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ABSTRACT 

The interlaminar stresses are analyzed by combining the first shear theory with the layerwise theory method. And the 
plate subjected to a uniform axial strain is studied by the simplified displacement field. Using the simplified displace-
ment field, the equations of finite element method are developed by the principle of virtual work. And the amount of 
calculation is reduced by using the linear element. Then, some numerical examples are given to verify the accuracy of 
the method and analyze the distribution of interlaminar stresses along y-axis and z-axis. The shapes of the stresses’ 
curves in the vicinity of the free edge are very different from the interior area. Moreover, the influence of the ply angle 
on the interlaminar stresses is analyzed for the plate [θ/−θ]s. It can be found that the shapes of the stresses along z-axis 
are similar when the angle is different, while the values of the interlaminar stresses are changed apparently with the ply 
angle. 
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1. Introduction 

The composite materials are widely used in the aviation, 
space industries and mechanical engineering because of 
their good command of mechanical property. The lami- 
nated composite plate is made up of multilayer lamina- 
tion. Their interlaminar stresses can significantly con- 
tribute to delamination even when they are much lower 
than the failure strength of the classical lamination theory. 
They may make the potential of laminated composite 
plate can not be worked out for its carrying capacity de- 
teriorated because of the delamination. In the vicinity of 
the free edge, the interlaminar stresses are varied fast, 
which is the main reason of delamination. And the de- 
lamination of the laminated composite plates is the most 
common destruction form of laminated composite plates. 
Therefore, the research of interlaminar stresses is of great 
significance to practical applications. Many researchers 
have done a lot of work about it. The stresses in the vi- 
cinity of free edge are expressed as a two-dimensional 
state by the classical lamination theory [1,2]. Afterward, 
it was proved to be a three-dimensional state by many 
researchers [3-5]. In recent 10 years, many more people 
have started to research the interlaminar stresses. Hi- 
royuki Matsunaga analyzed the stresses and displace-  

ments in the laminated composite beams subjected to la- 
teral pressures by using the method of power series ex- 
pansion of displacement components [6]. Asghar Nosier 
and Arash Bahrami studied the interlaminar stresses in 
antisymmetric angle-ply laminates by developing a re- 
duced form of displacement field for long antisymmetric 
angle-ply composite laminates subjected to extensional 
and/or torsional loads [7]. Theofamis S. Plagianakos and 
Dimitris A. Saravanos proposed a higher-order Layer-
wise theoretical framework to calculate the static re-
sponse of thick composite and sandwich composite plate 
[8]. The displacement field they assumed in each discrete 
layer included quadratic and cubic polynomial distribu-
tions of in-plane displacements. Furthermore, a Ritz-type 
exact solution [8] was implemented to yield the structural 
response of thick composite and sandwich composite 
plates. Heung Soo Kim et al. developed a stress function- 
based variational method to investigate the interlaminar 
stresses near the dropped plies [9]. M. Amabili and J. N. 
Reddy developed a consistent higher-order shear defor-
mation non-linear theory for shells of generic shape [10]. 
Using the developed theory, a simply supported, lami-
nated circular cylindrical shells subjected a large ampli-
tude force vibrations are studied. Amir K. Miri and As-
ghar Nosier investigated free-edge effects in antisym-
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metric angle-ply laminated shell panels under uniform 
axial extension by using layerwise theory [11]. And the 
problem was analytically solved for specific boundary 
conditions along the edges. Ren Xiaohui et al developed 
a higher-order zig-zag theory for laminated composite 
and sandwich plates [12]. The proposed theory can pre-
dict more accurate in-plane displacements and stresses in 
comparison with other zig-zag theories. J. L. Mantari et 
al. developed a new shear deformation theory for sand-
wich and composite plates [13]. The proposed displace-
ments field was assessed by performing several compu-
tations of the plates governing equations and the results 
were relatively close to 3D elasticity bending solutions. 

