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ABSTRACT 

In digital radiographic systems, a tradeoff exists between image resolution (or blur) and noise characteristics. An im-
aging system may only be superior in one image quality characteristic while being inferior to another in the other 
characteristic. In this work, a computer simulation model is presented that is to use mutual-information (MI) metric to 
examine tradeoff behavior between resolution and noise. MI is used to express the amount of information that an output 
image contains about an input object. The basic idea is that when the amount of the uncertainty associated with an ob-
ject before and after imaging is reduced, the difference of the uncertainty is equal to the value of MI. The more the MI 
value provides, the better the image quality is. The simulation model calculated MI as a function of signal-to-noise ratio 
and that of resolution for two image contrast levels. Our simulation results demonstrated that MI associated with over-
all image quality is much more sensitive to noise compared to blur, although tradeoff relationship between noise and 
blur exists. However, we found that overall image quality is primarily determined by image blur at very low noise lev-
els. 
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1. Introduction 

The modulation transfer function (MTF), noise power 
spectrum (NPS), and detective quantum efficiency are 
commonly used as image quality metrics to characterize 
resolution, noise, and efficiency performance of digital 
radiographic systems, respectively [1-3]. These metrics 
are dealt with in the spatial frequency domain. Recently, 
an information-entropy based approach has been reported 
for evaluating overall image quality in medical imaging 
systems [4-6]. In these reports, transmitted information 
(TI) [4,5] or mutual information (MI) [6] was used as an 
image quality criterion. Both TI and MI were defined as 
“the amount of shared information”, i.e., “the amount of 
information transmitted from stimulus (input) to response 
(output)”. The more the transmitted information provides, 
the better the image quality is. Therefore, the overall 
quality of an image can be quantitatively evaluated by 
measuring TI (or MI). Unlike the physical performance 
measures, the information entropy-based metric is dealt 
with in the spatial domain. 

One of the current dilemmas in digital radiography is 

the extent to which these parameters such as, resolution 
and noise affect physical or clinical image quality. An 
imaging system may only be superior in one metric while 
being inferior to another in the other metric. In general, 
higher spatial resolution leads to an increased noise level. 
Simulation studies of image quality attributes for x-ray 
systems using computer methods have been performed 
by several investigators, and shown to be effective 
methods of evaluating various elements of the image 
formation process [7,8]. A computer simulation approach 
was also presented to investigate the impact of image 
quality metrics on the appearance of radiographic images 
[9]. The approach was to emulate the influence of resolu-
tion and noise characteristics of a digital detector on the 
appearance of a radiographic image. Recently, attention 
has been paid to address the tradeoff between spatial 
resolution and quantum noise relation for computed to- 
mography and digital radiography [10-12]. In these stud-
ies, it is of general nature that the MTF and NPS were 
used as the descriptors of spatial resolution and noise. 
However, we believe that it is also interesting to attempt 
to understand the tradeoff in terms of image information 



Investigation of Noise-Resolution Tradeoff for Digital Radiographic Imaging: A Simulation Study 927 

i

such as mutual information.  
In this paper, a computer simulation approach is   

presented that is to employ the MI metric to investigate 
tradeoff behavior between resolution and noise. The 
simulation model calculated MI as a function of signal- 
to-noise ratio and that of resolution for two specific image 
contrast levels. Two simulation studies were per- formed 
separately; the first simulation was carried out to inves-
tigate the relationship between image blurring and MI for 
various levels of noise, and the second simulation was 
conducted to investigate the relationship between image 
noise and MI for different extent of blurring. In this work, 
a total of 2,688 simulations were performed in order to 
conduct a detailed analysis and achieve a better under-
standing of noise-resolution tradeoff. 

2. Theoretical Framework  

MI is a concept from information theory [13,14] and is 
also referred to as TI as described in the section of pre- 
ceding Section [4-6]. MI has been applied in medical 
image processing, particularly for image registration 
[15-18]. The definition of the term of MI has been pre- 
sented in various ways in the literature. We will briefly 
describe MI, as used in the image evaluation sense, rather 
than as used in the image registration sense. 

