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Abstract 
 
We present a simulation framework for wireless sensor networks developed to allow the design exploration 
and the complete microprocessor-instruction-level debug of network formation, data congestion, nodes in-
teraction, all in one simulation environment. A specifically innovative feature is the co-emulation of selected 
nodes at clock-cycle-accurate hardware processing level, allowing code debug and exact execution latency 
evaluation (considering both protocol stack and application), together with other nodes at abstract protocol 
level, meeting a designer’s needs of simulation speed, scalability and reliability. The simulator is centered on 
the Zigbee protocol and can be retargeted for different node micro-architectures. 
 
Keywords: WSN Simulation, Hardware-Software Co-Emulation 

1. Introduction 
 
Since the introduction of the concept of wireless sensor 
networks (WSNs) it appeared that, though the basic ele-
ments (nodes) are usually simple because of size and cost 
constraints, they can be arranged in order to interact with 
each other and form complex systems [1]. Due to the 
resulting complexity, the existence of a simulation envi-
ronment becomes a more and more valuable tool in order 
to implement and test software/algorithms/protocols in an 
efficient way, saving time and money. 

The particular characteristics of WSNs cause the de-
velopers to jointly face problems traditionally found in 
embedded systems and network programming. Seen as a 
stand-alone embedded system the node contains parts 
that require low level programming, because node firm-
ware has to interact directly with hardware peripherals as 
sensors, serial ports, timers, rx/tx modems. Usually the 
code correctness and its performance impact can be de-
bugged and tested only on the actual WSN hardware, 
because of the continuous mutual node interaction, or on 
an accurate hardware simulator of a single node, which 
interprets the code of the embedded CPU and emulates 
hardware reactions. 

At the same time it has been clear that software de-
velopment in WSNs has to consider the interactions be-
tween nodes at protocol and data communication level: 
data communication is rarely in the form of a single, 

point-to-point link and may require an accurate and ex-
tensive testing using the concepts and the tools typical of 
network programming (i.e. analysis of packets, routing, 
latency, etc.). 

We developed our simulator in order to specifically 
address the problem of embedded software debug and 
testing, with a particular emphasis on hardware-software 
interactions and execution time accuracy, while at the 
same time allowing the simulation of large networks 
with acceptable speed. To the best of our knowledge, 
WSN simulators presently in use are vastly oriented to 
high level protocol emulation, which has the advantage 
of allowing high simulation speed, but cannot model 
accurately code execution at node level, since nodes are 
only abstract entities and actual hardware resources have 
not a representation within the simulation.  

A survey of existing WSN simulation tools can be 
found in [2]. Common simulation framework are NS-2 
[3], OMNeT++ [4], Prowler [5], TOSSIM [6], OPNET [7]. 

Generally speaking, network simulators are oriented 
toward an abstract view of resources and network com-
ponents, which is required for fast network simulation, 
but the high level view may prevent the accurate simula-
tion of node internal details, which should be tested and 
debugged in the implementation design flow. 

As an example, NS-2 [3] is a very popular simulator 
based on discrete event simulation. It was written for 
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general network protocols simulation and, in the specific 
ambit of wireless networks, the simulator support 802.11 
and 802.15.4 type wireless MAC. However, NS-2 has no 
capability to model real-time OS or application code, 
especially regarding code execution delays. Due to its 
high level view, neither actual embedded code can be 
simulated in NS-2, making it non-useful for code test and 
debug. 

OMNeT++ [4] is another public source, component- 
based network simulator that supports WSNs through 
extension modules. OMNeT++ can run applications 
written for WSN OSes, such as TinyOS [8] applications, 
which are converted automatically to simulator-compatible 
C++ code. As for NS-2, OMNeT++ cannot model OS 
and application layer execution time delay, neither simu-
late actual sensor embedded code. 

