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ABSTRACT 

The resource parameter estimation using stochastic finite element, geostatistics etc. is a key point on uncertainty, risk 
analysis, optimization [1-5] etc. In this view, the paper presents some consideration on: 1) Stochastic finite element es- 
timation. The concept of random element is simplified as a stochastic finite element (SFE) taking into account a paral- 
lelepiped element with eight nodes in which are given the probability density functions (pdf) on its point supports. In 
this context it is shown: a—the stochastic finite element is a linear interpolator, related to the distributions given at each 
nodes; b—the distribution pdf in whatever point x  V; c—the estimation of the mean value of Z(x); 2) Volume inte-
grals calculus; 3) SFE in geostatistics approaches; 4) SFE in PDE solution. Finally, some conclusions are presented un-
derlying the importance of SFE applications 
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1. Introduction 

Many physical phenomena and processes are mathema- 
tically modeled by partial differential equations (PDE). 
The data required by PDE’s models as resource and ma- 
terial parameters are in practice subject to uncertainty 
due to different errors or modeling assumptions, the lack 
of knowledge and information. In this view the parame- 
ters are (not deterministic) stochastic ones [6]. 

The considerable attention that stochastic finite ele- 
ment (SFE) received over the last decade [7-9] is mainly 
attributed to the spectacular growth of computing power, 
rendering possible the efficient treatment of large scale 
problems in dynamics of processes etc. 

Fundamental issue in SFE is the parameter estimation 
and reserves. The most outstanding method for the ap- 
proximate solution of a SPDE is the MONTE CARLO 
method [10]. On the other hand, the geostatistics is a 
useful discipline to make the inference about the spatial 
risk phenomenon (processes) [11].  

2. A View on the Random Element 

Let’s be defined a fixed probability space (Ω, , P) [7], 
where Ω is a nonempty set of “outcomes” or elementary 
events”,  is a σ algebra of subsets of Ω (the “random 
events” ) and P is a probability measure on the measur- 

able space (Ω, ) If (χ, Sx) is another measurable space, 
then a random element X in χ is a measurable mapping 
from (Ω, , P) into (χ, Sx) i.e. it holds 







 :X   with:  

      1 : : : , xX B X B B S   B A        

with each random element X: Ω→ χ, Px is a probability 
measure of (χ, Sx) connected with the distribution of ran-
dom elements. It is defined by: 

        : : : ,x xP B B P S    P

k

X  B B   

A random element X with values in X is called a simple 
random element if the range is a finite nonempty set in X, 
where exists a partition [4,12] of the probability space 

1

N

k

  with measurable sets  

 N1,2, ,A k N N k   

such like:   kX x   for k . 
The corresponding probabilities are: 

   ,  0,  1,k k kP p p k  2, , N  

1

1
N

k
k

p


  

The distribution of a simple random element is a discrete 
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probability measure on (X, Sx) that might be written as: 

1

N

x k xk
k

P p 


 , 

where: δxk the Dirac measure 

 
1 if

0 otherwis
k

xk e

x B
B


 


 

3. Stochastic Finite Element [13]  

Even though this is a general concept [7,14] we will pre-
sent some considerations in the viewpoint its applications 
in the parameter estimation of different phenomena and 
processes. 

Let’s consider a zone V  R3 and a random function 
Z(x), x  V. The zone V is sorted out into blocks vi by a 
parallelepiped grid: 

iV v                (1) 

where: vi is a parallelepiped element with eight nodes.  
At each node, the random function Z(x) is known, in 

other words is given the probability density function (pdf) 
on its point support (Figure 1). It is required: 

The distribution pdf in whatever point x  V.  
The estimation of the mean value 

 1
d over the domainvi

V

z Z x x
v

  v     (2) 

We define a stochastic element as a block, with the 
random function Z(x), xvi.  

Let us consider a reference element wi in the co-ordi- 
nate system s1 s2 s3. If we choose an incomplete base 
[15]: 

  1 2 3 1 2 2 3 3 1 1 2 31, , , , , , ,P s s s s s s s s s s s s s   (3) 

Then the function Z(x) could be presented as a linear 
combination :  

             –1 8 8
1 2 3 8      s sZ x Z s s s P s P Z N s Z   (4) 

where: 
[P8]

–1—is the matrix, whose elements are the polyno- 
mials base values at the nodes 

 

 
Figure 1. Parallelpiped element. 

