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ABSTRACT

We show how the Koide relationships and associated triplet mass matrices can be generalized to derive the observed
sum of the free neutron and proton rest masses in terms of the up and down current quark masses and the Fermi vev to
six parts in 10,000. This sum can then be solved for the separate neutron and proton masses using the neutron minus
proton mass difference derived by the author in a recent, separate paper. The oppositely-signed charges of the up and
down quarks are responsible for the appearance of a complex phase exp(id) and real rotation angle & which leads on an
independent basis to mass and mixing matrices similar to that of Cabibbo, Kobayashi and Maskawa (CKM). These can
then be used to specify the neutron and proton mass relationships to unlimited accuracy using 6 as a nucleon fitting an-
gle deduced from empirical data. This fitting angle is then shown to be related to an invariant of the CKM mixing an-
gles within experimental errors. Also developed is a master mass and mixing matrix which may help to interconnect all
baryon and quark masses and mixing angles. The Koide generalizations developed here enable these neutron and proton
mass relationships to be given a Lagrangian formulation based on neutron and proton field strength tensors that contain
vacuum-amplified and current quark wavefunctions and masses. In the course of development, we also uncover new
Koide relationships for the neutrinos, the up quarks, and the down quarks.

Keywords: Proton Mass; Neutron Mass; Baryons; Magnetic Monopoles; Koide; CKM Mixing Angles; Current Quarks;
Constituent Quarks

1. Introduction retained during nuclear binding are directly dependent
upon the masses of the quarks contained within the nu-
cleons, it was also predicted that latent, intrinsic binding
energies of a neutron and proton, see (12.12) and (12.13)
of [1], are given by:

In an earlier paper [1] the author introduced the thesis
that baryons are Yang-Mills magnetic monopoles. Using
the t’Hooft magnetic monopole Lagrangian in (2.1) of [2]
and a Gaussian ansatz for fermion wavefunctions from

9 . k) . . . 3
(14) of O’Hanian’s [3] to obtain energies according to B,=2m +m, _(md Fafmm, +4m, ) / ( 2n)§

1.2)
1 (

E =[] Spped’x =S T[] F, Fd'x, —7.640679 MeV,
. . . . . 3
it became possible in Equation (.1 1.22) of [1] to predict By =2m,+m, —(m,, +dym,m, +4m, )/ (2m)2 13
the electron rest mass as a function of the up and down (1.3)
quark masses, specifically: =9.812358 MeV.

m, = 3(’”4 —m, )/(Zn)% , (1.1) These predict a latent binding energy of 8.7625185

MeV per nucleon for a nucleus with an equal number of
protons and neutrons, which is remarkably close to what
is observed for all but the very lightest nuclides, as well
Gaussian integration. Based on a “resonant cavity”  as a total latent binding energy of 493.028394 MeV for
analysis of the nucleons whereby the energies released or %Fe, in contrast to the empirical binding energy of

3
with the factor (2n)5 emerging from three-dimensional
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492.253892 MeV. This is understood to mean that
99.8429093% of the available binding energy in *Fe is
applied to inter-nucleon binding, with the balance of
0.1570907% retained for the intra-nucleon quark con-
finement. It was also noted that this percentage of energy
released for inter-nucleon binding is higher in **Fe than
in any other nuclide, which further explains that although
the quarks come closer to de-confinement in *°Fe than in
any other nuclide (which also explains the “first EMC
effect” [4]), they do always remain confined, as empha-
sized by the decline in this percentage for elements with
nuclear weights higher than *°Fe.

In a second paper [5], the author showed how the
thesis that baryons are Yang-Mills magnetic monopoles
together with the foregoing “resonant cavity” analysis
can be used to predict the binding energies of the 1s nu-
clides, namely *H, *H, *He and *He to parts per hundred
thousand for *He and in all other cases to parts per mil-
lion, and also to predict the difference between the neu-
tron and proton masses according to:

3
My,-M,=m, —(3md +2y/m,m, —3mu)/(27t)5 .(1.4)

This relationship, originally predicted in (7.2) of [5]
to about seven parts per ten million in AMU, was later
taken in (10.1) of [5] to be an exact relationship, and all
of the other prior mass relationships which had been de-
veloped were then nominally adjusted at the seventh

decimal place to implement (1.4) as an exact relationship.

The review of the solar fusion cycle in Section 9 of [5]
served to emphasize how effectively this resonant cavity
analysis can be used to accurately predict empirical
binding energies, and suggested how applying gamma
radiation with the right resonant harmonics to a store of
hydrogen may well have a catalyzing effect for nuclear
fusion. This relationship (1.4) will also play an important
role in the development here.

At the heart of these numeric calculations which
accord so well with empirical data were the two outer
products (4.9) and (4.10) in [5] for the neutron and the
proton, with components given by (4.11) and related re-
lationships developed throughout Sections 3 and 4 of [5].
In particular, the two matrices which stood at the center
of these successful binding energy calculations were 3 x
3 Yang-Mills diagonalized matrices K of mass dimension

% with components diag(KN)Z(\/m—u,\/m_d,\/m_d)
for the neutron and diag(KP):(\/m—d,\/m_u,\/m_u) for

the proton, where m, is the “current” mass of the up
quark and m, is the current mass of the down quark.
What is very intriguing about these K-matrices (which
we designate with K to reference Koide), is that although
they originate from the thesis that baryons are magnetic
monopoles, they have a form very similar to matrices
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which may be used in the Koide mass formula [6] for the
charged leptons, namely:

(o + o+ i)
R= =—. (1.5)
m, +m, +m, 2

Above, when we take m, =m,,m, =m, and m; = m;,
to be the charged lepton masses, the ratio R =3/2 gives
a very precise relationship among these masses. Indeed,
if we use the 2012 PDG data

m, =0.510998928 +0.000000011 MeV
m, =105.6583715£0.0000035 MeV

and m, = 1776.82 = 0.16 MeV [7], we find using mean ex-
perimental data that R =1.500022828, very close to 3/2.

Because the binding energies formulated in (1.2) and
(1.3) are rooted in the thesis that baryons are Yang-Mills
magnetic monopoles and specifically emerge from the

calculation of energies via E = —I_U £d’x, see (11.7) of

[1] et seq., and because these binding energies can also
be refashioned via Koide relationships as we shall show
in the next Section, the author’s previous findings will
provide us with the means to anchor the Koide relation-
ships in a Lagrangian formulation. And, because Koide
provides a generalization of the mass matrices derived by
the author in [5], these matrices will provide us with the
means to derive additional mass relationships as well, in
particular, and especially, the free neutron and proton
rest masses, which is the central goal of this paper.

Specifically, after reviewing in Section 2 similarities
between the author’s baryon/magnetic monopole matri-
ces and the Koide matrices, we shall show in Section 3
how to reformulate the Koide relationships in terms of
the statistical variance of Koide mass terms across three
generations. This will yield some new Koide relation-
ships for the neutrinos, the up quarks, and the down
quarks. We then show in Section 4 how to recast these
Koide relationships into a Lagrangian/energy formulation,
which addresses the question as to underlying origins of
these relationships, so that these relationships are not just
curious coincidences, but can rooted in fundamental
physics principles based on a Lagrangian.

Most importantly, in this paper, we combine the au-
thor’s previous work in [1,5] as well as [8], using the
generalization provided by Koide triplet mass matrices of
the form (2.1) below, to deduce the observed rest masses
938.272046 MeV and 939.565379 MeV of the free neu-
tron and proton as a function of the up and down quark
masses and electric charges and the Fermi vev. This mass
derivation is presented in Sections 5 and 6. In Section 7
we connect the masses obtained in Section 6 to the em-
pirically-observed Cabibbo, Kobayashi and Maskawa
(CKM) quark mixing matrices. In Section 8 we examine
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“constituent” and “vacuum-amplified” quark masses for
the neutron and proton. Finally, in Section 9 we develop
a Lagrangian formulation for these neutron and proton
masses, which underscores that these relationships are
not just close numerical coincidences, but originate from
fundamental Lagrangian-based physics.

2. Similarities between Baryon/Magnetic
Monopole Matrices and Koide Matrices

The similarities between the matrices developed by the

author in [5] and those developed by Koide in [6] are
highlighted if we define a Koide matrix K ,, generally

as:
Jmo 00
Ky=| 0 Jm, 0 | 2.1)
0 0 m

Then, the two latent binding energy relationships (1.2)
and (1.3) may be represented as:

1 1
By =K ;K ——— K Ky =Tr(K?)———Tr(K ®K)
(2n): (2n):
3
= 2m, +m, —(m, +4fmm, +4m, ) / (21)2 =7.640679 MeV (2.2)
Jm; 0 0 )dm o o Jng 0 0 (fm 0 o
=Tr| 0 Jm, 0 0 Jm, 0 |-——=Tr| 0 fm, 0 |® 0 m 0
0 0 Jm)lo o Ju )] P Lo o Jm| |0 o Jm
1
By =K ;Ky ———K Ky =Tr(K*)-——Tr(K ®K)
(2n): (2n):
3
=2m, +m, —(mu +4m,m, +4m, )/(271:)5 =9.812358 MeV 2.3)
Jm, 0 0 m, 0 0 Jm, 0 0 Jm, 0 0
=Tr| 0 Jm, 0O 0 Jymy 0 |-——=Tx| 0 Jm, 0 [® 0 Jm 0
0 0 Jm)lo o Jm) W Lo o Ym0 0 Jm

where, starting with (2.1), in (2.2) we have set m, =m,
and m, =m,=m, and in (2.3) we have set m, =m,
and m, =m, =m, . Again, these originate in the author’s
thesis in [1] that baryons are Yang-Mills magnetic
monopoles. Above, ® designates an outer matrix pro-

duct.
On the other hand, setting m, =m,,m,=m, and
my =m_ in (2.1), we may write:

Tr(Kz)zKABKBA =m+my+my=m,+m,+m_,(2.4)

Te(K®K)=K Ky = (i, + iy +Jm, ) = ({fm, +Jm, +fm. ) . 2.5)

Then, using (2.4) and (2.5), Koide relationship (1.5) for charged leptons may be written as:

K,, Tr(K®K)

KABKBA

m,+m,+m,

Clearly then, the Koide matrices (2.1) provide a gen-
eral form for organizing the study of both binding energy
and fermion mass relationships which lead to very accu-
rate empirical results. It thus becomes desirable to under-
stand the physical origin of these Koide matrices and tie
them to a Lagrangian formulation so that they are no
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=3
= = (2.6)

longer just intriguing curiosities that yield tantaliz-
ingly-accurate empirical results, but can also be rooted in
fundamental physics principles based on a Lagrangian.
And, it is desirable to see if these matrices can be ex-
tended in their application to make additional mass pre-
dictions and gain a deeper understanding of the particle
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mass spectrum, especially the free neutron and proton
masses to be explored here.