TOSSIM [6] is a network simulator that is part of 
TinyOS [8] distribution. TOSSIM is a hardware emulator 
that can run actual application code, making debug pos-
sible. A limitation of TOSSIM is the assumption that all 
nodes execute the same code and that, in order to 
speedup simulation, execution time is not modeled accu-
rately. For example, application code is assumed to be 
executed in zero time. 

A particular note can be written on ATEMU [9], since 
it emulates an AVR processor and a complete hardware 
platform, which allow firmware test and debug (OS and 
application) including execution time and latency. How-
ever, the accuracy of ATEMU is achieved at the expense 
of high processing requirements for the simulation and 
poor scalability. 

In this paper, we present a WSN simulation frame-
work developed to test and debug real systems, consid-
ering both accuracy and simulation speed. The simulator 
can accurately emulate a hardware node, executing 
through interpretation the whole embedded CPU code 
(user code and communication protocol stack code), at 
cycle-accurate level. Multiple nodes can be emulated at 
this level while they interact each other through the 
presence of a communication framework that emulates 
the physical layer of the network, including signal at-
tenuation and interferences/collisions between nodes. At 
the same time, our simulator can emulate a node at 
higher level of abstraction, relying on the same protocol 
stack, which is in this case compiled and executed 
natively on the host machine (we will call them the na-
tive nodes) and which runs hundreds of times faster than 
the interpreted one. In this way, a complex system can be 
emulated completely relying on the accuracy of the 
hardware emulator for a restricted number of nodes and 
on the speed of the native nodes for the remaining ones. 

The remaining parts of the paper are organized as fol-
lows: Section 2 presents a general overview of our simu-
lator and its main parts, Section 3 describes the node 

components (emulated hardware and native nodes), Sec-
tion 4 describes the communication framework that emu-
lates the physical layer. Finally, Section 5 shows some 
examples along with results and simulation speed. 
 
2. Simulation Environment 
 
The block diagram of the simulation environment is 
shown in Figure 1. The whole environment is written in 
C/C++ and compiles and runs under Linux.  

A node emulator represents each physical node. The 
node emulators are launched as independent processes on 
the host machine. There are two kinds of node emulators, 
which are not distinguished in Figure 1 because at this 
level they behave the same. The first is a hardware emu-
lator, which can run embedded code as a real node since 
it contains a complete executable model of an 8-bit mi-
crocontroller and an 802.15.4 compatible hardware trans-
ceiver.  

The embedded software running on the node is written 
in C and compiled with a cross-compiler for the embed-
ded CPU. It is composed of an application layer that im-
plements the node functionalities and a protocol stack, 
which implements the wireless protocol services and 
drives the emulated transceiver. 

The C application code and protocol stack, compiled 
natively on the host machine, composes the second kind 
of node. The protocol stack contains some modifications 
with respect to the embedded one since the emulated 
transceiver is not present and the lower layer of the pro-
tocol stack directly interacts with the simulator commu-
nication layer. 

The central part of the simulator is a communication 
framework which acts as an interconnection server (we 
will call it the PHY-server). Its main function is the sup- 
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Figure 1. Simulator block diagram. 
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port of data communications between nodes through 
TCP/IP connections, emulating the physical layer of the 
WSN. The PHY-server is a TCP/IP server that listens for 
packets coming from the nodes. Each node (both hard-
ware emulated and native nodes) creates a TCP/IP link 
with PHY-server as part of its initialization routines, us-
ing the connection to communicate to the central server 
during the whole simulation. We chose TCP/IP as com-
munication layer considering the possibility of acceler-
ating the simulation of large WSNs by means of distrib-
uted processing.  

The PHY-server has also the role of simulation man-
agement since it is responsible of node creation, initiali-
zation and control. 

Finally, the simulation environment interacts with the 
user through a graphical user interface. The GUI applica-
tion, which connects directly to the PHY-server, is used 
to configure the WSN structure and the properties of 
each node (Figure 2). The GUI also shows, in a struc-
tured way, data produced by the simulator, as node status, 
the packets sent and received by each node, code execu-
tion and debug messages logging (Figure 4). 