{ 8
sZ }—is the vector of the distributions of the nodes;  

  N s —is the vector of the shape functions;  
,  1,2, ,8iN i    

         1 2 8, , ,iN s N s N s N s N s    

     1 1 2 2 3 31 1 1 1,2,i i i
iN s s s s s s s i     ,8  (5) 

In the formula (5), “the exponent i” is not a variable. It 
indicates only the sign within the parentheses. 

3.1. The Mean Value 

To calculate the mean value  1vi
V

z v Z x  d ,x  we con-  

sider the deterministic transformation : 

    8        1,2, ,8i i iX s N s x i          (6) 

Therefore [13]  

      

 

1 1 2 3 2 1 2 3 3 1 2 3

1 2 3

8

1

1
, ,

det d d d

vi

v

i i
i

Z

Z x S S S x S S S x S S S
v

J s s s

H Z x










 

 , , ,i ij ij ij ijH f a b c d  

The coefficients aij, bij, cij, dij, i,j = 1, 2, 3 are depend 
only on the node coordinates. Knowing the above coeffi- 
cient we can calculate [13] the weight coefficient  

 1, ,8iH i    as for example for H2: 

2

21 32 13 21 32 13 21 32 13

21 32 13 21 32 13 21 32 13

21 32 13 21 32 13 11 22 33

11 22 33 11 22 33 11 22 33

11 22 33 11 22 33 11 22 33

11 22

8 3 8 9 8 27

8 27 8 9 8 9

8 27 8 27 8 9

8 9 8 9 8 9

8 27 8 27 8 27

8 27

H

c a c d a a c c d

d c b a b c b b a

a d d b d b c a d

d a a a b c b b a

c a d d c b a d d

b d b

  

  

  
  

  

 33 12 23 31 21 23 31

12 23 31 12 23 31 12 32 31

12 23 31 21 32 31 12 23 31

8 9 8 9

8 27 8 27 8 9

8 9 8 27 8 27 (7)

a a d b a b

c b d d b b a c c

b c a a d c d d a

 

  
  

 

13 22 31 13 22 31 13 13 31

13 22 31 13 22 31 13 22 31

13 13 31 13 22 31 21 12 33

21 12 33 12 12 33 21 12 33

21 12 33 13 22 31 12 12 33

21 12 33

8 9 8 9 8 9

8 9 8 9 8 27

8 27 8 27 8 9

8 9 8 9 8 9

8 27 8 27 8 27

8 27

a a d c a c a b b

c b a b d d d c c

b d b d d a c a c

d a a a b c b b a

c c d a a d a d d

b d b

  

  

  

  
  

  11 32 23 11 32 23

32 32 23 11 32 13 11 32 23

11 32 23 32 32 23 11 32 23

8 9 8 9

8 9 8 27 8 9

8 27 8 27 8 27

c a c d a a

a b c b b a c c d

d c b a d d b d b



  
  
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It is known that:  
8

1

1i
i

H


                 (8) 

Thus, the coefficients Hi are the distribution weights. 
In other words they make the weighted average of the 
given distributions at the nodes.  

Thus, the mentioned stochastic finite element esti- 
mator is a linear interpolator, regarding to the distribu- 
tions given at its nodes [13]. 

Taking into account that averaging process is one of 
the most frequently employed concept in computational 
techniques at finite element and geostatistics, below are 
presented two integral estimation procedures, which are 
key points on the estimation of the stiffness matrices in 
SFE and kriging, cokriging, covariance matrices in geo- 
statistics [11,16,17]. 

4. Volume Integrals within Polyedras [18] 

Let’s take a function u (x1, x2, x3) in a coordinate system 
x1, x2, x3. The integral of volume V will be estimated: 

 1 2 3, , d
v

u x x x v               (9) 

We will construct a vector ̂  (x1, x2, x3) that will sat- 
isfy : 

ˆu div               (10) 

where: 

1 1 2 2 3 3
ˆ ˆ ˆi i i                (11)  

i1, i2, i3 is the system of the unit vector along the coordi-
nate directions. 

Let’s suppose that the boundary surface S of the vol-
ume V is composed of k plane polygonal faces Si (i = 1, 
2 k). Applying the divergence theorem we find: , ,

    1
1 2 3 1 2 3 1

1

, , d , , d d
k

j
jv

u x x x v u x x x x S


    (12) 

where: the projected area d  is perpendicular to  
and lies in the (x2, x3) plane.  