Given events s1,….. sn occurring with probabilities p1, 
p2, …….pn, the Shannon entropy H is defined as 

1 2 2
1
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Considering x and y as two random variables corre-
sponding to an input variable and an output variable, the 
entropy for the input and that for the output are denoted 
as H(x) and H(y), respectively. For this case, the MI can 
be defined as 
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where H(x,y) is the joint entropy, and Hx(y) and Hy(x) are 
conditional entropies. The entropies and joint entropy are 
given as 
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where pi and pj are the marginal probabilities, and pij is 
the joint probability. 

A useful way of visualizing the relationship among 
these entropies is provided by a Venn diagram as shown 

in Figure 1. The MI measures how much the uncertainty 
of input x is known if output y has been given. It can be 
easily shown that if input and output are generally inde-
pendent, then H(x,y) = H(x) + H(y). Consequently, their 
MI is zero (i.e., transmitted information is equal to zero). 
In other words, observing y does not reduce the uncer-
tainty of x. If, however, x = y, i.e., H(x) = H(y), then MI = 
H(x). Under this condition, the information about input x 
can be obtained completely. We apply the MI measure to 
evaluate image quality of digital radiography based on the 
following reasoning. Consider an experiment in which 
every input has a unique output belonging to one of the 
various output categories. The inputs may be  considered 
to be a set of subjects, for example, a test sample object 
with steps of various thickness, whereas the outputs may 
be their corresponding images varying in optical density 
or gray level. If the inputs can be recognized completely 
when the outputs have shown, then the quality or the per-
formance of the transmission channel of the system (i.e., 
imaging system), can be perfect. In the cur- rent study, a 
method of occurrence-frequency-based computation was 
used for calculating the entropies of input, output, and 
their joint entropies. The details of the calculation pro-
cedure can be found in the literature [4-6]. 

3. Methods  

3.1. Computer Simulation 

A simulation was designed, and its framework is as   
follows. A simulation image g(x,y) was given by a spatial 
convolution between a uniformly-distributed signal (an 
object) f(x,y) having intrinsic noise u(x,y) and a blurring 
function B. If the external noise v(x,y) was also taken into 
consideration, the resulting image could be represented 
by the following formula: 
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Figure 1. The relations between conditional and joint en-
tropies, and the mutual information. 
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where the symbol  represents the convolution opera-
tion, and s is an integer representing the number of steps 
of the simulated image. The terms of W and K are 
weighting coefficients used to adjust noise level. 



In the simulation studies, the input image f(x,y) was a 
five-step wedge with a specific intensity or a pixel value 
on each step. Both u(x,y) and v(x,y) were zero-mean 
Gaussian noise with a standard deviation of 0.5. In the 
studies, for simplicity, the term of v(x,y) × K was consid-
ered the external noise and is equal to the intrinsic noise 
of u(x,y) × W (i.e., u(x,y) × W = v(x,y) × K). We used a 
“m × m” (m is an odd integer) 8-neighborhood averaging 
filter as the blurring function. The extent of blurring was 
adjusted by varying the filter size (FS). The reason for 
choosing neighborhood averaging filter was its ease of 
implementation and effectiveness, which were confirmed 
by experiments. 

Two simulations were performed. The first simulation 
was carried out to investigate the relationship between 
image blur and MI for various noise levels at specific 
image contrasts levels. In this study, we defined image 
contrast as the difference of the mean pixel values    
between two adjacent steps of a simulated step wedge. 
We used signal-to-noise ratio (SNR) to describe the ex-
tent of noise level. Notice that the signal and noise used 
for SNR calculation were f(x,y) and u(x,y) × W, respec-
tively, as given in Equation (6). In this work, combina-
tions of 64 various SNRs (range, 24-43 dB), 21 various 
FSs (range, 3-41), and two different contrast levels (20 
and 40) were used for simulation studies. As a result, a 
total of 2688 simulations were performed for the analysis 
of resolution-noise tradeoff.   