 
3. Node Simulators 
 
3.1. Hardware Emulated Node 

The hardware node is a cycle-accurate emulator of an 
embedded system composed of an 8-bit microcontroller 
and a wireless transceiver. In the present version, we 
implemented the emulation of a Freescale HCS08 mi-
crocontroller [10] and an MC13192 802.15.4 - compati-
ble transceiver [11] as shown in the block diagram in 
Figure 3. The diagram closely resembles Freescale de- 
velopment board 13192-SARD (Sensor Application Ref- 
 

 

Figure 2. GUI window, node configuration. 
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Figure 3. Emulated hardware node block diagram. 

 
erence Design) [12]. 

Applications can be compiled using the IAR [13] 
HCS08 C compiler and can leverage on the services pro- 

 
Figure 4. GUI, nodes activity windows. 
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vided by Freescale Zigbee proprietary library [14]. The 
node emulator executes the same binary application code 
which can be loaded in the physical hardware board, 
since it includes the MCU peripherals (timers, UARTs, 
I/O, etc.) of the MC9S08GT60 MCU (the same HCS08 
model of the SARD board) and the MC13192 transceiver 
emulator. 

The simulation proceeds with cycle accuracy for the 
MCU and transceiver components. The transceiver oper-
ates emitting final physical layer packets to the PHY- 
server using a TCP/IP connection. 

From the simulation environment point of view the 
emulated hardware node is an independent process in the 
host machine that interacts with the simulator through 
TCP/IP connections. The connections are used to trans-
port WSN packets but also to control and configure each 
node. 
 
3.2. Host Native Node 
 
The native node was created for performance purposes 
and it is an abstract object composed of an open source 
embedded Zigbee protocol stack [15] compiled directly 
for the host machine (Linux). Minor modifications have 
been applied in order to remove compilation problems, 
removing the transceiver driving code and inserting code 
that sends the RF physical packets toward the PHY- 
server, by means of a TCP/IP connection. 

The protocol stack acts as a library and the application 
code plus the protocol stack are compiled and linked 
before the simulation using the host C compiler (the 
Linux gcc compiler). The result is an executable which 
can run directly on the host machine and whose block 
diagram is represented in Figure 5. During the simula- 
tion each native node is launched as an independent 
process in the host machine, as for the emulated hard-
ware node. 
 

Application

Zigbee
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TCP/IP
connection

RF packets

to the PHY-server

software calls

 
Figure 5. Native node block diagram. 

4. PHY-Server 
 
The central coordinator of the simulation is a process we 
call the PHY-server. A block diagram of the PHY-server 
is represented in Figure 6. We can see that it communi-
cates with each node and the GUI through TCP/IP con-
nections and is responsible of the following functional-
ities: 

 It listens for commands coming from the GUI re-
garding node and simulation configuration, nodes posi-
tion, simulation control (start, stop); 

 It sets up the network creating the nodes as child 
processes, individually configuring and controlling them; 

 It allows the nodes to exchange packets emulating 
the physical communications layer, including signal at-
tenuation, noise and conflicts; 

 It maintains the global simulation time progress, 
allowing the synchronization between nodes. 

The following paragraphs will go into more details 
about each of the functionalities. 
 
4.1. Node/Simulation Configuration 
 
The PHY-server is basically a background process that 
waits for commands from the user by means of a graphi-
cal interface. The communication takes place through a 
dedicated TCP/IP connection, allowing the GUI to run 
remotely.  

Before the beginning of any simulation, a complete 
network must be specified, including, at least, two nodes, 
a Zigbee coordinator and a Zigbee RFD. The kind of 
node must be selected (hardware emulated node or native 
node). In the first case, a binary image of the compiled 
embedded firmware must be supplied, which can be dif-
ferent for each node. In the second case, the node itself is 
an executable, produced as described previously in Sec-
tion 3.2. 
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Figure 6. PHY-server block diagram. 
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Further information that must be supplied regards the 
data needed in the emulation of the physical communica-
tion layer as node position, transmission power, receiver 
signal threshold, background noise. 