1
jS î

The equation of the plane face dSj can be expressed as: 

         
1 1 2 3 1 2 2 3,j j j

3
jx x x x x x       

so the right-hand side of Equation (12) can be simplified 
to be : 

     1 2 3 1 2
1

, , d , d
j

k
j

j
jV S

u x x x V x x S


     (13) 

where: the surface 1
jS  is a polygon in the (x2, x3), in 

which the function  j  is to be integrated for j  = 
1,2 , k. ,

In this way, the computation of the volume integral is 

a procedure to integrate an arbitrary function within a 
polygon. Further repeating the above mentioned proce- 
dure we could find: 

     

    

1 2 1 2 1 1 2 1
1

1
1 2

1

, d , d , d

, d
j

k

jT T

k
j

j
j

V x x x x n T x x n T

x x n T



 

    

 

  

 
(14) 

where, the perimeter T  is a collection of the straight 
lines  

,  1, ,jT j   k

2

, 

while, 

   1
j

jx x x               (151) 

 
1 d djn T x 2               (152) 

Let the x2 coordinates for jth side x2
js and x2

je. So: 

      

 

2

2

2

2

1 1 2 1 1 2 2 2

2 2

, d , d

d

je

js
j

je

js

x
j

T x

x

j

x

x x n T x x x x

x x

  



 



 (16) 

Finally the above integral could be estimated by the 
Gaussian scheme quadrature. It is to be noted that vo- 
lume integral is a deterministic procedure, but if the ω = 
v and X (ω) = u, then it could be estimated as a stochastic 
finite element using Monte-Carlo method.  

Parallelly if   , nu x x R  is a random function (RF)  

then the integral  1 v u x d
V

v could be treated in the  

geo-statistical view as a mean value. 

5. Geostatistical Approach 

5.1. Variograms 

Geostatistics are based on the theory of the regionalized 
variables [2] with assumption that data are observations 
of stochastic variables. The central tool of geostatistics is 
the variogram or semivariance function which is a struc- 
ture describing the spatial dependence of the spatial 
variable [11].  

The following formula is the most frequently used for 
the variogram (semivariance) calculations: 

      2

1

1

2

N

i i
i

h Z x Z x
N




h        (171) 

where: 
xi is a data location, h is a log vector, z(xi) is the data 

value at location xi, N is the number of data pairs spaced 
a distance and direction h units apart 

Semivariance calculations can also be performed with 
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data from RS images for example as a cross variogram. It 
is defined as half of the average product of the log dis-
tance relative to the two variables Z and Y. 

 

        
 

1

1

2

zy

n h

i i i i
i

h

Z x Z x h Y x Y x h
N





         
(172 ) 

where: 
Z (x1) and Y (x1) are the data value in point x1 for two 

bands (profiles);  
N is the number of data separated by length of the 

vector h; 
A variogram usually is characterized by three para- 

meters [2]: 
 Sill—the platean that the semivariogram reaches; 
 Range—the distance at which two data points are 

uncorrelated; 
 Nugget—the vertical discontinuity at the origin. 

Usually the application of the semivariograms requires 
that the data accomplish the intrinsic hypothesis for a 
regionalized variable. In other words a random function 
Z(x) is said to be intrinsic when: 
the mathematical expectation exists and does not depend 
on the support x 

    E Z x m x            (18) 

for all vectors h the incerement Z(x + h) – Z(x) has a fi- 
nite variance which does not depend on x 

          2
– –Var Z x h Z x E Z x h Z x x           (19) 

where: 
Z(x) is a random function i.e. locally at a point x1, Z(x1) 

is a random variable and Z(x1) and Z(x1 + h) are generally 
independent but are related by a correlation expressing 
the spatial structure of the initial regionalized variable 
Z(x). Experimental variogrames are approximated by dif- 
ferent models like: spherical, exponential, Gaussian, cir- 
cular, tetraspherical, pentaspherical, Hole effect, K— 
Bessel etc. [2,16,18]. 

5.2. Kriging in SFE View [13] 

Let be Z(x) the random function and the estimation of the 
mean value: 

 1
dV

V

Z Z x x
v

                (20) 

over a given domain v is required knowing a support of 
discrete values  , 1, ,Z n    .  

