o  

ctly to the 
up and down quark constituent masses, respectively. 
Thus, we identically rewrite each of (6.31) while defin- 
ing respective constituent quark mass sums 2

In (5.12) through (5.14) we defined three very helpful 
mass va and 635 MeV. It is 
natural therefore to inquire whether th um-am- 
plified” quark masses might be related to the so-called 
“constituent” quark mas h specify how much 
mass eac ontributes to total mass of a nucleon or 
baryon, as opposed to the bare “current” quark masses. 
Specifically, recalling that these were the ingredients in 

ss sum, we note 2uM  

r dm
alone, we segregate these and apply them dire

 

N NU D   

302.0875673 MeV, 317.2892232MeV2dM   in (5.12) 
ich is about 1/3 of the neutron and proton and (5.13), wh

masses. This suggests that (5.12) to (5.14) may be related 
to the constituent masses of the up and down quarks  

C 3 SciRes.    

and 2 P PU D , as:  
 

   
1u u

   

3 3

2 2

1 3 3

2 2

2 3

3 2π 2π1
2

4 3
2 3 cos

3 2π 2π

μ d u
u d 3 cos

N N

μ d d
u d d

m m m
M M m m

2NM U D
m m m

M M m 


 

 
 


   
 
 

,                (8.1) 

 



  

 


   

   

1 3 3

2 2

3 3

2 2

4 3
2 3 cos

3 2π 2π
2

2 3

3 2π 2π

μ d u
u d u u

1

1

2
3 cos

P P P

μ d d

m m m
M M m m

u d d

M U D
m m m


 
    
 

  

 



,               (8.2) 

butions respectively 
sp

 re
arate contribu

tions emanating from up and down quarks. We then 
separate out the constituent quark masses and calculate 
them using 1 0.947454co 2s 124

M M m 



 



 
with the up and down quark contri

ecified in the upper and lower lines of each of (8.1) 
and (8.2). That is, the abov present a deconstruction of 
the neutron and proton masses into e sep - 

e , as follows:  
 th

 

   
1 3 3

2 2

3

π 2π
314.0092987 MeV

μ d u
u

m m m

 


,             (8.3) 
21

3 cos
2 3 2

N u d uU M M m m

   

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   
1

21 3
cos

2 2 3 2π

μ

N u d d

m
D M M m 


  


 

3 3

2

eV
dm

,      
22 2π



312.7780400 M
3 dm            (8.4) 



   
1

21 3
cos

2 2 3
P u d u uU M M m m


   


 

3 3

2 2π 2 2π
310.0274283 MeV 


.         (8 ) 

3μ d u
m m




   
2

m
.5

   
1 3 3

2 2

2
3 cos

2 3 2π

μ

P u d d

m m
D M M m 


  


 

318.2171900 M
3

eVdm
  .              ) 

1 d 



    (8.6

The first expr 8.3) for 

2π



ession ( NU  is the constituent 
contribution of the uark to the mass of the neutron. 
The second expressi (8.4) for 

up q
on ND  is the constituent 

contribution of eac e two down quarks to the mass 
of neutron. 

h of th
 the PU (8.5) is the constituent contribu- 

 each of the p quarks to the mass of the pro- 
. Finally, 

 in 
two ution of

ton PD  in (8.6) is the constituent contribution 
e down quark e mass of the proton. One can  of th  to th

verify that 2N N NM U D   and 2P P PM U D  ,  

numerically and analytically. It is important to observe  
that N PU U  and N PD D , which is to say that the  

constituent contribution of each quark to the mass of a 
nucleon is not the same for different nucleons, but rather 
is dependent upon the particular nucleon in question, in 
this case, a proton or a neutron. So the lone up quark in 

e neutron makes a slightly greater contribution to the 

This sort of context-dependent variable behavior de- 
pending upon nuclide is to be expected based not only on 
what we uncovered throughout [5], but more generally 
based on the fact that when nucleons bind together, they 
release binding energy, so that different nuclides have 
different weights per nucleon, and indeed, different nu- 
cleons within a given nuclide should be expected to have 
different weights from one another based on their shell 
haracterization. Constituent mass Equations (8.3) through 

 along these same lines, that the constituent 
mass contributions from each quark will differ depending 
upon the particular nuclide in question, and indeed, upon 
the particular nucleon with which a quark is associated 

ithin that nuclide. The above, (8.3) through (8.6), make 
the point that this type of variable mass behavior of indi- 
vidual quarks already starts to appear even as between 
the free neutron and proton. 