Finally, optional parameters to be specified are the set 
of tracing data that should be sent to the GUI. The pa-
rameters must be specified essentially for simulation 
time speedup, since the network simulation can include 
many details from the higher abstraction level (e.g. per 
node packet activity) to lower abstraction level (per node 
physical layer activity, including channel monitoring) 
and the details of the hardware emulated nodes (e.g. in-
structions trace, CPU registers state, etc.). 

When the PHY-server receives a complete set of data 
for a node it proceeds with its creation and its inclusion 
in the network. 
 
4.2. Network Setup 
 
The network setup functionalities regard the creation of 
each node, its configuration/initialization and control. 
The PHY-server launches each new node as a process in 
the same host machine or on a different host machine, 
sending also the configuration (i.e. the firmware for the 
hardware-emulated node) to the node. As part of its ini-
tialization, each node establishes a TCP/IP connection to 
the PHY-server, which will be used for the emulation of 
the physical communication layer. Each node also estab-
lishes a direct connection with the GUI, which is used to 
send node activity information. In case of the hardware 
-emulated node, the information can include hardware 
details as instructions log and processor/peripheral state 
as usually required by an embedded system software test/ 
debug session.  

4.3. Emulation of the Physical Communication 
Layer 

The main functionality of the PHY-server is the emula-
tion of the physical radio communication during the 
network simulation. The PHY-server maintains a list of 
the instantiated nodes, including their positions. During 
the simulation, it computes the state of the received sig-
nal for each node including the presence of a radio signal 
coming from a transmitting node, background noise, and 
interference of other transmitting nodes that are colliding 
with the first. 

The nodes interact with the PHY-server sending both 
control and data packets. Control packets at the physical 
communication layer emulation are used to send request 
from the receiver (e.g. when a node turns on the receiver 
to inspect if the channel is occupied before transmitting) 
while data packets are used to send the actual physical 
packets to the PHY-server. When the PHY-server re-

ceives a control packet it always replies with the re-
quested information (e.g. channel signal strength used by 
the node receiver to determine if the channel is free or 
busy).  

The radio communication emulation is centralized in 
the PHY-server, which means that the nodes will never 
exchange packets directly, but only through the PHY 
-server. This centralized policy allows the PHY-server to 
log data packets for network traffic monitoring and, in 
case, to modify data packets (e.g. inserting controlled 
errors at bit level) to emulate noise and interference 
presence. 

Effectively, when the PHY-server receives a data packet 
(i.e. a physical packet sent by a transmitter) it broadcasts 
the packet to all nodes. In order to test network/firmware 
response/robustness to packet errors, the real radio 
channel characteristics are emulated applying formulas 
for signal attenuation, background noise, interference by 
other nodes and computing the bit error rate for each 
receiver. The packets are then modified inserting random 
errors accordingly. 

In the present version of the simulator, signal attenua-
tion and interference are computed applying a simple 
free-space law, but, due to the modularity of the function, 
the computation could be modified or obtained from an 
external EM field simulator.  
 
4.4. Simulation Time Synchronization 
 
A critical aspect of the simulation is time accuracy and 
synchronization between simulated nodes. The PHY 
-server provides for the generation of a global simulation 
clock. Since a clock accurate simulation would induce 
excessive overhead, each node is granted a variable-length 
time slot, in the order of a fraction of milliseconds of 
simulated time. During the time slot the node can run 
freely, advancing its internal state. The generation of 
external events, such as packet transmission and RF chan-
nel monitoring causes the time slot to break prematurely 
and leave the control to the PHY-server. Ideally, shorter 
time slots should be preferred since they generate more 
accurate simulations, but accuracy has a trade off with 
simulation speed because of the overhead of the start- 
stop procedure, which gets more and more frequent. 