According to the Kriging approach 2 the linear esti- 
mator kZ   of the n data values is considered:  

 
1

1
d

n

k
v

Z Z Z Z x
v



  
 





  

The n weights   are calculated under the classic 
hypothesis of the moments: 

  E Z x m  

      

      

2

2

– o

– 2

E Z x h Z x m C h

E Z x h Z x h

 

 

r
       (22) 

We must be assure that the estimator is unbiased as 
well as the variance is minimal. Let us suppose that one 
(or both) of two hypotheses are not accomplished and 
both the expectation of Z(x) and the covariance depend 
on x:  

    E Z x m x       

          ,C x h E Z x h Z x m x h m x      (23)  

Before taking into consideration this hypothesis, it 
should be underlined, whatever the moment functions are 
going to be, they should always lead to a positive vari-
ance. Also, we will show the calculation of Kriging solu-
tion using SFE but without considering its existence and 
uniqueness (It is not the aim of this paper). To ensure 
that estimator is unbiased we impose the condition: 

1

0
n

vm m 





              (24) 

With 

    1
dv

V

m E Zv x E Z x x
v

 
   

 
 , 

    1
d 1,

V

m E Z v E Z x x n
v



 



     
  

 , (25) 

The estimation variance is: 

       2 2 – 2v k v v k kE Z Z E Z E Z Z E Z     
  (26)  

Taking into account the expression of  2
vE Z  we 

have:  

     

    

2
2

8 8

,
1 1

1
d dv

i j v i y i
i i

E Z E x Z x Z y y
v

c E Z x Z y
 

   
 



 


    (27) 

Also 

    

  
 

8 8

,
1 1

8 8

,
1 1

,

,

i j v i y i
i i

i j i j vi vj
i i

v

c E Z x Z y

c C v v m m

C v v

 

 



   





  (28) 

x     (21)  
where: 
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mvi is the expectation of Z(xi) at the node i,  

 ,
v

C v v  is the covariation depending not only by the  

distance h, but also on x.  
Carrying out other means and substituting to the esti- 

mated variance we obtain: 

     

 

2*

1

1 1

, 2 ,

,

nv v

v k

n n v

E Z Z C v v C v v

C v v

 


   
 



 



 

    





 
 (29) 

Now the problem is to find the weights λα,  
1, , k    which minimize the estimation under non- 

bias conditions: 

1

1
0

n

m
n 






   
 

         (30) 

For this reason, we use the Lagrange multiplier’s me- 
thod, according to which we need to take the deriva- 
tives of:  

   

 
1

1 1 1

, 2 ,

1
, 2

nv v

n n n

F C v v C v v

v v m
n

 


     
  



   



  

 

    
 



   
(31) 

This procedure provides the Kriging system of n + 1 
linear equation equations in  ,  : 

   
1

, ,
n v v

C v v m C v v    


 


   

1 1

1
,

n n

m e e m
n  

 


 

        (32)  

which can be expressed in matrix form: 

    K M   

 

     
     

     

1 1 1 2 1

2 1 2 2 2

1 2

n

n

n n n

c v v c v v c v v

c v v c v v c v v
K

c v v c v v c v v

 
 
 
 
  




   
 n


  

 

1

2

n








 
 
   
 
  


       (33)  

 
 

 

1

2

n

c v v

c v v
M

c v v

 
 
 
 
  





Let us suppose that solution of system (33) exists and 
it is unique. In this situation, it is quite clear that system 
(33) is general, in the sense of so-called Kriging system.  
Example 1 

In Figure 2 it is shown a structure with 3 blocs: v1 = 1 
× 1, vx = 1 × 1, v2 = 2 × 2 in a contaminated (radioactive, 
oil, gas etc.) zone. 

The equation of the variogram is γ(x) = 4h and the 
means of the parameter measured in the blocs v1 , v2 are 
respectively:  

     1 20.590 0.409.E Z x E Z x   

Let’s estimate the parameter Z(x) in the block vx re- 
solving the Kriging system using finite element. 