The first shear theory is combined with the Layerwise 
theory (LWT) [14] to analyze the interlaminar stresses  
of the laminated composite plates in this paper. The  
first shear theory assumed the plate as an equit-single 
layer as to build the displacement field whose component 
is C0 continuity. The Layerwise theory builds the dis-
placement field by dispersing the plate to many numeri-
cal layers. In this paper, the interlaminar stresses are 
analyzed by superimposed the first shear theory on the 
Layerwise theory. Then, the displacement field is simpli-
fied for the symmetric ply composite plate which sub-
jected to a uniform axial strain. The finite element equa-
tion is derived by the principle of virtual work. Then, the 
linear element is used to solve the problem. Of course, it 
reduced the amount of calculation while the accuracy is 
ensured. At last, the results of the interlaminar stresses 
are given for different ply conditions of laminated com-
posite plates. 

2. The Displacement Field 

Superimposing the first shear theory on the Layerwise 
theory, the displacement field can be expressed as: 
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where, N is the number of numerical layers through the 
thickness. k  is the global interpolation function which 
is linear or quadratic Lagrange interpolation function in 
general. And the discretization of the displacements is 
fulfilled by it (see Figure 1). 



Considering the plate which is symmetric plied and 
subjected to a uniform axial strain (see Figure 2), the 
displacement field can be simplified as: 
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where, 0  is the uniform strain along x-axis and the 
displacement v is independent of variable x. Therefore, 
this situation can be solved as the problem of plane 
strain. 

In this paper, the linear Lagrange interpolation func- 
tion [14] is used as the interpolation function k , and it 
can be expressed as below [14]: 
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of the kth layer. The displacement field adopted here is 
satisfied the displacement continuity condition and the 
shear stresses continuity condition between layers. 

3. The Finite Element Equation 

Considering the laminated composite plate which is 
symmetric plied and subjected to a uniform axial strain 
along x-axis. Substitute Formula (2) into the principle of 
virtual work as below: 
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Then the finite element equation can be derived and 
wrote simply as: 

Kd F                    (5) 

where, K is the element stiffness matrix, d represents the 
displacement vector of element node and F represents 
the nodal load vector. The definite expression of the fi-
nite element equation can be seen in the appendix at the 
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Figure 1. The discretization of displacements through the 
thickness. 

Copyright © 2013 SciRes.                                                                              MNSMS 



C. J. YANG  ET  AL. 

Copyright © 2013 SciRes.                                                                              MNSMS 

51

 
 

y 

Free edge 

Nth layer

2nd layer 

kth layer 

1st layer 

x 

θ 

z 

y 

2a 

1 
2 

b b 

Free edge 

Interface 

y 

z 

hN 

hk 

h1 

h2 3 

k 
k+1 

N 
N+1 

ε0 

ε0 

2h 

z

 

Figure 2. Geometrical model. 
 
end of this paper. It should be noticed here that the ele-
ment stiffness matrix in Formula (5) is unsymmetric, 
which is different from the general finite element equa-
tion. Here the Lagrange element with 3 nodes (see Fig-
ure 3) is applied to solve the problem as  is used 
to interpolate the displacements along z-axis, which sim-
plify the deducing process of finite element equation. 
Using the nature coordinates, the interpolation shape 
function can be expressed as below: 

 k z
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Figure 3. The Lagrange element with 3 nodes. 
 
model is studied here as the laminated composite plate is 
assumed to be symmetrical about the x-y plane and z-axis. 
As to compare the results of this paper with the results of 
other researchers, the stresses are normalized as below: 
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4.1. Cross Ply Laminates: [0/90]s and [90/0]s 

4.1.1. The Stresses along y-Axis 
where, 1 1   . 

The distributions of stresses (σz, σxz, σyz) along y-axis at z 
= 0 and z = h/2 of the cross-ply laminated composite 
plate ([0/90]s) are shown in Figures 4 and 5. The results 
are in accordance with the quasi-3D element method [15]. 
As shown in the Figures, At the interface z = 0 or z = h/2, 
σz grows fast near the free edge. Meanwhile, σxz is very 
close to zero which is same as the theoretical result. And 
the stress σyz approaches to zero gradually in the vicinity 
of the edge, which is accordance with the boundary con-
dition that σyz is zero at the edge. 

The results at the Gauss points have the highest accu-
racy because of the Gauss integral is used in the calcula-
tion process. Therefore, the stresses at the Gauss points 
are used to plot the curves in this paper. It should be no-
ticed that the results of the nodes which connect two dif-
ferent elements are not equal in the two elements. 