5. Examples and Results 

5.1. Comparison with a Physical Zigbee Network 

In this Section, we show a comparison between the re-
sults obtained by our simulator and the results obtained 
using an actual physical Zigbee network. The nodes for 
the physical network are built around a Texas Instru-
ments CC2431 Zigbee transceiver [16] using the open 
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source Zigbee stack [15] (the same used in the simula-
tor).  

The configurations used are showed in Figure 7; in 
both cases the RFD sends a 10 K bytes data block to the 
Zigbee coordinator, using a direct single-hop connection 
(configuration I) or through a router (configuration II). 

To further increment the exploration space, the packet 
payload size is set to three values (93, 43 and 20 bytes). 
The experiment is supposed to be performed in absence 
of interference (no packet losses in the simulator and 
very low losses in the real case). 

Table 1 and Table 2 show the results. The through-
puts obtained by the simulator are in substantial accor-
dance with the real case, showing a slightly higher 
throughput due to the complete absence packet losses in 
the simulator. As expected, throughput decreases when 
packet payload size is reduced due to the overheads of 
packet headers and transmission interval guards between 
packets. 

 
5.2. Simulation Time and Numbers of Nodes 
 
In this section we present the results on simulation time 
considering a variable number of nodes, both in terms of 
execution time (real time) and simulated time. The net-
work is composed by a coordinator, a RFD node and a 
variable number of routers between them. The RFD 
sends small packets to the coordinator (ping) and wait for 
a reply (pong). The simulated time is maintained con-
stant to approximately 20 s. 

The results of the simulation are shown in Table 3, 
where 0 #routers means a direct connection between the 
RFD and the coordinator nodes. The traffic reported is 
 

 
Figure 7. Configuration I (left) and configuration II (right). 

 
Table 1. Measured vs. simulated throughput in configura-
tion I. 

Payload 
Bytes 

Data 
Kbytes 

Measured 
throughput 
(Kbits/s) 

Simulated 
throughput 
(Kbits/s) 

93 10 83 90 

43 10 50 56 

20 10 26 28 

Table 2. Measured vs. simulated throughput in configura-
tion II. 

Payload 
Bytes 

Data 
Kbytes 

Measured 
throughput 
(Kbits/s) 

Simulated 
throughput 
(Kbits/s) 

93 10 43 49 

43 10 26 30 

20 10 14 15 

 
Table 3. Execution time with 32us time slots. 

# 
routers

Execution time 
(s) 

Simulated time 
(s) 

Traffic (MB)

0 80.24 20 194.99 

1 125.93 20 195.04 

2 167.61 20 195.43 

3 207.83 20 195.32 

 
the total traffic generated by the PHY-simulator on the 
host platform, and is composed by control, synchroniza-
tion and data messages. As exposed in Section 4.4, execu-
tion time can be reduced by increasing the granularity of 
the synchronization events between the node simulators 
the central PHY-server. As an example, the time slots are 
increased from the 32us used in the simulation in Table 3 
to 128us, and the results are shown in Table 4. We can 
notice about a 3.6x speedup from the previous results and 
an analogous reduction in the traffic generated. 

The two other tests we report are based on an increas-
ing number of RFD nodes that want to communicate 
directly with the coordinator. The first one is a traf-
fic-intense application, in which each node needs to 
transfer a block of 13 K bytes of data to the coordinator 
using the maximum (87 bytes) packet payload size. The 
network and the simulator are particularly stressed be-
cause of the high network activity. 

Table 5 shows the results. Since increasing the num-
ber of nodes increases the total size of data to be trans-
ferred, simulated time gets longer and data throughput 
decreases due to network congestion and contention as  
shown by the packet error rate (PER) column. Figure 8 
shows graphically the dependence of execution time 
from the number of nodes. Remarking that this is a high 
demanding test, we can see a change in the curve slope, 
which generally indicates resource saturation on the 
 

Table 4. Execution time with 128us time slots. 