We start in the next Section by showing how to refor-
mulate the Koide relationships in terms of the statistical
variance of the Koide terms across the three generations.

3. Statistical Reformulation of the Koide
Mass Relationship

We continue to examine the charged leptons by setting
my =m,,my,=m, and my=m,_ in (2.1). When we use
the extremes of the experimental data ranges in [7], spe-
cifically, the largest possible tau mass and the lowest
possible mu mass, we obtain R = 1.5000024968. Al-
though this is an order of magnitude closer to 3/2 than
the ratio obtained from the mean data, is still outside of
experimental errors. This means that while R=3/2 isa
very close relationship, it is still approximate even ac-
counting for experimental error. For this to be within
experimental errors, it would have to be possible to ob-
tain some R <3/2 for some combination of masses at
the edges of the experimental ranges, and it is not.

First, using (2.4), we write the average of masses
<m,.> in a Koide mass triplet m,,m,,m;, i.e., the “aver-
age of the squares” of the matrix elements in (2.1), as:

(K*)=Tr(K*)3=K ,K,, /3
=(m1 +m, +m3)/3 =<ml.>

Next, via (2.5), we write the “square of the average” of
these matrix elements as:
— Tr(K®K) — KAAKBB

(K) 5 9
[ﬁﬁ@wnﬂz 62)

3.1)

(o +fm + )
9

So, combining (3.1) and (3.2) in the form of (1.5) al-
lows us for the charged leptons to write:
<K>2 — Tr(K ®K) — KAAKBB
(k) Tr(K*)  KuKs,

5 (3.3)
(e mem) s
- my +m, +ny, T2
This allows us to extract the relationship:
2 _Rigay Lige
(K = 3<1< >_2<K ), (3.4)

which naturally absorbs the 3 from the factor of 3/2.

Copyright © 2013 SciRes.

Now, we simply use (3.4) to form the statistical vari-
ance o(K) in the usual way, as:

o(K)=(K")—(K) :(1—§J<K2>:(%—IJ(K>Z
(3 Jom) =3 (k) (8 ().

The key relationship here, using first and last terms, is:
o(K)=(m). (3.6)

So the average <ml> of the charged lepton masses is
approximately (and very closely) equal to the statistical
variance o (K) of Koide matrix (2.1) when used for
the charged leptons. This is a much simpler and more
transparent way to express the Koide mass relationship
(1.5), it completely absorbs the factor of 3/2, and it is
entirely equivalent to (1.5).

Of course, as noted at the outset of this Section, this is
a very close, but still approximate relationship. The exact
relationship, also extracted from (3.5), and using
R =1.500022828 based on mean experimental data, is:

3.5)

o(K)= (%—1](;%) =0.999969563(m,) = C(m,), (3.7)

where we have defined the statistical coefficient C and

the inverse relationship for R as:
CEE—I;REL. (3.8)
R 1+C

Thus, we may rewrite the basic Koide relationship (1.5)
more generally as:

(\/;ﬁ\/’"_z*\/’”_s)z_ 3 _R. (3.9)

1+C

m; +m, +m;

In the circumstance where the statistical coefficient C
=1, i.e., where the average mass is exactly equal to the
statistical variance, we have R =3/2. So the statistical
variance of the square roots of the three charged lepton
masses is just a tiny touch less (><O.999969563) than
the average of the three masses themselves. But the fac-
tor of 3/2, which is somewhat mysterious in (1.5), is now
more readily understood when we realize that it corre-
sponds with C=1in (3.7).

This means that the Koide relationship for any given

. . . . 1
triplet of numbers with mass dimension 5 may be al-

ternatively characterized by the coefficient C. Thus, us-
ing (3.7), the coefficient C for the charged lepton triplet

is (we also include R for comparison):
C(eur)=0.999969563 = 1;
(eur) (3.10)
R(eur)=1.500022828 = 3/2.
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So what about some other Koide triplets? For the neu-
trinos, PDG in [9] provides upper limits m, <2eV,
m, < 0.19MeV and m, <18.2MeV for the neutrino
masses. If we use these mass limits in a Koide triplet, we
find that R = 1.202960231. But the significance of this is
much more easily seen by using (3.8) to calculate:

C(v,v,v.)=14938480 = 3/2;
(3.11)
R(v,v,v,)=120296023 = 6/5

e’ u’r

Here, we have another ratio very close to 3/2, but now
it is the coefficient C rather than the coefficient R. So, for
the upper neutrino mass limits, o(K,)=(3/2)(m,).
This in an interesting “coefficient migration” as between
the charged and uncharged leptons, wherein for the
charged leptons masses R =3/2 to parts per 100,000,
while for the neutrino lepton upper mass limits, C = 3/2
within about 0.4%. As we shall see, this is the start of a
new Koide pattern.

Turning to quark masses, we use m, =2.223792405
MeV and m, =4.906470335MeV developed in (10.3)
and (10.4) of [5] with the conversion 1u=931.494061(21)
MeV/c>. We also use m, =1.275+0.025GeV, m, =95
5MeV, m,=173.5+.6£.8GeV and m, =4.18%
0.03GeV from PDG’s [10]. For Koide triplets of a sin-
gle electric charge type, we can then calculate that:

C(uct) =1.54688 = 3/2;

3.12
R(uct) =1.177913486 = 6/5 12

C(dsb)=1.18741= 6/5;

(3.13)
R(dsb)=1.371483911215/11

So we now see a distinctive pattern of coefficient mi-
gration among (3.10) through (3.13). For the charged
leptons in (3.10) which are the lower members of a weak
isospin doublet, R(eu7)=3/2, as has long been known.
For neutrinos which are the upper members of this dou-
blet, C (vevﬂvr =3/2, which migrates the 3/2 from the
R to the C coefficient. Then, for the up quarks, we find
another coefficient migration such that C(uct)=3/2,
which is same as the C for the neutrinos. Both the up
quarks and the neutrinos are the upper members of weak
isospin doublets. Finally, we see that the R(uct)=6/5
coefficient for the up quarks, now migrates to C(dsb)
= 6/5 for down quarks.

So the migration is R(eur)=3/2 — C(v % ) 3/2

VuVe
for leptons, C(vﬂvﬂvr) 3/2 — C(uct)=3/2 provid-
ing a “bridge” from “up” leptons to “up” quarks, and
then R(uct)=6/5— C(dsb)=6/5 migrating from the
up to the down quarks.

The net upshot of this coefficient migration is that we
now have Koide-style close relations for all four sets of

fermions (and anti-fermions) of like-electric charge O,
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namely:
2
+ +
R(Q:())_(\/mV(E) \/mv(,,) \/mv(‘r)) EE.(3.14)
Mgy T 1, 10 5
2
R(Q il)_(\/m7‘,+\/a+\/m7,) :E (3.15)
m,+m, +m,
2
R[Q=J—’zj:( ol In) e
m, +m,+m, 5
2
R[ :iljz(\/m_d+\/m_s+\/m_b) ;1—5. (3.17)
3 m, +m, +m, 1

Each of these relationships takes twelve a priori inde-
pendent fermion masses and reduces by 1, their mutual
independence. So with (3.14) through (3.17), to first ap-
proximation, we have now eight, rather than twelve in-
dependent fermion masses.

For some other commonly-studied Koide triplets we
have:

C(uds) = 0.69290 = 1//2;
32 (3.18)
1++2

R(uds)=1.772105341 =

C(cth)=1.00939 = 1;

(3.19)
R(cth) =1.492994103 = 3/2
C (usc) = 0.86795; R (usc) =1.606042302,  (3.20)
C(esb)=1.02783 = 1;

(3.21)
R(esh) =1.479416975 = 3/2(with —\Jm, )
C (des) = 0.81520; R (des) = 1.652718083.  (3.22)

We note that the relationship (3.18) for C(uds)

1/ J2 s accurate to within experimental errors. Spe-
cifically, given the empirical m =95+5MeV, (3.18)
can be made into an exact relationship to ten digits (the
accuracy of the up and down masses derived in [5]) if we
set m, =98.95303495 MeV . Of course, even the rela-
tionship (3.15) for the charged leptons is a close but not
exact relationship, see the discussion at the start of this
Section, so we ought not expect (3.18) to be exactly
C(uds)=1//2 . But, similarly to (1.5), see also (3.10), it
may well make sense to regard this as a relationship ac-
curate to the first three or four decimal places, which
would improve our knowledge of the strange quark mass
by four or five orders of magnitude.

But this main point of the foregoing is not about the
specific Koide relationships (though the set of relation-
ships (3.14), (3.16) and (3.17) are important steps for-
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ward in their own right), but about how the ratio pa-
rameter R which for the charged lepton triplet is
R =3/2, can be reformulated for any fermion triplet into
the coefficient C in the statistical variance relationship
o(K)=C <ml> , which, for the charged leptons, is
C=1. And, as we see in (3.14) through (3.17), this can
lead to additional rela- tionships via a cascading migra-
tion of coefficients.
Turning back to the neutron and proton triplets,

ding (K, ) = ).
ding(K, )= ()

which were so central to obtaining accurate binding en-
ergy predictions in [1,5], we find using the MeV equiva-
lents of the mass values m, =2.223792405 MeV,

m,; =4.906470335 MeV obtained in (10.3) and (10.4)
of [5] that:

C(p = duu) = 0.0387876019;

(3.23)
R(p = duu) = 2.8879821000
C(n=udd)=0.0298844997;

(3.24)

R(n=udd)=2.9129480061

For these triplets which all have a small variance in

comparison to the earlier triplets which cross generations,

the Koide ratio R=3. In the circumstance where the
variance is exactly zero because all three quarks have the
same mass, for example, for the triplets A™ =wuuu and
A~ =ddd , using the Koide mass relationship for param-
eterization, we have C=0;R=3.