We also see that the “vacuum-amplified” quark masses 
(5.12) through (5.14), are not synonymous with con- 
stituent quark masses. These vacuum-amplified masses 
are ingredients which are used as part of the calculation 
of the constituent quark masse
quark masses vary from one nucleon and nuclide and 
nucleon within a nuclide to the next, the vacuum-ampli- 
fied quark masses do not vary. They are mass constants 
(to the same degree that current quark masses are con- 
stants, recognizing mass screening) which do not change 
from one nucleon or nuclide to the next, and which are 
used as ingredients for calculating the 
quark masses, as we see in (8.3) 
for calculating neutron and proton masses (6.31) and 
nuclear weights (6.32) through (6.36). 

ert to the start of Section 5, where we noted 
that we can connect any Koide matrix products to a La- 
grangian via (4.4) and (4.5). Now that we have obtained 
a theoretical expression for the neutron and proton 
masses, it is time to backtrack usin
Section 4 to connect these masses to their associated La- 
grangian expression. This is simply to put all of the 
foregoing into a more formal physics context so that this 
is understood as going beyond si
numbers to make them numerically fit an equation with 
opaque origins. We shall develop such a Lagrangian 
formulation for the neutron plus proton mass sum (6.6), 
recognizing that a Lagrangian connection for the separate 
masses of the neutron and proton ca
using Yang-Mills matrix expressions such as (5.3), (5.4), 
(6.3) and (7.4) of [5] to also develop a Lagrangian for- 
mulation of neutron minus proton mass difference (1.4). 

Using the Pauli spin matrix 2T , a unitary rotation ma- 
trix may of course be formed using:          

th
overall neutron mass than each of the two down quarks, 
and the lone down quark in the proton makes a slightly 
greater contribution to the proton mass than each of the 
two up quarks.  

9. The Lagrangian Formulation of the 
Neutron plus Proton Mass Sum 

Now we rev

c
(8.6) tell us

w

s. While the constituent 

varying constituent 
through (8.6), as well as 

g the development in 

mply playing with mass 

n then be developed 
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       2 3 4

2 2 2 2 2

2 3

2 3

4

4

2

1 1 1
exp 1

2! 3! 4!

1 0 0 0 0 01 1 1

0 1 0 2! 3! 4!

1

3

iT iT iT iT iT    

   
   



     

        
             



               (9.1) 

2 4

3

0 0

1 1
1

2! 4!
1 1

1
3! 2!

  

 

     

    


        





 
Consequently, the square root of this rotation matrix is: 

3

4

0

cos sin!
1 sin c
4!


 


   

 
 

  




 os
 
 
 

 

 2 2p expiT iT

1

2ex

1
sin

2
1 1

cos
2 2

cos
1

2
sin

 
 

 







.                               (9.2) 

ing the phase 


    

  


 
With this in mind we start with the expression (6.6) incl  exp i  which we later found in (6.30) is ud
 exp 1i  , and write the neutron plus proton mass sum us

 
in  root rotation matrix as: g a square

 

2

3Tr 0

0

3 exp c

u d

u d ui M M m 

2

1 1

1

1 1

0 0

1 1
cos sin

2 2
1 1

sin cos
2 2

cos

u u

d d

d

m m

m m

m

1 1

1

N P AB BC CA AB BC
M M U U 1

4 exp

os

CD
U

M M i

DA AB BA

 

 

 












                   (9.3) 



  
 


 






 

 
in combination with a rotated “electron generation matrix” 

         

  



  defined via left multiplication with 1U  as: 
 