# 
routers

Execution time 
(s) 

Simulated time 
(s) 

Traffic (MB)

0 22.15 20 49.35 

1 33.68 20 49.37 

2 45.42 20 49.40 

3 58.73 20 49.55 
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Table 5. Simulation results – traffic-intense application. 

# RFD 
nodes 

execution 
time (s) 

simulated 
time (s) 

Throughput 
Kbits/s 

PER %

1 15 1.5 70 0 
2 40 2 52 2.5 
3 100 2.5 42 4 
4 150 3 35 6 
5 200 3.5 30 7.5 
6 350 4.5 23 10.5 
7 550 5 21 11.5 
8 1300 6.5 16 16 
9 2100 7.5 14 19 
10 2900 8.5 12 22 
11 3700 9.5 11 23 
12 4500 11 9.5 24 
13 5300 12 8.5 25.5 
14 6100 13 8 27 
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Figure 8. Execution time vs. # of RFD nodes. 

 
simulating host machine (a standard desktop, 2 G Byte 
RAM, PC). 

Figure 9 and Figure 10 show the throughput and the 
Packet Error Rate in relation to the number of nodes. We 
report the test using three different packet payload sizes 
(87 bytes, 44 bytes and 22 bytes). 

The second test is an application based on a set of 
nodes that send low traffic volumes (a case where the 
Zigbee protocol is more suited). Figure 11 shows the 
transmission latency (the time difference between when a 
source node sends a packet and when it receives a reply 
from the destination) considering a variable number of 
nodes for the worst and average case. Since the network 
is not saturated, increasing the number of nodes does not 
increase significantly the average latency. 

Secondly, the same test is repeated in presence of in-
terfering nodes (Zigbee nodes that send data using the 
same channel). Figure 12 and Figure 13 report the re-
sults. On the x-axis is the number of interfering nodes, 
Figure 12 regards the presence of a single RFD trans-
mitting node while Figure 13 regards the presence of 10 
RFD transmitting nodes (in addition to the interfering 
nodes). We can notice a linear dependence of the average 
latency with the number of interfering nodes. 

Finally, Table 6 reports a resume of the comparison 
between the characteristics of our simulator and other  
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Figure 9. Throughput vs. # RFD nodes. 
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Figure 10. Packet error rate vs. # RFD nodes. 
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Figure 11. Transmission latency vs. # RFD nodes. 
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Figure 12. Transmission latency vs. # RFD interfering 
nodes (1 RFD transmitter). 
 
WSN simulators presented in Section 1 

6. Conclusions 

We reported the structure and the results obtained by the  
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Table 6. Comparison between simulators. 

Simulator 
Supported 
network 

Radio model 
OS and SW execu-
tion time modeling

HW/SW interaction 
modeling 

Scalability 

NS-2 

802.11, 
802.15.4, 

DSDV, DSR, 
TORA, 
AODV 

shadowing, 
2-ray ground, 

free space 
no no Yes 

OMNET++ 802.11 
free space, 2-ray 

ground 
no no Yes 

TOSSIM CSMA probabilistic bit error no no Yes 

ATEMU CSMA free space yes yes No 

TikTak Zigbee 
free space, 

probabilistic bit error
yes yes Yes 
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Figure 13. Transmission latency vs. # RFD interfering 
nodes (10 RFD transmitters). 
 
TikTak WSN simulator we have developed. The simula-
tor is composed in a modular way, and nodes can be 
emulated at two levels of abstraction. The major charac-
teristic is the ability to simulate the program and stack 
latency because of low-level hardware emulation of the 
nodes and to allow the test and debug of embedded codes 
as in final application. At the same time, emulation at 
protocol level allows to increase the simulation speed 
when timing accuracy is less stringent. 

The physical channel model is, at the moment, a free 
-space attenuation model, but the modularity allows the 
insertion of more elaborate models. 
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