4. Lagrangian/Energy Reformulation of the
Koide Mass Relationship

The appearance of Koide triplets originating from the
thesis that Baryons are Yang-Mills magnetic monopoles
can be seen, for example, by considering Equation (11.2)
of [1] for the field strength tensor of a Yang-Mills mag-
netic monopole containing a triplet of colored quarks in
the zero-perturbation limit, reproduced below:

If we generalize this to any three fermion wavefunc-
tions ,,y,,w, such that (4.1) represents the specific
case W, =W,,W, =y, and w,=y,, and, as we did
prior to (11.19) of [1], if we consider the circumstance in
which the interactions shown in Figure 1 at the start of
Section 3 in [1] occur essentially at a point, then
[7.7"]
tator, each of the p — 0, and the “quoted” denominator
becomes an ordinary denominator, see (3.9) through
(3.12) of [1] for further background. So also setting
my =mp,m, =mgand m, =my, (4.1) generalizes for a
point interaction to a Koide-style field strength tensor:

; AV

m

—>[y” , 7“} approaches an ordinary commu-

Tr F* =—

4.2)
+‘/72|:7”97V:|V/2 +V73 [7”:7/V:|'//3

m, n,

Then, we form a pure gauge field Lagrangian

1 " 1

gauge :_ETI‘(FWFA ):_ETr(F'F)
as in (11.7) of [1]. As discussed in Section 3 of [5], we
consider both inner and outer products over the Yang-
Mills indexes of F, ie., we consider both TrF?=
Tr(F,;-Fye)=Fp-Fyy and Tr(F®F)=Tr(F,, Fp)
=F,, -F,,. Note carefully the different index structures
in F,-F,, versus F,, -F,,, and also contrast this to
(2.2) through (2.5) in th1s paper, which we shall now
seek to refashion into a Lagrangian formulation.

To proceed, we use this Lagrangian £, to calcu-
late energies according to (11.7) of [1], also (1.8) of [5],
which are reproduced below:

1 LV
E =[] Spuped’x = STr [[[E.Fdx.  (43)

In the case where y,=vw,,¥,=w,=y, so that
F* =F}" represents the proton, then depending on
whether we contact indexes using F,,-F,, or
F,, - Fys, we obtain the inner and outer products in (3.6)

"D —my" of [S]. When y,=vw,,w,=w,=yw, so F* =F}
4.1 represents the neutron, we obtain the inner and outer
7, [7”#/]‘//@ 7y [y#v 7/],/,3 products in (3.7) of [5]. Using (2.1), the Koide generali-
+—, T " zation of the outer products (K ,, K, index summation)
P — Mg Pp—my is:
1 . 1
Ey =~[[[ £od’x :ETrJJIF ®F* d%—-TrﬂjFAB Fpdix=— mFAA Fpd’x=——<K, K,
(2n)>

1 Jm 00 Jm 00 1 (4.4)

2

=—— Tl 0 Jm, 0 [® 0 w0 ||=——(Jm +m, )

(2m)2 0 0 Jm| |0 0o Jm)l (@n2
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while the Koide generalization of the inner products ( K ,,K,, index summation) is:

E=-[[[sd’x = %n [[[F Fodix= %Tr [[[Fop - Fppd’x = % [ Fin - Foudx

Jm 0
1 1
=——K Ky =——Tr|| 0

3

This means that is now becomes possible to express
the Koide relationship (3.9) entirely in terms of energies
E derived from the Lagrangian integration (4.3). Specifi-
cally, combining (3.9) with (4.4) and (4.5) allows us to
write:

E, [[[€dx Tef[[F, ®F"dx
E [[[edx  Te[[[F, P dx
 Tef[[FOFdx
- Trﬂszd3x
_ ” F - Fppd’x _ K, Kz
IIIFAB Fpdix KKy,

()

m, +m, +m, 1+C

(4.6)

This expresses the Koide mass relationship in multiple
forms, in terms of an energy integral of the general La-
grangian density form

£=—%Tr(F~F),

with general field strength (4.2). This means for any Ko-
ide triplet of given empirical R, there is an energy E,
which vanishes under condition:

Ep=|[[(25-RE)d’x wn
= Tef[[(F® F-RF?)d'x=0 .

This is the Lagrangian/energy formulation of the Ko-
ide relationship (3.9), and although different in appear-
ance, it is entirely equivalent. So, for example, using the
symbol .. as in Figure 1 and Table 3 of [8] to repre-
sent the three generations of the fermions for any given
charge, the four Koide relationships (3.14) through (3.17)
for the pole (low probe energy) masses may be written as
in the entirely equivalent, alternative form:

E, = jjj(% —gs]d%

(4.8)
= Tr”j[F@F—ngjd3x =0

Copyright © 2013 SciRes.

0
m, 0

(20): e |lo 0 ym

gm0

0 (4.5)

0 Jm, 0 ||= ! —(m, +m, +my)

0 0 Jm) (P

:m(% —%sjd% »
:Trﬂj(F@F—%szd3x;0 )
E, = m(,@@ —gsjd‘x »
:Trj”(F@F—ng)d3xEO o
m(s __Sj (4.11)

_Trm(F@F——szd =0

Whether these become exactly equal to zero for
masses at high-probe energies, and whether there is an
underlying action principle involved here, are questions
beyond the scope of this paper which are worth consid-
eration.

What ties all of this together, is that we model the ra-
dial behavior of each fermion in the triplet y,,y,,y,
using the Gaussian ansatz borrowed from Equation (14)
of [3] and introduced in (9.9) of [1] which is reproduced
below with an added label i=1,2,3 for each of the
fermions and masses in (4.2):

3 2
v, (r)=u, (p)(n/if )_Z exp[—%(’ﬁx—?i)J ,(4.12)
and that we also relate each reduced Compton wave-
length X, to its corresponding mass m, via the De-
Broglie relation X, =#/m,c, see [1] following (11.18).
This is what makes it possible to precisely, analytically
calculate the energy in integrals of the form (4.3), spe-
cifically making use of the mathematical Gaussian rela-

tionship (9.11) of [1]:
(r=n )2 3
exp{ - d’x=1, (4.13)

=
ey
and variants thereof. It is (4.12) and (4.13) and
X, =1/m, (in h=c=1 units) which tie everything
together at the “nuts and bolts” mathematical level when
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(4.2) is employed in (4.3) through (4.11). And this is
what leads to accurate mass relationship (1.1) and bind-
ing energy predictions (1.2) and (1.3), as well as the
binding energy predictions for *H, *H, *He and ‘He and
the proton-neutron mass difference (1.4) found in [5].
The final piece which also ties this together at nuts and
bolts level, is the empirical normalization for fermion
wavefunctions developed in (11.30) of [1], namely:

N _L(E+m)2 ! (E+m)2

ne (2m) 24 (2my

where n, =24 is the total number of fermions over
three generations including three colors for each quark.

Now, it is important to emphasize that the Gaussian
ansatz (4.12) is not a theory, but rather, it is a modeling
hypothesis that allows us to analytically perform the
necessary integrations and calculate energies which for-
tuitously turn out to correlate very well with empirical
data. That is, explicitly in [1] and implicitly in [5], we
hypothesized that the fermion wavefunctions can be
modeled as Gaussians with specific Compton wave-
lengths X, =1/m, defined to match the current quark
masses, we performed the integrations in (4.3), and we
found that the energies predicted matched empirical
binding data to—in most cases—parts per million. This,
in turn, tells us that for the purpose of predicting binding
energies, it is possible to model the current quarks as
Gaussians (which means they act as free fermions), with
masses and wavelengths based on their undressed, cur-
rent quark masses, and to thereby obtain empirically-
validated results.

But, as also discussed at the end of Section 11 in [1],
this use of a current quark mass does not apply when it
comes predicting the short range of the nuclear interac-
tion which we showed at the end of Section 10 in [1] is
indeed short range with a standard deviation of
o= 1/ V2% . For, if we use the current quark masses that
work so well for binding energies, we find A, ~85.65F
and A, ~41.04F , and the predicted short range is still
not short enough. If, however, we turn to the constituent
quark masses which, at the end of Section 11 in [1], for
estimation, we took to be 939 MeV/3 = 313 MeV, then

1
V2
us that the nuclear interaction virtually ceases at about
40 ~ 3k ~2F . This is exactly what is observed.

In both cases—for nuclear binding energies and for the
nuclear interaction short range—we found that the Gaus-
sian ansatz (4.12) does yield empirically-accurate results.
But for binding energies, it was the undressed, current
quark masses which gave us the right results, while for
nuclear short range, it was the fully dressed, constituent
quarks masses that were needed to obtain the correct re-

, (4.14)

we have A ~0.63F and o =—=%X ~0.45F, which tells

Copyright © 2013 SciRes.

sult.

Because we shall momentarily embark on a prediction
of the fully dressed rest masses 938.272046 MeV and
939.565379 MeV of the free neutron and free proton,
what we learn from this is that while we might also be
able to approach the neutron and proton masses using a
Gaussian ansatz for fermion wavefunctions, we will,
however, need to be judicious in the fermion wavefunc-
tions we choose and in the masses that we assign to the
fermions. That is, the focus of our deliberations will be,
not whether we can use the Gaussian ansatz, but on how
to select the fermion wavefunctions and masses that we
do use with the Gaussian ansatz, in order to obtain em-
pirically accurate results.

Now, with all of the foregoing as background, let us
see how to predict the neutron and proton masses.

5. Predicting the Neutron plus Proton Mass
Sum to within about 6 Parts in 10,000

Because we can connect any Koide matrix products to a
Lagrangian via (4.4) and (4.5), let us work directly with
the Koide matrix (2.1) to determine how to assign the
masses m,,m,,ms,so as to predict the neutron and proton
masses. Then at the end (in Section 9), we can backtrack
using the development in Section 4 to connect these
masses to their associated Lagrangian. In other words,
we will first fit the empirical mass data, then we will
backtrack to the underlying Lagrangian.

Each of the neutron and proton contains three quarks.
The sum of the current quark masses is 2m, +m, =
12.0367331MeV for the neutron and 2m, +m, =
9.35405514 MeV for the proton, using
m, =2.223792405MeV and m, =4.906470335 MeV
earlier introduced before (3.12) as developed in (10.3)
and (10.4) of [5]. For a free neutron and proton, none of
this rest mass is released as binding energy, and so these
quark mass sums are fully included in
M, =939.565379 MeV and M, =938.272046 MeV
respectively, where we use an uppercase M to denote
these fully-dressed, observed masses. As demonstrated in
Sections 11 and 12 of [1] and throughout [5], these rest
masses are reduced when the neutron and proton fuse
with other nucleons. But for free protons and neutrons,
the entire rest mass is retained and all of the latent bind-
ing energy is used to confine quarks.