4. Numerical Results 

A symmetric plied composite plate subjected to a uni-
form axial strain 0  is studied here. And its length, 
width and height are 2a, 2b and 2h respectively (see 
Figure 2). At the same time, it is assumed that each ma-
terial layer is orthotropic and equal thickness. And the 
elasticity modulus, shear modulus and Poisson’s ratio are 
as follows: 

The distributions of stresses (σz, σxz, σyz) along y-axis at 
z = 0 and z = h/2 of the cross-ply laminated composite 
plate ([90/0]s) are shown in Figures 6 and 7. It can be 
seen that σz and σyz grow fast in the vicinity of the edge, 
while the value of σxz is zero at the edge. 

It can be observed that the failure of material is oc-
curred easily in the vicinity of the free edge of the cross- 
ply laminated composite plate. 
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4.1.2. The Stresses along z-Axis 
The distributions of stresses (σz, σxz, σyz) along z-axis of 
the cross-ply laminated composite plate ([90/0]s) are 
shown in Figures 8-10. It can be observed that the values 
of the stresses are zero on the surface. The interlaminar  

where the subscripts 1, 2, 3 represent the three principal 
axis of the material, and 1 psi = 6.895 kPa. The 1/8  
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Figure 4. The stresses along y-axis, z = 0, ([0/90]s). 
 

 

Figure 5. The stresses along y-axis, z = h/2, ([0/90]s). 
 

 

Figure 6. The stresses along y-axis, z = 0, ([90/0]s). 
 
stresses at the cross section y = 0.25b are almost same as 
y = 0.5b. Along z-axis, the stress σz grows slowly and 
reaches the maximum at y = 0. The stress σxz is close to 

 

Figure 7. The stresses along y-axis, z = h/2, ([90/0]s). 
 

 

Figure 8. The stresses along z-axis, y = 0.25b. 
 

 

Figure 9. The stresses along z-axis, y = 0.5b. 
 

eak near the interface z = 0.7h and it changes suddenly p
at z = 0.5h, while its value is close to zero at z = 0. At 
the cross section y = 0.99b, stress σz changes from ten-zero and hardly change. Besides, the stress σyz reaches a  
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sion to pressure suddenly at the interface z = 0.5h. Like 
σz, stress σyz changes from pressure to tension suddenly at 
z = 0.5h while its value is close to zero when z = 0. Be- 
sides, it can be observed from the three figures that the 
stresses are much higher when y = 0.99b than the others. 
It means that the stresses are much higher near the free 
edge than the interior area. And the destruction is easier 
to be happened in the vicinity of the free edge. 

4.2. Angle Ply Laminates: [45/-45]s  

xis 
minated 

4.2.1. The Interlaminar Stresses along y-A
The results of the interlaminar stresses of the la
composite plate ([45/-45]s) are shown in Figures 11 and 
12. It can be observed that σz grows very fast in the vi-
cinity of the edge while a minimum is happened at the 
edge. Stress σyz reaches a peak in the vicinity of the edge 
followed a sharp decreased. It is different from the elastic 
solution proposed by Wang and Choi which shows that 
stress σyz is vanished at the edge. Stress σxz grows as a 
 

 

Figure 10. The stresses along z-axis, y = 0.99b. 
 

 

Figure 11. The stresses along y-axis, z = 0. 

smooth c  at the 

4.2.2. The Interlaminar Stresses along z-Axis 
z-axis of 

4.3. Angle Ply Laminates: 
]s 

4.3.1. T
xz, σyz) along y-axis of 

urve along y-axis and reaches a maximum
edge. 

The distributions of stresses (σz, σxz, σyz) along 
the cross-ply laminated composite plate ([45/-45]s) are 
shown in Figures 13-15. It can be observed that the val 
ues of three stresses are zero on the surface. And at the 
cross sections y = 0.25b and y = 0.5b, the distributions of 
interlaminar stresses are similar. Both the three stresses 
take a sharp turn at the interface of the cross section y = 
0.99b. Stress σyz changes from tension to pressure while 
stresses σz and σxz reach a sharp peak at z = 0.5h. It also 
can be seen that the value of the stresses near the free 
edge is much higher than the stress at the interior area. 

[45/-45/0/90/90/0/-45/45

he Stresses along y-Axis 
The distributions of stresses (σz, σ
 

 

Figure 12. The stresses along y-axis, z = h/2. 
 