The second simulation was performed to investigate 
the relationship between image noise and MI for differ-
ent extent of blurring at specific image contrast levels. 

3.2. Step-wedge Phantom Images  

For verification and validation of our designed computer 
simulation models, phantom images of an acrylic 
step-wedge with 2, 4, 6, 8, and 10 mm in thickness were 
obtained using the following exposure conditions. The 
specific exposure factors were kept at 42 kV and 10 mA, 
the focus-imaging distance was taken at 185 cm, and the 
exposure time was varied ranging from 0.1 to 0.5 sec. An 
imaging plate for computed radiography was used as a 
detector to record x-ray intensities. 

4. Simulation Results and Discussion 

Figures 2 and 3 compare the computer-simulated images 
versus the phantom images obtained. The simulated images 
shown in the figures were generated using Equation (6). 
A perceptual comparison of the simulated images and 
phantom images indicates that these images were  

 
(a)                  (b)              (c) 

 

 
(d)                  (e)              (f) 

Figure 2. Perceptual evaluation of computer simulated im-
ages. (a) Computer-simulated image. The parameters used 
are: W = 130, SNR = 26.1 dB, contrast = 70, FS = 3. (b) The 
magnified image from the rectangular area shown in (a). (c) 
The magnified image from the rectangular area shown in 
(b). (d) Step wedge phantom image. Exposure time was 0.5 s. 
The step wedge was placed 30 cm apart from the center 
toward the cathode end for imaging. (e) The magnified im-
age from the rectangular area shown in (d). (f) The magni-
fied image from the rectangular area shown in (e). 
 

 
(a)                   (b)              (c) 

 

 
(d)                   (e)              (f) 

Figure 3. Perceptual evaluation of computer simulated im-
ages. (a) Computer-simulated image. The parameters used 
are: W = 300, SNR = 19.3 dB, contrast = 70, FS = 3. (b) The 
magnified image from the rectangular area shown in (a). (c) 
The magnified image from the rectangular area shown in 
(b). (d) Step wedge phantom image. Exposure time was 0.1 s. 
The step wedge was placed 30 cm apart from the center 
toward the cathode end for imaging. (e) The magnified im-
age from the rectangular area shown in (d). (f) The magni-
fied image from the rectangular area shown in (e). 
 
very similar in appearance with respect to noise, blur and 
visibility of detail. The comparison result indicated that 
our designed mathematical model provides a good means 
of simulating the resolution and noise characteristics of 
digital radiographic systems. 
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Figure 4 illustrates MI as a function of FS for varying 
levels of SNR ranging from 24 to 41 dB at an image con-
trast of 40. It should be noted that FS is associated with 
the extent of blurring: the greater the FS value is, the 
higher the extent of blurring becomes. As shown in Fig-
ure 4, MI decreases with the increase of FS (i.e., increase 
of image blur) when noise levels are very low (i.e., high 
SNR; for example, SNR>36 dB in this study), although 
the decrease is relative small. This means that, in the case 
of low noise levels, the effect of the level of blur on the 
MI is not so obvious in comparison to noise. 

When noise increases to medium levels (for example, 
36 dB ≥ SNR ≥ 31 dB in this report), MI initially in- 
creases with the increase of FS and then gradually de- 
creases after reaching the maximum value. The increase 
in MI value might be because that, in spite of deteriora-
tion of image resolution, the increase of FS could give 
rise to a significant decrease of noise. Thus, MI is greatly 
dependent on the decrease of noise level compared to the 
deterioration of image resolution. However, on the   
contrary, when FS increases to a certain level, the MI 
value is greatly influenced by the deterioration of resolu-
tion as compared to that by the decrease of noise.  