This means the “mass coverings” m (using a lowercase
m) for the neutron and proton may be calculated to be:

mp=M,—2m,—m,=928.9179915MeV, (5.1)
my =M, —2m, —m, =927.5286457 MeV .  (5.2)

These mass coverings m represent the observed,
fully-dressed neutron and proton masses M, less the sum
K, Ky, =m +m,+m; of the current quark masses,
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with m =m,,m, =m; =m, for the proton, and

m, =m,,m, =m; =m, for the neutron, see (2.4). One
may think of m, and m, as weights of rather heavy
“clothing” “covering” “bare” quarks. The sum of these
two mass covers is:

my+mp =M, +M,-3m,—3m,
=1856.446637 MeV

Now, at the end of Section 10 of [5], after deriving the
neutron minus proton mass difference (1.4), we noted
that the individual masses for the neutron and proton
could now be obtained by deriving some independent
expression related to the sum of their masses, and then
solving these two simultaneous equations—sum equation
and difference equation—for the two target masses,
namely, those of the neutron and proton. We shall do
exactly that here. In particular, it will be our goal to de-
rive the sum M, + M, of these two masses, and then
use (1.4) as a simultaneous equation to obtain each sepa-
rate mass. The benefit of this approach using a sum, re-
ferring to the so-called mass “toolbox” in (4.11) of [5]
and also the discussion of the alpha nuclide following
(5.4) of [5], is that in selecting mass terms to consider,
we can eliminate any candidates not absolutely symmet-
ricunder p<>n and u <> d interchange, because the
sum M, +M, contains three up quarks and three down
quarks, as well as one neutron and one proton. Our em-
pirical target, therefore is the mass sum M, +M, =
1877.837425 MeV But we can alternatively find this by
finding the mass cover sum m, +m, =1856.446637
MeV of (5.3) to which we can then readily add
3m, +3m, . These sums are what we now seek to predict.

We now return to use the “clues” laid out in (3.6)
through (3.8) of [8]. We start in the simplest way possi-
ble by focusing our consideration on (3.8) of [8], repro-
duced below, but multiplied by a factor of 2 and sepa-
rated into #v.m, and ¥v.m, in the second term,
thus:

2V -\/mumd :ZQ/vau {‘/vad =2Yvimd, (5.4)

=1803.670518 MeV

Here, v = 246.219651 GeV is the Fermi vev. Because
this is about 3% smaller than m, +m, in (5.3) and is
closer to m, +m, than either (3.6) or (3.7) of [8], and
also is symmetric under u <> d interchange, we shall
see if (5.4) can be used, by itself, to provide the founda-
tion for hitting the m, +m, =1856.446637 MeV mass
target (5.3). As we shall, it can be so used!

In (4.11) of [5], we developed a “toolkit” of masses
which we used for calculating the binding and fusion

(5.3)

) s
—EVF,EVF,EVF —>|1
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release energies of all the 1s nuclides with very close
precision. We shall wish to add to this toolkit here, and in
particular, will wish to refine our use of the Fermi vev v
= 246.219651 GeV beyond what is shown in (5.4). Spe-
cifically, as noted after (3.8) of [8], we need to put (5.4)
“and like expressions into the right context and obtain the
right coefficients. And where do such coefficients come
from? The generators of a GUT!”

Now it is time to “cash in” on the GUT we developed
in [8] to obtain the coefficients needed to bring (5.4)
closer to the target mass of 1856.446637 MeV in (5.3).
Because the vev that seems based on (5.4) to bring us
into the correct “ballpark™ is the Fermi vev, we focus on
electroweak symmetry breaking which occurs at the
Fermi vev, and which, in (8.2) of [8], is specified by
breaking electroweak symmetry using electric charge
generator Q via:

diag(CDF) = diag(TigZJI.F)

2 1
=Vp (Oaga_ga_

122 (5:3)

_E:E:EJ: Vp dlagQ

>

1

3 b
For the proton with a fermion triplet (d,u,u), the

corresponding eigenvalue entries in (5.5) above are

1 2 2
—EVF,EVF,EVF .

For the neutron and its (u,d,d) triplet, the entries

are
2 1 1
3T )

We now wish to use these to establish Koide triplet
matrices for the neutron and proton which can then be
used to generate the sum of their masses.

Looking at these vacuum triplets

1 2 2
—EVF,EVF,EVF

2 1 1
EVF,—g\/F,—EVF N

. . 1
we see that to match the mass dimension 5 of the terms

and

with {/vm, and {/vm, in (5.4)and use these as Koide
triplets, we will need to take the fourth roots of these
vacuum triplets. So we do exactly that, and pair these
triplets with the mass triplets (m d,mu,m“) and
(mu,md,md) for which we also take the fourth root to
match (5.4). Thus, we use

i/lvm‘\*/zvm‘{/gvm
3Fd’ 3Fu’ 3Fu
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and

2 1 1 J2 05,1 05,1
EVF,—EVF,—EVF - EVqu,l ngmd,l Evad

to define two new Koide triplets, one for the neutron and
one for the proton, as follows:

4 %vau 0 0
K, (N)= 0 i 4/%%% 0 (5.
0 0 i 4/lvad
3
6)
0.5 4 1
i Evad 0 0
2
K, (P)= 0 4§vau 0 (5.7)
0 0 d—=v.m,

What we have done here is simply develop (5.6) and
(5.7) to match the mass dimensionalities in (5.4) while
bringing in the coefficients from (5.5) which reflect the

K, (P)K, (N)=Tr 0

electric charges of the up and down quarks. We see that
because of the negatively-signed (-) charge for the down
quark, of which we have taken the fourth root, each of
these triplets contains components with the complex co-
efficient

41 =05 =

1
—(1+1).
V2
In recent years, consideration has been given to having
negative square root terms in Koide mass relations, see for

example (3.21) in which one uses —\/m_ to derive a

close relation for the (csb) triplet (see Rivero’s original
finding of this in [11]). The above, (5.6) and (5.7) take this
a step further, because they raise the specter of Koide
triplets with complex square root coefficients! In the next
Section we explore the profound implications of these
complex coefficients, which arise from the oppositely-
signed charges of the up and down quarks. But for the
moment, we ignore i*’ in the above and examine mag-
nitudes only, and form and calculate the following Koide
matrix product from (5.6) and (5.7) with i*° excised:

d=v.m 0 0
3Fu

(5.8)

2
=3. 4/§v§mumd =1857.570635 MeV

Comparing to (5.3) which tells us that
(mP +my )Obsmed =1856.446637 MeV

we see that we have hit the target to within about 0.06%!
That is:

K5 (P) Ky, (N) _ 1857.570635 MeV
(my+mp), . 1856.446637MeV  (5.9)

=1.000605457!

My +M,=my+m,+3m,+3m, =K ,,(P)K,, (N)+3m, +3m, =3 4/§v;mumd +3m, +3m, .

So it appears as though we have now discovered the
correct coefficients for the “clue” in (5.4). These coeffi-
cients, which are based on none other than the electric

Copyright © 2013 SciRes.

This is extremely close, and in particular, we now see
that the sum of the neutron and proton mass coverings
may be expressed solely as a function of the up and down
quark masses and charges and the Fermi vev to within
about 6 parts in 10,000! So if we use this close relation-
ship to hypothesize that a meaningful relationship is given
by my +m, =K, (P)K,,(N), then using the above
with (5.3) to add the current quark masses 3m, +3m, to
this mass cover sum, we see that to within about 0.06%:

(5.10)

charges of the quarks, yield the neutron plus proton mass
sum to 6 parts in 10,000!
Further qualifying (5.10) as a proper and not merely
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coincidental expression for the neutron plus proton mass
sum, we see that this is symmetric under u <> d inter-
change, and that it is formed by taking the inner product
K,;(P)Ky, (N) of the Koide proton matrix K (P)

and the Koide neutron matrix K (N ) , Which product is
symmetric under p <> n interchange. Further, both of
these fully embed the electric charges and mass magni-
tudes of the current quarks as well as the Fermi vev. So
in sum, (5.10) makes sense on multiple bases: it yields an
empirical match to within 6 parts in 10,000; it is the
product of a proton matrix with a neutron matrix; the
proton matrix contains the masses and charges of two up
quarks and one down quark while the neutron matrix
contains the masses and charges of two down quarks and
one up quark; and it is fully symmetric under both
u<>d and p<>n interchange.

Furthermore, if we divide (5.8) by 2, we see that:

K, (P)Ky, (N)/2

3 5 (5.11)
=2 {5 vimm, =928.7853174 MeV

This actually falls between m, =928.9179915 MeV
and m, =927.5286457 MeV from (5.1) and (5.2), so
(5.10) clearly appears to be a correct expression for the
leading terms in the neutron and proton masses. Based on
this close concurrence and “threading the needle” be-
tween the neutron and proton masses with (5.11) and all
of the appropriate symmetries noted in the previous
paragraph, we now regard (5.10) as a meaningful (rather
than coincidental) close expression for M, +M, to
0.06%.

It will simplify and clarify the calculations from here
to use an uppercase M notation to define what we shall
hereafter refer to as “vacuum-amplified” up and down
quark masses according to:

M, = %vaM=604.1751345MeV, (5.12)

M, = %VF'"" = 6345784463 MeV . (5.13)

Consequently:

JM M, = 4/§v;mumd =619.1902116 MeV . (5.14)

With these definitions, the neutron plus proton mass
sum (5.10) may be rewritten more transparently as:

My+M,=my,+m,+3m, +3m,
;3(‘/M1¢Md +m, +md)

while the Koide mass matrices (5.6) and (5.7) for the
neutron and proton become:

(5.15)

Copyright © 2013 SciRes.

K,(P)=| © M, 0 |, (5.16)
0 0 M,
M, 0 0

K, (N)= i M, 0 (5.17)

. . 1 .
These matrices now restore the ™ = —(1+z) coef-

V2

ficient that we excised to calculate (5.8). Thus, as in (5.8),
but including this complex factor, we now take:

K (P)Kp(N)
M, 00
=Tr 0 M, 0
0 0 M,
w0 0 (5.18)
x| 0 "M, 0
0 0o "M,

=3 M M, = %(1 +1)1857.570635 MeV

Having found a very close magnitude, we could make
use of a /2 factor and continue to match the empirical
data by writing \/ERe(KAB (P)Ky (N))=m, +m, .
But this just sidesteps understanding the meaning of this
complex coefficient and it does not help us past the
0.06% difference that still remains between the predicted
and the empirical data.

We now need to find a more fundamental way to un-
derstand this complex factor, as well as how to close the
remaining 0.06% gap between the predicted and the ob-
served neutron plus proton mass sum. That will be the
subject of the next two Sections.