4
1

exp 0
2

3 0 co

0 s

u d

AB u

M M i

m

m

  
  

 


  

  
 

1 1 1

0

1
sin

2d CBAC
m U 





 



1 1

1
cos

2dm  

4

1 1

1 1

1
s

2
1

in
2

1
exp 0 0

2 0 0
1 1

3 0 cos sin 0 0
2 2

0 01 1
0 sin cos

2 2

u

u d

u

d

i
M M

m

m



 

 

  
   

    
  
   
      

 

                 (9.4) 

 
and an adjoint matrix defined via right-multiplication with 1U  as: 
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 



  
  

  
 

   
 
  
 

 
  

  
 
 
 
 

1

1 1

1 1
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os

AC CB
U

 

 



 

 


 
 
 
 

 

               (9.5) 

 
.947454 2s 124

  

 

In the above, 1 0co  
mber found in (6.28), 

 is the empirical 
nu and 0   is identically true as 
f ABound in (6.30). The above,   and AB , are just the 
Koi  the electron generation 

ltiplying from the left and  

fr

de triplet matrix AB
tated into primed state by m

 for
uro

om the right via 1 CBAC
U   and 1AC CB

U . 

ow from (4.4) and (4.5) that as soon as we But we kn
 a Koide matrix, we can backtrack into a Lagrangian  

formulation. In this case, in (2.1) for a generalized Koide  

matrix ABK

have

, we are setting 1 2,u d um M M m m    

and 3 dm m , and the only new feature is that we are 
then rotating this matrix both from the left and the right 
via K U  K  and K K U . Consequently, we 
may use (9.4) and (9.5) to write the mass sum N PM M  
in (9.3) in a Lagrangian formulation, using these rotated 
Koide matrices, via (4.4) and (4.5) as: 
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3 3 3
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x m m
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

 

1u d u d

0

 

 

        

  
  

  
 

          
 
  
 

  

  



L E E E E

E E

 os M M  

    (9.6) 

y introducing new field strength tensors defined in the manner of (4.2) as: 
 



1 N P

 
b

, , ,
Tr

ud ud u u d d

u d
u d

i
m mM M

     


                                  
 

E ,                  (9.7) 

 

, , ,
Tr

ud ud u u d d

u d
u d

i
m mM M

     


                                  
 

E ,  

 
where the “vacuum-amplified” masses 

                (9.8) 

M  and dMu  as 
well as the square root mass u dM M  are defined as in 

5.14), and where the Koide mass matrices are (5.12) to (
formed for E  using left-multiplication (9.4) and for 

  using right-multiplication (9.5). 

Referring back to Sections 2 and 4, this means that here 
we have set 1 2 3, ,ud u d              in the field 
strength tensor (4.2) and as just noted, 1 u dm M M , 

2 3,u dm m m m   in the Koide matrix (2.1), then fol- 
lowed the remaining development of Section 4 with the E
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only addition being that we now are also employing the 
rotations (9.4) and (9.5) on these Koide triplet matrices. 
We also now have the knowledge which can be exploited 
for further future development, that (9.3) for the neutron 
plus proton mass sum specifies a special case of the very 
general master mass and xing matrix   as specified in 
(6.17), see (6.20). So th es us a hook into a Lagran- 
gian formulation for othe generations of fermion, and 
therefore, for formulating er charmed, strange, top and 
bottom-containing baryo

As a consequence of t oregoing, the unrotated fer- 
mion eigenstates used to f m (9.7) and (9.8) are a triplet 
 , ,ud u

 mi
is giv

r 
oth

ns. 
he f
or

d   consistin  a wavefunction for a vac- 
uum-enh rmion  (using upper case Greek), 
together  the or y fermion wavefunctions 

,

g of

ud
dinar

anced fe
with

u d   fo e up and d  current quarks (lower case 
Gree ud  function th

nderan
tron 

r th own
wave

u

k). It is the at is responsible 
for generating the vast prepo ce of the constituent 
mass contributions to the neu plus proton mass sum, 
see Section 8, while , d   are responsible for the cur- 
rent mass contributions. 