In the case of high noise levels (for example, SNR ≤ 
28 dB), MI increases gradually with the increase of FS 
until reaching its maximum value. After that, MI value 
showed insignificant decreasing. The reasoning could be 
made as follows: 1) initially, the increase of FS might 
result in a great decrease of noise, and this yields the 
increase of MI, although the increase of FS itself might 
give rise to a small decrease of MI. In other words, the 
decrease of noise level dominated the variation of MI. 2) 
However, when FS continued increasing, a tradeoff point 
appeared. The location, indicated by an arrow on each 
graph shown in Figure 4, was referred to as the tradeoff 
point in this study. The location corresponds to the 
maximum value of MI. For instance, the tradeoff points 
for SNR = 41, 31, and 25 dB can be found at FS = 3, 9, 
and 17, respectively. It is noted that, not surprisingly, the 
location of the tradeoff point depends on SNR. An 
oblique line in the figure depicts the trend in the change 
of the location. As shown in the figure, MI reaches to its 
maximum at a finer resolution when SNR increases. 

Figure 5 plots MI as a function of FS for varying lev-
els of SNR at an image contrast of 20. Overall, the trend 
of this case is similar to that at image contrast of 40. It 
can be seen from Figures 4 and 5 that images with 
higher contrast show greater MI values in comparison to 
those with lower contrast, if both images have the same 
spatial resolution (same FS) and the same noise level 
(same SNR). It is reasonable to conclude that a higher 
contrast image shows better image quality. 

Figure 6 shows MI as a function of SNR for various  
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Figure 4. Relationship between FS and MI for varying lev- 
els of SNR at an image contrast of 40. 
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Figure 5. Relationship between FS and MI for varying lev-
els of SNR at an image contrast of 20. 
 
sizes of FS at an image contrast of 40. The results   
indicate that, basically, MI value increases with the in-
crease of SNR (decrease in noise level). The figure illus-
trates only the results covering a range of SNR from 29 
to 36 dB, where intersections between the line graphs 
occur. The intersection between two graphs indicates that 
two images have the same overall image quality, al-
though the images may show different extent of blur. For 
instance, the intersection between the graphs of FS = 3 
and FS = 41 is located near SNR = 33. It is noted that an 
image blurred by a smoothing filter of FS = 41 might 
decrease the MI value because of resolution deterioration 
caused by blurring. On the contrary, the MI value might 
increase because of the decrease of noise resulting from 
smoothing operation. This means that the physical 
quality of an image is mutually adjusted by resolution 
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and noise properties at a specific image contrast. The 
result implies that the contribution of resolution attribute 
and that of noise attribute to the MI value vary depending 
on the levels of noise and blur. Here, it should be noted 
that the external noise (i.e., the term of v(x,y) × K shown 
in equation (6)) also served as a factor that influences 
overall image quality of an image. 

Figure 7 shows MI as a function of SNR for various 
sizes of FS at image contrast of 20. The figure also 
shows that the MI value increases with the increase of 
SNR. From Figures 6 and 7, it is noted that the MI value 
for the image with lower contrast is lower than that with 
higher contrast. However, the trends of the two cases are 
similar. As described earlier, a higher contrast image 
shows better image quality compared to a lower contrast 
image. 
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Figure 6. Relationship between SNR and MI for varying 
sizes of FS at an image contrast of 40. 
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Figure 7. Relationship between SNR and MI for varying 
sizes of FS at an image contrast of 20. 

Figures 8 and 9 show the MI values, plotted as a func-
tion of SNR and FS (blur) at image contrast of 40 and 20, 
respectively. Figure 8 corresponds to Figures 4 and 6, 
while Figure 9 corresponds to Figures 5 and 7. As 
shown in the figures, MI reaches to the maximum value 
when an image has very high SNR. Moreover, it is noted 
that MI is much more sensitive to noise compared to blur. 
It is also noted that the image with a higher contrast level 
provides greater MI and shows better image quality in 
comparison with that with lower contrast level, if the two 
images have the same noise and blurring levels (Figures 
8 and 9). 