6. Exact Characterization of the Neutron
and Proton Masses via a Mixing Angle ¢
and Phase Angle ¢

The complex factor i :L(lﬂ') which arises from

N

the oppositely-signed up and down quark charges, as we
shall now see, is actually like the subtle clue in a good
detective story which, when pulled like a small thread
and pursued to its logical end, eventually cracks the en-
tire mystery. So, let us start to pull on this thread and see
where it leads us.
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. 1 .
We first represent this factor i*° =——(1+i) in terms

V2

of a phase angle &’ defined such that &' = /4, so that:

03 :L(lﬂ') =exp(id')=cosd'+isins’. (6.1)

2

Then, we briefly rename K — K’ and use this phase
to rewrite (5.18) as:

Ky (P) K (N)
e M, 0 0
=Tr 0 M, 0
0 0 M,
(6.2)

JM, 0 0

x| 0 e yM, 0
0 0 e’ IM,

=3exp(id') M, M, =m) +m,
with i*> — exp(id’) in separate matrices (5.16), (5.17)

also. Then we use this to rewrite mass sum (5.15) with
i"* = exp(id') restored as:

My + M, =m) +mp,+3m, +3m,
= 3(1/M”Md exp(i6')+m, +md)

where we have also briefly renamed M — M' and
m, y —>my, ,all with &' =n/4.

Now, (6.3) is important, because it gives us an oppor-
tunity to define a new Koide matrix E,, which we shall
refer to as the “electron generation matrix” E as such:

MM, 0 0
E,=v3 0 Jm,2 0 | (64)

0o 0 Jm

Then, making note of the phase exp(i5 ’) which mul-
tiplies /M, M, in (6.3) and keeping in mind how the

Kobayashi and Maskawa mixing matrices are formed for
three generations, we introduce a new angle 6, such
that @' =0 and form a unitary matrix U, with ¢* :

(6.3)

exp(id’) 0 0 i 0 0
Ul g = 0 cosd sing |=| 0 1 0].(6.5)
0 —sind’ cos6/ 0 0 1

So (6.5) sandwich-multiplied by (6.4) simply general-
izes the appearance of the term i*°\/M M, in (5.18).

But now let us permit both & and & to rotate freely,
0'—0, 5 — 6. Then, using (6.4) and (6.5), we may
form the neutron plus proton mass sun according to
Equation (6.6) at the bottom of the page.

For the special case where 6 — 6'=0 and
5 — &'=mn/4, (6.6) precisely reproduces (6.3). But in
(6.6) we have removed the approximation sign = that
was in (6.3), because we are now going to define the an-
gles 6,0 so as to precisely match up with the empirical
values of the neutron and proton masses. That is, just as
(1.4) is an exact formula for the proton-neutron mass
difference, we shall now regard (6.6) as an exact formula
for the neutron plus proton mass sum, with the numerical
values of 6,0 defined by empirical data so as to make
this an exact fit.

Now before we proceed, let us pause to make clear,
the cascading detective work we have just done: We have
used the matrix diagU :(io's,l,l) implicit in (6.3) and
explicit in (6.5) as a hint that there exists a matrix
diagU = (exp(id'),1,1) with &'=n/4 . Then we use
diagU = expgié"),l,l as a further hint that there exists
a matrix (6.5). Then we allow both of these angles to
freely rotate to form (6.6) which generalizes (6.3). Fol-
lowing all of this, we will use these freely rotated angles
to permit the otherwise close relationship (6.3) to be fit-
ted exactly by empirically choosing these angles so as to
yield an exact fit.

But before we do this, however, there is a final, deep
cascade to this hint, which is to recognize that (6.5) with
angles free to rotate is one of the three matrices used to
define the CKM matrices used for electroweak genera-
tion mixing, see (7.11) in [8], and in particular, is the
matrix that is use to introduce the phase angle response-
ble for CP violation. We also see that (6.4) is strictly a
function of the first (electron generation) quark masses
and the Fermi vev which makes its upper left component
YM, M, containing the “vacuum-enhanced” quark

MM, 0

u

My+M,=E U, E.,=3Tt| 0

o 0 Jm

M M, exp(iS) 0 0

=3Tr 0 m, cos 6,

0 —\/m,m, sin6,

Copyright © 2013 SciRes.

0 Jfexp(is) 0 0 \¥MM, 0 0
m, 0 0 cosf sing, 0 m, 0
m 0 —sinf, cosé, 0 0 /md
(6.6)
\Jm,m, sin 6, :3(,/MuMd exp(ié')+mu cos @ +m, COSHI)
m, cos 6,
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masses substantially larger than its middle and lower

right components /m, and /m, .

u

Because CKM mixing has two more matrices and also
mixes two more generations, let us now form two more
matrices M and T analogous to (6.4) for the muon
and tauon generation of quarks, following the pattern for
mixing in the original parameterization of Kobayashi and
Maskawa. Thus, we put the large components /M M
and #M M, into the lower right positions. And, as a
matter of convention, we keep the up (electric charge =
+2/3) series of mass terms in the middle position. Thus
we define the muon and tauon generation matrices as:

oo o
M E\/g 0 \/"TC 0 >
0 0 MM
(6.7)
oo
T,=V3] 0 Jm 0 |
0 0 MM,

At the same time, analogously to (5.12) and (5.13), we
define the vacuum-enhanced higher-generation quark
masses:

M, = %vmc =14,467 MeV , 6.8)
M, = %vmx =2792MeV , 6.9)
m, cos 0, \Jmm,_ sin 6,
M U, M =3Tr| —ymm_ sin€,  m_cos6,
0 0
m, cos 6, \Jm,m, sin 6,
T, 3Uspc Ty =3Tr| —Jmym, sin@;,  m,cos0,
0 0

Then, we multiply all three of (6.6), (6.15) and (6.16)
together in the same manner that the Cabibbo mixing
matrices are formed, again see (7.11) in [8], to obtain a

®=M-U,-M-E-U,-E-T-U,-T
—M,\J MM, |11, m, C,S,S,
+M, M, mm,c,c, e’

M, M [, CC) Sy

=27

139

2
M, =[Zvm, =168,758 MeV , (6.10)
M, = %vmb =18,522 MeV, (6.11)

which yields the higher-generation analogues to (5.14):

M_M_ =6356 MeV , (6.12)

MM, =55,908 MeV . (6.13)
These values are calculated from the PDG data [10]

laid out prior to (3.12), rounded to the nearest MeV

(recognizing substantial experimental uncertainties).

We also define two more matrices analogous to (6.5)
for the second and third generations in same manner as is
used to form the CKM mixing matrices, again see (7.11)
in [8]:

cosd, sin@, 0
U, =|—sinb, cosb, O0]|;
0 0 1
(6.14)
cos@, sind, 0
U, 3 =| —sin@, cosé, 0.
0 0 1

Then, analogously to (6.6), for the second and third
generations, respectively, we form:

0
0 =3(1/MCMX +m00056’2+mxcost92), (6.15)

MM,

0

0 |=3(\/MM, +m, cost, +m,cos0,). (6.16)

JMM,

master “mass and mixing matrix” ® with mass dimen-
sion +3, defined as:

is
—M M, \Jmm ms,c,e

\/mumd \/MCMX \/mbm,sls3
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M, \| MM, M,C,S,Cy
+\/Wm WC 5. € \/m”md \/msmc \/MrMbslsz
u " d s RUASTR
M, M m,C,C,Cy 61
5 MM
_\/M”Md \/msmc \/mbmt 8,85 ei” Wmc mSICQ
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This master matrix contains all six of the quark masses
in all three generations, all three of the real mixing an-
gles and the one phase angle that appears when the three
generations are mixed, and implied in the vacuum-en-
hanced mass terms, the Fermi vev and the electric

is
M M, mm, e

0=27 0

0

m m.m

u c

charges of all of these quarks. If all of the masses are set
to equal 1, this reduces to the usual generational mixing
matrix in the original parameterization of Kobayashi and
Maskawa, seen in, e.g., (7.11) in [8]. In the circumstance
where s, =0,s, =0, this reduces to:

0

cos 6, m,m,m M ,M, sin 6, (6.18)

0 —Jm,my M M m, sin6, —m,JM M \JM,M, cos6,

and in the further circumstance where all of the second and third generation masses are set to 1, this further reduces to 9

times the matrix shown in (6.6):

JM M, e 0

0=27 0 m, cos 6,

0 —Jm,m, sin,

\Jm,m, sin,

m, cos 6,

0
(6.19)

So in this particular special case, (6.17) even contains the neutron plus proton mass sum of (6.6):

éTr®=3(1/MuMd exp(i6)+m, cos, +m, cosﬁl)zMN+MP !

So this neutron plus proton mass sum now is a special
case of (6.17) which includes all the generation mixing
angles and all the quark masses and their electric charges
and the Fermi vev!

Consequently, one expects that (6.17) can be used to
gain substantial new insights into fermion and baryon
masses generally. And all of this emerges in cascade
fashion from the simple hint of a matrix with
diagU = <i°‘5 ,1,1) in the neutron plus proton mass for-

(6.20)

mula (6.3), with the i*° itself having emerged from the
simple fact that up and down quarks have oppositely-
signed charges which led to terms containing ‘\‘/_Xl
when we formed Koide matrices to represent masses.
Such is the nature of this detective mystery!

With the important contextual digression of (6.7)
through (6.20) as backdrop, we now return to solve (1.4)
and (6.6) as simultaneous equations, that is, we now
solve the simultaneous equation set:

M,+M, :S(JMuMd exp (i) +m, cos6, +m, cosé’l)

M,-M,=m, —(3md +2,/m m, —3mu)/(2n)%

(6.21)

We now need no more than elementary algebra to determine that the neutron and proton masses, separately, are each

given by:

3
M, =%(3(,/MuMd exp(id)+cos 6, (m, +m, ))+mu —(3md +2.Jm m, =3m, )/(Zn)lj

(6.22)

3
M, :%(3(1/MuMd exp(i6)+cos 6, (m, +m, ))—mu +(3md +2,/m,m, —3m, )/(2n)2j

These can be made into exact theoretical expressions
for the neutron and proton mass by solving for 6,,5, to
find their empirical values based on the empirical neu-
tron and proton masses. Let’s now do so.

Copyright © 2013 SciRes.