Lastly, as in (4.12) through (4.14), at the nuts and bolts 
level, we apply the ansatz ( he  Gaussian 4.12), in t form: 

     23
02 4

2

1
π exp

2u u

r r
r u

  
  
 




,        (9.9) 
u 

     2

0

2

1

2d d
d

r r
r d

  
 
 
 




,       (9.10) 
3

2 4π exp 

     2

0

2

1

2ud ud
ud

r r
r V

  
    
  

,     (9.11) 

and for the reduced Com n wavelengths, converting to 
1c   units, we specify: 

3
2 4π exp

pto

1u u um c m  ,                (9.12)  

1d d dm c m  ,                (9.13)  

1ud u d u dM M c M M   .      (9.14) 

So, referring back to the discussion at the end of Sec- 
tion 4, as was the case with the short range of the nuclear 
interaction, we can indeed use the Gaussian ansatz to 
model fermion wavefunctions as Gaussians and obtain 

e fully-dressed neutron and proton masses. But to do so, 
in the above we are using the undressed “current” quarks 

,u d

th

   which yielded binding energies in [1,5], together 
in the same Koide triplet with a vacuum-amplified quark 

avefunction ud  and associated masses and wave-
er

obtain a precise concurrence with empirical data. 
So, insofar as fully covered protons and neutrons are 

concerned, it looks as if the vacuum-amplified quarks in 
combination with the current quarks, are behaving as 
free fermions, as specified in detail in all of the foregoing. 
This underscores the role of the Gaussian ansatz as a 
modeling tool used to derive effective concurrence with 
empirical data, rather than as a part of the theory per se. 
The theory is centered on bary
magnetic monopoles, and nucleons releasing or retaining 
binding energies based on their resonant properties which 
in turn depend upon the current quark content of those 
nucleons. For calculations which involve the components 
and emissions of protons and neutrons such as their cur- 
rent quarks and their binding energies, the current quarks 
can be modeled as free fermions to obtain empiri- 

ay b ling vacuum-enhanced

e whole p us
ton ass

but have unclear, 
opaque origins in the way that the Koide relations have 
also had unclear origins. Rather, as shown in (9.6) this 
mass sum can be formulated as the energy 

 

w
lengths. So here too, it is not a question of wheth  we 
can use a Gaussian ansatz, but rather, it is a question of 
which wavefunctions with which masses and wave-
lengths we need to use in the Gaussian ansatz, in order to 

ons being Yang-Mills 

cally-accurate results. For other calculations which in
volve the bulk behavior of protons and neutrons, accurate 

- 

results m e obtained by mode  
quarks in combination with current quarks as free fer- 
mions, in the manner outlined above. 

Th oint of the disc sion in this Section has 
been to make clear that the neutron plus pro  m  sum 
(and thus the individual neutron and proton masses) de- 
veloped in this paper is not just the result of developing 
formulas which fit the empirical data 

 

3
32

3
32

2π d

1
2π Tr d

2

N PM M x

x


  

 





L

E E
 

arising from integrating a Lagrangian density  
1

2


  L E E  over the entirety of a three-space vol-  

ume element 3d x . This puts the neutron and proton 
mplication via   as specified in (6.17), 

masses as well) into the context of funda-
mental, Lagrangian-based physics, and shows how these 
mass formulas (as well as those of Koide) are not just 
coincidental numeric coincid
but truly are real physics relationships with a Lagrangian 
foundation. 

10. Conclusion 

In conclusion, we have shown how the Koide relation-
ships and associated triplet mass matrices can be gener-
alized to de e neutron and 
pr

fo

masses (and by i
other baryon 

ences of unexplained origin, 

rive the observed sum of the fre
n rest masses in terms of the up aoto nd down current 

quark masses and the Fermi vev to six parts in 10,000, 
see (5.18). This sum can then be solved r the separate 
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neutron and proto

 

wn in (7.5) to be related to 
an

ing matrix de
uark

neutro
on 

ourse 
nships (3.14), (3.16) and (3.17) 

fo
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