 

Figure 13. The stresses along z-axis, y = 0.25b. 
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the an s) are gle ply laminates ([45/-45/0/90/90/0/-45/45]
shown in Figures 16-23. It can be observed that the 
curves of the stresses change sharply in the vicinity of 
 

 

Figure 14. The stresses along z-axis, y = 0.5b. 
 

 

Figure 15. The stresses along z-axis, y = 0.99b. 
 

 

 

Figure 17. The stresses along y-axis, z = h/8. 
 

 

Figure 18. The stresses along y-axis, z = h/4. 
 

 

Figure 19. The stresses along y-axis, z = 3h/8. 
 

e edge. Stress σyz reaches a peak near the edge then to th
zero while stress σz and σxz both reach a maximum or 
minimum at the edge. Figure 16. The stresses along y-axis, z = 0. 
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Figure 20. The stresses along y-axis, z = h/2. 
 

 

Figure 21. The stresses along y-axis, z = 5h/8. 
 

 

Figure 22. The stresses along y-axis, z = 3h/4. 

4.3.2. The Stresses along z-Axis 
xz, σyz) along z-axis of The distributions of stresses (σz, σ

the angle ply laminates ([45/-45/0/90/90/0/-45/45]s) are 
shown in Figure 24-26. The interlaminar stresses are  

 

Figure 23. The stresses along y-axis, z = 7h/8. 
 

 

Figure 24. The stresses along z-axis, y = 0.25b. 
 

 

Figure 25. The stresses along z-axis, y = 0.5b. 
 
ero on the surface. And the curves at cross sections y = 

es a peak near the interface z = 0.5h. The direction of 

z
0.25b and y = 0.5b are very similar. That stress σz reach-
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stress σxz is opposite between the upper and lower half. 
Furthermore, stress σxz takes turns at the interfaces z = 
0.125h, z = 0.25h, z = 0.75h and z = 0.875h. Similar to 
stress σxz, stress σyz take turns at the interfaces z = 0.25h, 
z = 0.375h, z = 0.625h and z = 0.75h. And its direction is 
opposite between the upper and lower half, while it is 
close to zero at the interfaces z = 0 and z = 0.5h. At the 
cross section y = 0.99b, stress σz take turns at the inter-
faces z = 0.125h, z = 0.375h, z = 0.625h and z = 0.875h. 
It is a tension stress between interfaces z = 0.25h and z = 
0.75h while it is a compression in the others. The curve 
of stress σxz is antisymmetric to the interface z = 0.5h. 
Moreover, it takes turns at the interfaces z = 0.125h, z = 
0.25h, z = 0.75h and z = 0.875h. Similar to stress σxz, the 
curve of stress σyz is antisymmetric to z = 0.5h and it 
takes turns at the interfaces except z = 0.5h. 

4.4. The Influence of the Ply Angle on the  
Interlaminar Stresses 

 to 
anal  angle on the interlaminar 

in Figure 29 when the ply angle is different  
 

The laminated composite plate ([θ/−θ]s) is considered
yze the influence of the ply

stresses. Stress σz along z-axis at the cross section 
y=0.99b is shown in Figure 27 when the angle is differ-
ent (θ = 5˚, 15˚, 30˚, 45˚, 60˚, 75˚, 85˚). It can be ob-
served that stress σz is changed with the ply angle appar-
ently while the shapes of the curves in Figure 27 are 
similar. At z = 0.5h of cross section y = 0.99b, the rela-
tionship between the absolute value of stress σz and the 
ply angle is shown in Figure 28. That when the ply angle 
ranged between 0˚ and 30˚, the absolute value of stress σz 
is increased. Moreover, it reaches a maximum as the an 
gle is equal to 30˚. Then when the ply angle ranged be-
tween 30˚ and 60˚, it is decreased with the angle. Besides, 
it closes to zero when the angle ranged between 60˚ and 
90˚.  

Stress σxz along z-axis at the cross section y = 0.99b is 
shown 

 

 

Figur b. 
 

e 27. Influence of θ to stress σz along z-axis, y = 0.99

 

Figure 28. Stress σz changes with θ, y = 0.99b, z = h/2. 
 