Because each of (6.22) contains a complex phase, we
will need to form the square modulus magnitude

2 *
|M | =M"M of these masses. So first we deduce:
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4|MN| =9M M, +6cosd M M, (30059 m, +md)+m <3md+2 m,m, —3mu)/(2n);j
3 2
+[3cos6’1(mu+md +m, (3 2,fm,m, —3mu)/(27t)2j ;
\ (6.23)
4|MP| =9M M, +6cosdyM M, (3005«9 m +md) mu+<3md+2 m,m, —3mu)/(2n)2j

3 2
+(3cos6’l(mu +my)—m, +(3md +2,/m,m, —3mu)/(27t)2j

Now we solve these as simultaneous equations for 6, and ¢ . First we restructure (6.23) in terms of J to arrive
at:

3 2
alM, [ ~oM M, - (3cost9(m +my)+m, —(3m, +2 fm,m, —3m )/(21:)2)

coso =
3
6 M M, (.’acos&1 (m, +m,)+m, _(3’",4 +2,/m,m; =3m, )/(271)2)
, (6.24)
3
AM,| -9M M, —(3c0s 0, (m, +m,)=m, +(3m, +2Jmm, ~3m, )/(Zn)z]
coso = 3
6,/ M M, (3005(91 (m, +m,)—m, +(3md +2,/m,m,; —3m, )/(Zn)zj
We now set these two cosd equal to one another to using the following substitution of variables:
elimina‘Fe 0 and solve for 4.1t w.ill be easier to see the N= 4| M, |2 oM. M,;
underlying structure of these equations as well as solve ,
them if we write (6.24) above as: P= 4|MP| -9M M,
2 3 (6.26)
CoosS = N—;BCOZHI -;A) A=m, —(Smd +2,Jm,m, —3mu)/(2n)2 ;
(Beost+ )2 (6.25) B=3(m, +m,);C=6/M,M,
= P—(Bcosd, — 4) Next, we reduce the second and third terms of (6.25)
(Bcos6, - 4) successively in five steps as follows:
1):(N—(Bcost91 +A)2)(Bcost91 —A) :(P—(Bcosé?1 —A)z)(BcosH1 +4)
2): N(Bcos6, —A)—(32 cos’ 6, —Az)(BcosE’1 +A4) = P(Bcosb, +A)—(B2 cos’ 6), —Az)(BcosE’1 —A)
N(Bcos6, —A) P(Bcos6, + A)
s A= ~+4 (6.27)
(B cos QI—A) (B cos 6’1—A)
4): N(Bcos§, —A)—A(B2 cos” 6, —Az): P(Bcosé, +A)+A(B2 cos” 6, —Az)
5):0={24B}cos’ 6, —{ B(N - P)}cos 6, +{ A(N + P)-24’|
In the final step, we arrive at a quadratic for cosé,, Additionally, sin6, =0.31989167 . In the above, we
and so obtain a solution via the quadratic equation. Then, use the negative root, because this yields —1<cosé, <1.
we use the variables (6.26) including the empirical This means the empirically-determined value of 6, is:
masses of the neutron and proton, to calculate that: 0, =0.32561515rad = 18.65637386° 629
N—P—\/(N—P)2—8(A2(N+P)—2A4) =m/9.64817715 '
6 = .
084 44B (6.28) We shall refer to cosd =0.9474541242 in (6.28)
=0.9474541242 used to precisely fit (6.22) to the observed neutron and

Copyright © 2013 SciRes. JMP
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proton masses as the “nucleon fitting angle”. In the next
Section we shall show how to tie this angle to the ob-
served CKM mixing angles, so it is not a “new” angle,

but is related to other known mixing data.
Now, we use (6.28) in (6.25) to solve for ¢, and cal-
culate to find that:

coso =

A (N+P)- 2A4 ) 4A+Aj

w=((w-r- v
((Nw

A*(N+P)- 2A4

4A +4
(6.30)

((N P)Z—S(AZ(N+P)—2A4))

|
P

((N P- \/N Py 8(A2(N+P)—2A4))/4A—A)

This numerical calculation reveals that cosd =1, ex-
actly, to all decimal places, so the phase factor 6 =0.
This means that when the variables in (6.26) are substi-
tuted into (6.30), the extremely unwieldy-looking result-
ing expression will reduce to 1 identically! So to the ex-
tent that & may be a CP-violating phase, and given that
0 =0 is a deduced result for the neutron and proton
masses (6.22), this deductively tells us that there are no
CP-violating effects associated with neutron and proton.

( (W+cos6’ m, +md))+mu—(3md+2 m,m, _3m“)/(2n);j
( (\/—M+cos¢9 m, +md))_

which are exact relations with the empirical substitution
cosf, =0.9474541242 .
These relationships (6.31), in turn, now enable us to go

M=M,+M, -m, :3(1/MuMd +cos 6, (m, +md))—mu,

3
M =M, +2M, —4m, +2.mm, / (2n)2

1

M =2M, + M, —2m, —Jm,m,

:%(9(\/m+cos91(mu +md))_5mu —2ym,m, +(3md 2\ mmy =3m, )/(M);j

;M=2MP+2MN—6mM—6md+(10md+10mu+16 mumd)/(Zn)E-iQ m,m

=6(1/MMMd +cos 6, (m, +m,)—m, —md)+2 m,m, +(10md +10m, +164/m m, )/(27:)%

Now, /B, =ZM,+NM, - /M, which is binding

energy B, for any given nuclide with Z protons and N

Copyright © 2013 SciRes.

=§(9(1/MuMd +c0s6, (m, +m,))=Tm, —(3m, ~2\fmm, —3mu)(2n);j

This is validated by empirical data which shows the mass
of the antiproton is equal to that of the proton, and the
mass of the antineutron is equal to that of the neutron,
see, e.g., [12,13]. So, we take (6.22) to be exact formula-
tions of the neutron and proton masses, in the circum-
stance where empirically-determined angle
cos @, =0.9474541242 and CP-violating phase 0 =0.
So we now return to (6.22), set o =0, and so obtain
our final expressions for the neutron and proton masses:

(6.31)

+(3md +2m,m; —3m, )/(2n)§j

back to the masses (nuclear weights) for the 1s nuclides
predicted in [5] to high accuracy and rewrite (8.6), (8.1),
(8.3) and (8.5) of [5], respectively, as:

(6.32)

(6.33)

(6.34)

3

(6.35)

neutrons hence 4 = Z + N nucleons, thus N-Z=A4-27,
may also be rewritten generally in relation to nuclear
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weights using (6.31), in the form:

;BO+§‘M=% 34(\M M, +cos 6, (m, +m,))+(4-2Z)| m, -

One final exploratory exercise of interest is to return to
the master mass and mixing matrix ® in (6.17) and set

M M m.m 0
u d"s"h

0=27 0 m,m_ni, os 6,
0 0

This is in dimensions of mass’. If we take the cubed
root, and divide by 2 (because we know that this origi-
nated with the neutron plus proton mass sum) to get mass
numbers that should be related to individual baryons, we
find

%diag% =(939.72 MeV, 1163 MeV,1773 MeV)

(and we also get a coefficient /27 / 2=3/2, back to
Koide!). This first entry is very close to the neutron mass
939.565379 MeV which would not be expected a priori,
but this is because ./m m, =630 MeV which is not too
far from (M M, =619 MeV . Perhaps this is yet an-
other close relationship among fermion masses!? The
second entry at 1163 MeV, which would become smaller
when 6, 20,6, 20, is only about 4% larger than the
mass of the A,(uds)=1115.683MeV baryon, which
could readily be compensated by non-zero 6,,6, angles
as well as experimental errors in the charm and top quark
masses. The final entry at 1773 MeV, is perhaps sugges-
tive of the Q_ (sss)=1672.45MeV baryon mass,
however, contra, there are no omitted angles and some-
where we should expect to come across a baryon with a
third generation quark.

These (6.37) relationships are simply pointed out in an
exploratory spirit, and it is to be noted that ® in (6.17)
is just one representation of a mass/mixing matrix and
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3m, +2,Jm,m, —3m,

g (6.36)
(2m)

0, =0, =0=0 while using cos@, =0.9474541242
found in (6.28). In this circumstance, (6.17) reduces to:

0

0
my\JM M M ,M, cos6,

that one can also vary the way in which one sets up the
Koide triplets (6.4) and (6.7), so as to be able to obtain
this ©® matrix in several different representations.
Whatever the correct fits may turn out to be with various
higher-generation baryons, it should be clear that the
master matrix (6.17) and like matrices that can be simi-
larly constructed are an exceedingly useful tool for trying
to develop and fit mutual relationships among mixing
angles, CP violating phases, and quark and baryon masses.

(6.37)

7. Relation of the Nucleon Fitting Angle 8 to
the CKM Mixing Angles

Following the development in the last Section, the nu-
cleon fitting angle cosf, =0.9474541242 found in
(6.28) is a new empirical parameter that enables us to
precisely formulate the neutron and proton masses using
(6.31). While this is an important step forward in under-
standing the neutron and proton masses, it would be even
better if this angle could be related in some way to the
empirically-known CKM quark mixing angles, which
could then relate the neutron and proton masses them-
selves to the CKM angles. This is highly preferable to
having cosé, be a new, separate parameter.

Toward this end, we first write the CKM matrix with
the “standard choice” of angles and its empirical values
from PDG’s [14] as:

Vie Vs Vs €G3 S12613 5136
V=\Vy Vi Vo |=| =510 _0125235136i§ C12Co3 —S12S23S13ei5 $23613
Va Vi Ve S12523 —clzcz3sl3ei5 “CS23 —slchsl}e’” €G3 71
0.97427+0.00015  0.22534+0.00065  0.00351750> 7D
=|-0.22520+0.00065 0.97344+0.00016  0.041270%!
—0.00867 0 o0a: —0.040470000L 0.9991467 ) 0000zt

(We use a negative sign for the three lower-left
empirical entries to match the negative values in the
terms which the standard CKM matrix takes on when the

Copyright © 2013 SciRes.

angles are between 0 and 7/2.) Now, cosf, =
0.9474541242 does not fit any particular one of these
elements. But what is of interest is the determinant
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|V| which may be calculated from the CKM mixing and
phase angles ¢, and & to be:

|V|=VudV Vie ¥ VilVeoVia +VisVeaVis

cs’ th us’ cb

V¥V =ViVedV s =VidV Vs =1

cs’ td us’ cd’ th

(7.2)

and which contains invariant expressions of interest (See
also [15] which cleverly connects this determinant, when
real as in the standard angle choice (7.1), to the Jarlskog
determinant). Specifically, if we employ the mean ex-
perimental values in (7.1), we find that sum of the three
positively-signed (+) terms in the determinant, denoted
|V+, which is an invariant containing all nine matrix
elements, and which we shall refer to as the “major de-
terminant,” is determined from the empirical data in (7.1)
to be:

|V|+ = VudVL‘sV;b + Vu.chthd + VuchdVLs (73)

=0.947535

This major determinant is very close to cosf, =
0.947454 , truncated to the known precision of |V|+. In
fact we find |V|, =0.947192 = cos§, —0.000262 if we
use the lower bounds of all the experimental error ranges
in (7.1), and |V'|, =0.947854 = cos 6, +0.000400 if we
use upper bounds. So this is within experimental errors.
Therefore, using cosé, =0.947454 as the baseline
against which to compare |V|+ , we find that:

V], = cos 6 5oume = 09474547505 (74)
This means that the nucleon mixing angle cosé, is
related to the invariant scalar |V|+ according to:
cos 6, :|V|+ =V.VVs
+V.V. Vd +VubI/ch/ts

us’ cb’ t

(7.5)

which is well within experimental errors! If we now
take this to be a meaningful relationship given that it falls
well within experimental errors, this means that we can
go back to (6.31) and use (7.5) to rewrite the neutron and
proton masses completely in terms of the CKM matrix
elements, and specifically in terms of the major determi-
nant |V, , according to:

= (I )
_(3md+2 m,my =3m, )/(Zn)zj
N
3
+(3md +2 m,my —3m, )/(27.[)2}

This now connects the proton and neutron masses to
the major determinant |V|+ which is an invariant of the

(7.6)

Copyright © 2013 SciRes.