Figures 10 and 11 are plots of SNR (noise) versus FS 
(blur) for four different MI values (i.e., 2.276, 2.206, 
2.159, and 2.090), corresponding to four various trans-
mitted efficiency (i.e., 98%, 95%, 93%, and 90%) for the  
 

 

Figure 8. MI calculated as a function of SNR and FS (blur) 
at image contrast of 40. 
 

 

Figure 9. MI calculated as a function of SNR and FS (blur) 
at image contrast of 20. 

Copyright © 2010 SciRes.                                                                                 JSEA 



Investigation of Noise-Resolution Tradeoff for Digital Radiographic Imaging: A Simulation Study 931 

1 5 10 15 20 25 30 35 40
32

33

34

35

36

37

38

39

40

41

42

FS (Filter Size) 

S
N

R
 (S

ig
na

l-
to

-N
oi

se
 R

at
io

) 
[d

B
]

 

 

98% (MI=2.276)
95% (MI=2.206)
93% (MI=2.159)
90% (MI=2.090)

 

Figure 10. A plot of SNR versus FS for four different MI 
values at an image contrast of 40. 
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Figure 11. A plot of SNR versus FS for four different MI 
values at an image contrast of 20. 
 
cases of contrast levels of 40 and 20, respectively. In this 
study, “transmission efficiency” was used and defined as 
the ratio between MI and the input entropy, i.e., 
η=(MI/H(x)) %. The efficiency η may also be used as a 
measure for indicating how good the imaging quality of 
an image receptor is. Points shown on each curve in the 
figures, obtained from different combinations of SNR 
and FS, have the same MI values, thus providing the 
same overall image quality. It is observed that a mini- 
mum point exists at each graph. Noted that only high 
SNR levels (i.e., low noise level) ranging from 32 to 42 
dB are depicted in Figures 10 and 11. Because the 
minimum points for those SNR levels lower than 32 dB 
did not appear in our simulation studies. As shown in the 
two figures, tradeoff relationship between image noise  

and blur exists on the right of the minimum point. This 
means that a combination of a lower noise level and a 
deteriorated resolution might provide the same physical 
image quality as a combination of a higher noise level 
and a higher resolution level. On the left of the minimum 
point, however, image quality is primarily determined by 
resolution when the SNR of an image is higher than 32 
dB in our investigation. In other words, the image quality 
of a very-low-noise image is almost determined by the 
extent of blur, even when noise level had slight    
variations. There might be two reasons for this. First, for 
images of very low noise levels, image quality might not 
be affected by small change of noise levels. As described 
in the section of Theoretical Framework, MI measures 
how much the uncertainty of input is known if output has 
been given. As a result, very small changes in the amount 
of noise might not influence the amount of the uncer-
tainty. Second, as shown in Figures 4 and 5, MI has a 
significant increase with the increase of deterioration of 
resolution at low FS values (range, 3-9 in the simulation 
studies). 

It must be addressed here that the purpose of this study 
was to present a computer simulation approach to 
investigate tradeoff behavior between resolution and 
noise using the MI metric. In order to validate the results 
obtained from this study, we will perform visual     
evaluation and compare them in the future work. 

Our simulation results showed that the proposed 
simulation approach by employing mutual-information 
metric to examine tradeoff behavior between resolution 
and noise is useful, reliable and challenging. 

5. Conclusions 

A computer simulation study for examining resolution- 
noise tradeoff behavior has been presented. In this study 
MI was used as an image quality metric for the analysis. 
Our simulation results demonstrated that the MI value 
associated with overall image quality is much more sen-
sitive to noise compared to blur, although tradeoff rela-
tion between noise and blur exists. However, at very low 
noise levels (SNR values higher than 32 dB), we found 
that overall image quality is primarily determined by 
image blur. However, a comparison between the result of 
physical evaluation and that of perceptual evaluation was 
not made in this work. It would be a very interesting re- 
search question for our future study. 
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