(θ = 5˚, 15˚, 30˚, 45˚, 60˚, 75˚, 85˚). Like stress σz, stress 
σxz is changed with the ply angle apparently while the 
shapes of the curves in Figure 29 are similar. And at z = 
0.5h of cross section y = 0.99b, the relationship between 
the absolute value of stress σxz and the ply angle is shown 
in Figure 30. The maximum is happened when the angle 
is about 20˚, which is different from Figure 28. 

Stress σyz along z-axis at the cross section y = 0.99b is 
shown in Figure 31 when the ply angle is different (θ = 
5˚, 15˚, 30˚, 45˚, 60˚, 75˚, 85˚). Like the other two 
stresses, stress σyz is changed apparently with the ply an-
gle while the shapes of the curves in Figure 31 are simi-
lar. And at z = 0.5h of cross section y = 0.99b, the rela-
tionship between the absolute value and stress σyz with 
the to 

igure 28. 

 

 ply angle is shown in Figure 32 which is similar 
F

5. Results and Discussion 

The interlaminar stresses are not uniform along y-axis of 
the laminated composite plate subjected to a uniform 
axial strain. But it changes sharply in the vicinity of the Figure 26. The stresses along z-axis, y = 0.99b. 
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Figure 29. Influence of θ to stress σxz along z-axis, y = 0.99b. 
 

 

Figure 30. Stress σxz changes with θ, y = 0.99b, z = h/2. 
 

 

Fig xz b. 
 
edge and reaches a minimum or maximum at the free 
edge which makes the delamination phenomenon oc- 

ure 31. Influence of θ to stress σ  along z-axis, y = 0.99

 

Figure 32. Stress σxz changes with θ, y = 0.99b, z = h/2. 
 
curred to fail the material. In this paper, the interlaminar 
stresses are calculated for laminated composite plate with 
different ply manners.  

Firstly, the distributions of the interlaminar stresses 
along y-axis are studied. Stresses σz and σxz change 
sharply in the vicinity of the free edge, such as increase 
or decrease sharply or a peak happened near the free 
edge. Moreover, it reaches a maximum (or minimum) at 
the edge. Stress σz and σxz are very small in the interior 
area in comparison with stresses in the vicinity of the 
free edge. Also stress σyz is very small at the area far 
from the free edge, but its value is close to zero after a 
peak happened near the edge, which is different from 
stresses σz and σxz. In a word, the values of the interlami-
nar stresses near the free edge are much higher in the 
interior area. So the failure of material easier happened in 
the vicinity of free edge than in the interior area.  

es 
lon  

z

0˚ and 

Secondly, the distributions of the interlaminar stress
g z-axis are studied. The interlaminar stresses area

close to zero on the surface. And the stress σyz is very 
small at the interface z = 0. At the cross section far away 
from the free edge, stress σ  doesn’t change very much 
and stresses σxz and σyz both take a turn at the interface. In 
contrary, the interlaminar stresses change very sharply at 
the vicinity of the free edge. Stresses σz and σxz both 
reach a peak at the interface while the direction of stress 
σyz changes to opposite suddenly at the interface ±θ. 

At last, the influence of the ply angle on the inter-
laminar stresses is analyzed for the laminated composite 
plate ([θ/−θ]s). The values of the interlaminar stresses are 
changed apparently with the ply angle. But the curves of 
the stresses along z-axis are similar. The absolute value 
of the interlaminar stresses is increased as the ply angle 
ranged between 0˚ and a specific value which is about 
20˚ or 30˚, then a decrease process is happened as the ply 
angle ranged between the specific value and 60˚. Besides, 
it closes to zero when the angle ranged between 6
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90

el

˚. So when the laminates is angle plied as [θ/−θ]s ,the 
angle is suggested between 60˚ and 90˚ to lower the free 
edge effect.  

The accuracy can be ensured by using the displace-
ment field presented in this paper. And the validation of 
using the linear finite element is demonstrated by some 
numerical results. Also it is convenient that only the lin-
ear finite element is used to calculate the interlaminar 
stresses as the interpolation along z-axis is included in 
the displacement field. It should be noticed that the finite 

ement used here can be only applied to the laminates 
subjected to a uniform strain. But it can be easy to be 
expanded to analyze the other laminates. 
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Appendix 

he definite expression of the finite element equation Kd 
 F can be written as below: 

here 
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the upper surface of the kth layer while z  is z-coordinate 
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