CKM mixing matrix V. This not only closes the 0.06%
difference of (5.18) between the predicted and the em-
pirical neutron and proton masses usingcosé,, but it
connects cosd, to the CKM mixing angles so that (7.6)
now specifies the exact masses of the free neutron and
proton as a function of the up and down masses and
charges and the Fermi vev and the CKM quark mixing
angles without introducing any new physical parameters
to do so! Because cos@ =0.9474541242 is known
with better precision than |V'| =0.947535, we then use

cosd, as the basis for specifying || , i.e., we now set:

[V, = cos 6, =0.9474541242 (7.7)

which is then a further ingredient used to tighten the em-
pirical data in (7.1).

Further, because |V|+ injects into the proton and neu-
tron masses an imaginary term with a Jarlskog deter-
minant J = ¢{3¢,,C35,55,35,3 SiN Oy, (Which may be cal-
culated using the angles in (7.1) with & — J,, ), and if
we wish to maintain the proton and neutron masses to be
entirely real based on cosd =1 (the “nucleon phase
angle” & # 0., ) deduced in (6.30), then we can
achieve this by restoring the phase to the vacuum-en-
hanced mass term as in (6.21), i.e., by restoring
JM M, — \J[M M, exp(i5), and then choosing & in
i\JM,M,sind to absorb the terms with the Jarlskog

determinant, again see [15] which shows how the Jarl-
skog determinant is “the imaginary part of any one ele-
ment among the six components of determinant of V ...
when the whole determinant is made real” as it is in (7.2).
Specifically, referring to (7.6), this means that one would

set isinS-\/M, M, +Im|V| -(m, +m,)=0 to maintain
CP symmetry for the neutron and proton. Given that
Im|V|+ =-3J , this means that:

mu+md

JM M,
m, +my,

_1.2 :
= 303€12C31,813853 SIN Oy
JM M,

will define a very tiny phase in the term

M M, exp(i8) in the proton and neutron masses such
that these masses remain real and thus maintain CP
symmetry. While beyond the scope of this paper, this
could provide additional insight into the so-called “strong
CP problem.

Finally, as regards fermion masses, if we write each
elementary fermion mass m, in terms of the Fermi vev
using a dimensionless coupling G, as \/Em/- =G, v,
see, e.g., (15.32) of [16], then use these relationships in
(6.17) for ® or a similarly-formed matrix in a CKM
representation (such as (7.1)), we find that the matrix
entries will contain terms of the form G}v;,Gjv; and

sind =3J
(7.8)
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depending on representation, G;v;. This may help us
gain further insight into fermion masses as well as
high-order Lagrangian vacuum terms ¢°,¢*, 4’ .

All of this mystery cracking is the result of the detec-
tive work embarked upon at the start of Section 6, of
pulling on the tiny thread of the complex factor

i = L(1 +i) which arises from taking the fourth root

V2

of the minus (—) sign that emanates from the oppo-
sitely-signed electric charges of the up and down quarks,
in order to form the Koide matrices (5.6) and (5.7).

8. Vacuum-Amplified and Constituent
Quark Masses

In (5.12) through (5.14) we defined three very helpful
mass values all between 604 MeV and 635 MeV. It is
natural therefore to inquire whether these “vacuum-am-
plified” quark masses might be related to the so-called
“constituent” quark masses which specify how much
mass each quark contributes to total mass of a nucleon or
baryon, as opposed to the bare “current” quark masses.
Specifically, recalling that these were the ingredients in
the neutron plus proton mass sum, we note M, /2
=302.0875673MeV, M, /2 =317.2892232MeV in (5.12)
and (5.13), which is about 1/3 of the neutron and proton
masses. This suggests that (5.12) to (5.14) may be related
to the conmstituent masses of the up and down quarks

M M, +3m, cosb +m, —

which specify how much of the observed neutron and
proton masses arise from each of the quarks and their
interactions with the vacuum. The question we now ask,
referring to the neutron and proton mass formulas (6.31),
is how much does each up quark contribute, and how
much does each down quark contribute, to these total
masses? In other words, what are the “constituent”
masses of the up quarks and down quarks in each of the
neutron and proton, as opposed to their bare “current”
masses?

Referring to the neutron and proton masses (6.31), for
the square root terms /M, M, and  /m,m, , we can-
not directly segregate the up quark mass contribution
from that of the down quark. In these square root terms,

the up and down are coequal mass contributors. So we
shall allocate instead. For the term 3-,/M M, in the

neutron mass, we allocate a 1-\/M M, contribution to

the one up quark and a total 2-,/M M, contribution to
the two down quarks. For the proton, we allocate

1-yM M, to the one down quark and 2- M M, to

the two up quarks. We similarly allocate the jm, m,
terms. But as to terms which contain m, alone, or m,
alone, we segregate these and apply them directly to the
up and down quark constituent masses, respectively.
Thus, we identically rewrite each of (6.31) while defin-
ing respective constituent quark mass sums U, +2D,

and 2U,+D,, as:

2 m;zmd 3mu

320 (2m)

1
M, == =U, +2D, 8.1
2 4 mﬂmd 3m
2yM M, +3m, cos ) ———————%
3(2n)2  (2nm):
4,/m m
2yM M, +3m, cosb, —m, +—”3d— 3m”3
1 3(2n)2 (2n)2
MP:E ( ) ( ) E2UP+DPa (82)

M M, +3m, cos6, +

with the up and down quark contributions respectively
specified in the upper and lower lines of each of (8.1)
and (8.2). That is, the above represent a deconstruction of
the neutron and proton masses into the separate contribu-

1
U, =3 M M, +3m, cos6, +m, —

Copyright © 2013 SciRes.

2 mm,  3m
—t

3(2n)2

2,/m,m, N 3md3
3(2n)2  (2nm)2
tions emanating from up and down quarks. We then

separate out the constituent quark masses and calculate
them using cos &, = 0.9474541242 , as follows:

“+ |=314.0092987 MeV ,

(2):

(8.3)

3
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1 3 2Jmm;  3m
D=3 /MuMd+5mdcosé?1— ! 7”’ ———* | =312.7780400 MeV | (8.4)
3(2n)2 2(27:)2
1 3 2ym,m;  3m
Up=>5 /MUMd-i-Emu cos 6] —m, +——5- - ——— | =310.0274283 MeV (8.5)
3(2n)2 2(271:)2
D=2 [M M, +3m, cos 6+ ~—=-+ =L |=318.2171900 MeV (8.6)
3(2n)2 (2n)2

The first expression (8.3) for U, 1is the constituent
contribution of the up quark to the mass of the neutron.
The second expression (8.4) for D, is the constituent
contribution of each of the two down quarks to the mass
of the neutron. U, in (8.5) is the constituent contribu-
tion of each of the two up quarks to the mass of the pro-
ton. Finally, D, in (8.6) is the constituent contribution
of the down quark to the mass of the proton. One can
verify that M, =U,+2D, and M,=2U,+D,,
numerically and analytically. It is important to observe
that U, #U, and D, # D,, which is to say that the

constituent contribution of each quark to the mass of a
nucleon is not the same for different nucleons, but rather
is dependent upon the particular nucleon in question, in
this case, a proton or a neutron. So the lone up quark in
the neutron makes a slightly greater contribution to the
overall neutron mass than each of the two down quarks,
and the lone down quark in the proton makes a slightly
greater contribution to the proton mass than each of the
two up quarks.

This sort of context-dependent variable behavior de-
pending upon nuclide is to be expected based not only on
what we uncovered throughout [5], but more generally
based on the fact that when nucleons bind together, they
release binding energy, so that different nuclides have
different weights per nucleon, and indeed, different nu-
cleons within a given nuclide should be expected to have
different weights from one another based on their shell
characterization. Constituent mass Equations (8.3) through
(8.6) tell us along these same lines, that the constituent
mass contributions from each quark will differ depending
upon the particular nuclide in question, and indeed, upon
the particular nucleon with which a quark is associated
within that nuclide. The above, (8.3) through (8.6), make
the point that this type of variable mass behavior of indi-
vidual quarks already starts to appear even as between
the free neutron and proton.
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We also see that the “vacuum-amplified” quark masses
(5.12) through (5.14), are not synonymous with con-
stituent quark masses. These vacuum-amplified masses
are ingredients which are used as part of the calculation
of the constituent quark masses. While the constituent
quark masses vary from one nucleon and nuclide and
nucleon within a nuclide to the next, the vacuum-ampli-
fied quark masses do not vary. They are mass constants
(to the same degree that current quark masses are con-
stants, recognizing mass screening) which do not change
from one nucleon or nuclide to the next, and which are
used as ingredients for calculating the varying constituent
quark masses, as we see in (8.3) through (8.6), as well as
for calculating neutron and proton masses (6.31) and
nuclear weights (6.32) through (6.36).

9. The Lagrangian Formulation of the
Neutron plus Proton Mass Sum

Now we revert to the start of Section 5, where we noted
that we can connect any Koide matrix products to a La-
grangian via (4.4) and (4.5). Now that we have obtained
a theoretical expression for the neutron and proton
masses, it is time to backtrack using the development in
Section 4 to connect these masses to their associated La-
grangian expression. This is simply to put all of the
foregoing into a more formal physics context so that this
is understood as going beyond simply playing with mass
numbers to make them numerically fit an equation with
opaque origins. We shall develop such a Lagrangian
formulation for the neutron plus proton mass sum (6.6),
recognizing that a Lagrangian connection for the separate
masses of the neutron and proton can then be developed
using Yang-Mills matrix expressions such as (5.3), (5.4),
(6.3) and (7.4) of [5] to also develop a Lagrangian for-
mulation of neutron minus proton mass difference (1.4).

Using the Pauli spin matrix 7,, a unitary rotation ma-
trix may of course be formed using:
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exp(iT,0) = 1+iT26’+%(iT26’)2 +%(1‘T29)3 +%(,‘ng)“ .

1 0 0 6) 1(6® 0) 1(0 -6 1(6* 0
= + -—— +— +— 4+ ©.1
0 1 -0 0) 21lo &%) 31& o 40 6

1—i92+i¢94+... g_lgu... .
200 4l 3! _(cos& s1n6’J
_[9_l93j+_” 1Ll Lgiy. | \=sin@ cosd
3! 204

Consequently, the square root of this rotation matrix is:

1 1
cos—@ sin—6

Jexp(iT,0) = exp(%ﬂ;@) = 21 21 ) 9.2)

—sin—6 cos—@
2 2

With this in mind we start with the expression (6.6) including the phase exp(i5 ) which we later found in (6.30) is
exp(i5 ) =1, and write the neutron plus proton mass sum using a square root rotation matrix as:

My+Mp=E Uy Eq, = EAB\/Ul BC U, CDEDA = E'ABE;M

YM M, exp(%iéj 0 0
=3Tr 0 \Jm, cos%&l \Jm, sin%@l 9.3)
0 —\/m, sin%&1 m, cos%ﬁ

:3(exp(i5)1/MuMd +m, cos&, +m, cos6’1)

in combination with a rotated “electron generation matrix” E’ defined via left multiplication with JU, as:

IM M, exp[%ié‘j 0 0
E,=3 0 Jm, cos%@1 m, sin%é’1 :\/?IACECB
0 —Jm, sin%&, m, cos%&,
9.4
exp(lzﬁj 0 0
2 dmM M, 0 0
=3 0 coslﬁ1 sinlé’1 0 m, 0
2 2 \/»
0 0 m
0 —sin%@l cos%é’1 ‘

and an adjoint matrix defined via right-multiplication with /U, as:
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IYM M, exp(%ié‘j 0 0
E’ABE\B 0 JmT(cos%Hl Msin%@ =EAC\/UICB

0 —my sin%@1 m, cos%&
9.5)
exp(lié'j 0 0
MM, 0 0 2
= 0 Jm, 0 0 cos%@1 sin%@1
0 0 m

‘ 0 —sinl@1 coslﬁ1

2 2

In the above, cos6, =0.9474541242 is the empirical formulation. In this case, in (2.1) for a generalized Koide

number found in (6.28), and 6 =0 is identically true as matrix K ,,, we are setting m, = M M, m,=m
found in (6.30). The above, E', and E',, are just the

A
Koide triplet matrix E,, for the electron generation

rotated into primed state by multiplying from the left and

and m,; =m,, and the only new feature is that we are
then rotating this matrix both from the left and the right
via K'=JUK and K=KJU . Consequently, we

from the right via U, | E, and E U, . may use (9.4) and (9.5) to write the mass sum M, +M,
But we know from (4.4) and (4.5) that as soon as we in (9.3) in a Lagrangian formulation, using these rotated
have a Koide matrix, we can backtrack into a Lagrangian Koide matrices, via (4.4) and (4.5) as:

3 3 _ 3 —
My+M,=—2n): [[[ed'x = %(2@5 Tr[[[,,6" d’x = %(211)2 Tr[[[& - 65pd’x

YM M, exp[%i&] 0 0
3 —_— —_—
- %(m)a ([ -8,0'x =F By, =3Tr 0 Jm cos%&l Jm sin%@l 9.6)
1 1
0 —\Jmy smEHl m, COSEQ

:3(exp(i5)1/MuMd +m, cos6, +m, cosHl):MN +M,

by introducing new field strength tensors defined in the manner of (4.2) as:

Py P VE (7.7 v, Nz ENAZ

Tr6™ =i : , , , 9.7)
JM M, & a
e =] P [ ], e [y",,yv]l//; Nz BNz , ©5)

/ MM, ' m, m,

where the “vacuum-amplified” masses M, and M, as Referring back to Sections 2 and 4, this means that here
well as the square root mass /M M, are defined asin  we have set w, =Y, w;=w ,y; =y} in the field
(5.12) to (5.14), and where the Koide mass matrices are strength tensor (4.2) and as just noted, m, =M M, ,
formed for & using left-multiplication (9.4) and for m, =m,,m; =m, in the Koide matrix (2.1), then fol-

&' using right-multiplication (9.5). lowed the remaining development of Section 4 with the
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only addition being that we now are also employing the
rotations (9.4) and (9.5) on these Koide triplet matrices.
We also now have the knowledge which can be exploited
for further future development, that (9.3) for the neutron
plus proton mass sum specifies a special case of the very
general master mass and mixing matrix ® as specified in
(6.17), see (6.20). So this gives us a hook into a Lagran-
gian formulation for other generations of fermion, and
therefore, for formulating other charmed, strange, top and
bottom-containing baryons.

As a consequence of the foregoing, the unrotated fer-
mion eigenstates used to form (9.7) and (9.8) are a triplet
(¥,..%,.w,) consisting of a wavefunction for a vac-
uum-enhanced fermion ¥, (using upper case Greek),
together with the ordinary fermion wavefunctions
v,,v, for the up and down current quarks (lower case
Greek). It is the W, wavefunction that is responsible
for generating the vast preponderance of the constituent
mass contributions to the neutron plus proton mass sum,
see Section 8, while w,,y, are responsible for the cur-
rent mass contributions.

Lastly, as in (4.12) through (4.14), at the nuts and bolts
level, we apply the Gaussian ansatz (4.12), in the form:

3 1(r—r0)2

t//u(r):u(nki)jexp _57‘»—2 , (9.9)
2 -2 1(1”—}’0)2
v, (r)=d(mh}) * exp ~ 5 | (9.10)
d
2\ 1(r—r0)2
¥, (r)=V (K2 ) *exp | .11)

and for the reduced Compton wavelengths, converting to
h=c=1 units, we specify:

X, =n/mec=1m,, (9.12)
Ry =h/myec=1m,, (9.13)
K, =n/MM,c=1/ MM, . (9.14)

So, referring back to the discussion at the end of Sec-
tion 4, as was the case with the short range of the nuclear
interaction, we can indeed use the Gaussian ansafz to
model fermion wavefunctions as Gaussians and obtain
the fully-dressed neutron and proton masses. But to do so,
in the above we are using the undressed “current” quarks
v,.¥, which yielded binding energies in [1,5], together
in the same Koide triplet with a vacuum-amplified quark
wavefunction V¥, and associated masses and wave-
lengths. So here too, it is not a question of whether we
can use a Gaussian ansatz, but rather, it is a question of
which wavefunctions with which masses and wave-
lengths we need to use in the Gaussian ansatz, in order to
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obtain a precise concurrence with empirical data.

So, insofar as fully covered protons and neutrons are
concerned, it looks as if the vacuum-amplified quarks in
combination with the current quarks, are behaving as
free fermions, as specified in detail in all of the foregoing.
This underscores the role of the Gaussian ansatz as a
modeling tool used to derive effective concurrence with
empirical data, rather than as a part of the theory per se.
The theory is centered on baryons being Yang-Mills
magnetic monopoles, and nucleons releasing or retaining
binding energies based on their resonant properties which
in turn depend upon the current quark content of those
nucleons. For calculations which involve the components
and emissions of protons and neutrons such as their cur-
rent quarks and their binding energies, the current quarks
can be modeled as free fermions to obtain empiri-
cally-accurate results. For other calculations which in-
volve the bulk behavior of protons and neutrons, accurate
results may be obtained by modeling vacuum-enhanced
quarks in combination with current quarks as free fer-
mions, in the manner outlined above.

The whole point of the discussion in this Section has
been to make clear that the neutron plus proton mass sum
(and thus the individual neutron and proton masses) de-
veloped in this paper is not just the result of developing
formulas which fit the empirical data but have unclear,
opaque origins in the way that the Koide relations have
also had unclear origins. Rather, as shown in (9.6) this
mass sum can be formulated as the energy

M,+M, = —(ZTC)% _” £d’x
= %(Zn)% Tr ﬂ 6,6 d’x

arising from integrating a Lagrangian density

1 .
£= —Eé;wg"” over the entirety of a three-space vol-

ume element d’x . This puts the neutron and proton
masses (and by implication via ® as specified in (6.17),
other baryon masses as well) into the context of funda-
mental, Lagrangian-based physics, and shows how these
mass formulas (as well as those of Koide) are not just
coincidental numeric coincidences of unexplained origin,
but truly are real physics relationships with a Lagrangian
foundation.

10. Conclusion

In conclusion, we have shown how the Koide relation-
ships and associated triplet mass matrices can be gener-
alized to derive the observed sum of the free neutron and
proton rest masses in terms of the up and down current
quark masses and the Fermi vev to six parts in 10,000,
see (5.18). This sum can then be solved for the separate
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neutron and proton masses using the neutron minus pro-
ton mass difference (1.4) earlier derived in [5], as shown
in (6.22). The oppositely-signed charges of the up and
down quarks are responsible for the appearance of a
complex phase exp(id) and real rotation angle § which
leads on an independent basis to mass and mixing matri-
ces similar to that of Cabibbo, Kobayashi and Maskawa
(CKM), see (6.5) and (6.14). These can then be used to
specify the neutron and proton mass relationships to
unlimited accuracy as shown in (6.31) using 6 as a nu-
cleon fitting angle deduced in (6.28) from empirical data.
This fitting angle is then shown in (7.5) to be related to
an invariant of the CKM mixing angles within experi-
mental errors. Also of interest is a master mass and mix-
ing matrix developed in (6.17) which may help to inter-
connect all baryon and quark masses and mixing angles.
The Koide generalizations developed here enable these
neutron and proton mass relationships to be given a La-
grangian formulation based on neutron and proton field
strength tensors that contain vacuum-amplified and cur-
rent quark wavefunctions and masses, as shown in Sec-
tions 8 and 9. In the course of development, we also un-
cover new Koide relationships (3.14), (3.16) and (3.17)
for the neutrinos, the up quarks, and the down quarks.
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