According to Kriging approach we have:  

1 1 2 2Z Z Z    where λ1, λ2 parameters of the Kriging 
system: 

   
   

 
 

1 1 1 2 1 1

2 1 2 2 2 2

3

, , 1

, , 1

1 1 0 1

x

x

v v v v x x

v v v v x x

   
   



    
          
        

 

The solution is 1 0.5906,   2 0.409,   3 0.   
Therefore,  

1 1 2 2 0.5906 5 0.409 7 5.81.Z Z Z Z          

Example 2 
In the Figure 3, it is presented a profile in a waste 

zone in which a parameter has been measured using a 
constant step h. 

The respective variogram shown in Figure 4 has been 
approximated by a spheric model: 

 

 
Figure 2. Contaminated zone with three blocks. 

 

 

Figure 3. Profile of measured parameter. 
 

 

Figure 4. Variogram of diameters depending on distance 
between sample plots. 
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 
3

3

3 1

2 2

0

h h
c h

h a a

h a


  

      
 

a
 

with c = 1 and a = 4h (the range). 
The parabolic form of the variogram around the origin 

shows it is homogeneous [2].  

6. SFE in Partial Differential Equations 

The parameters of partial differential equations in many 
cases are not deterministic but stochastic ones. In this 
view let’s have a look on a PDE. First our starting point 
is the second order elliptic boundary value problem: 

 

 

in 

on 0

0 on 

D

N

V TVp F D

p g D

n TVp D

  

 

  

      (34) 

posed on a bounded polygonal domain , whose 
boundary is divided into two parts, 

2D R
D N  

(Dirichle and Neumman). This steady state diffusion 
problem can be reformatted by introducing the variable 

D D   D

u TVp   as: 
1 0

in

on

 0 on
D

D

T u Vp

V u F D

p g D

n u D

  

 
 
  

        (35) 

In the context of groundwater flow modeling the vari- 
able p is the hydraulic head and u is the volumetric flux, 
respectively.  

In many applications, only limited information about 
the diffusion coefficient T or the source term F is avail- 
able. 

We assume T = t (x, ω) (and F = F (x, ω) to be random 
fields, i.e. a family of random variables T (x, ω) with 
index variable x D . Each random variable takes on 
values in  and is defined on a complete probability 
space (Ω, , P) , where Ω denotes the set of elementary 
events,  is a σ—algebra on Ω generated by the ran- 
dom variables T(x,), (and F(x,)) and P is a probability 
measure. 


A

A

A consequence of the randomness in the diffusion co- 
efficient or source term is that the output variables p and, 
if present, u are random fields as well. The primal for- 
mulation [12] transforms to the problem of finding a 
random field:  

 ,u u x  ,  ,p p x  , such that, P almost surely  

      
   

    

* , , , in

, o

, , 0 on

D

N

V T x Vp x F x D

p x g x D

n T x Vp x D

  



 

 

 n





   



  (36) 

Analogously in the mixed formulation [12] we now 
look for random fields  ,u u x   and  ,p p x   
such that: p—almost surely (as):  

     
   
   

 

1 , , , 0

, , in

, on

, 0 on

D

N

T x u x Vp x

Vu x F x D

p x g x D

n u x D

  

 





  

 

  

   

    (37) 

As a simple example let’s take a glance at the sto- 
chastic finite element on diffusion-convection equation 
[5,6,12,19]: 

x y

x y

k k
x x y y

V V Q C
x y t

 

  

               
  

   
  

      (38) 

using the Crack-Nickolson algorithm with 0 1  : 
1 1 1 1

, 1 1, 2 , 3 1,

1 1
4 , 1 5 , 1 , ,

n n n n
i j i j i j i j

n n n
i j i j i j i j

a a a

a a bQ

   

  

   
 

 
 

 

    n
    (39) 

where : 
C —the solute concentration, x, y—spatial co-ordi- 

nate, t—time coordinate, V—the flow velocity vector 
with its components Vx, Vy, D—the diffusion coefficient, 
ai, 1,5i   and b are the coefficients depending on the 
mentioned coefficients, ,x y   spatial steps, t  time 
step. Below we are presenting a river plane zone con- 
taminated by a point pollutant source Figure 5, placed in 
the left side of the node 13. 

In this scheme, it was operated with mean values of 
the random diffusion convection parameters, resulting 
from their synthetic and real distributions. 

The components Vx and Vy has been measured in an 
interval of time. The component of Vy is positive over the 
line 13 - 18 and negative under this one. 

To illustrate the idea, it is shown below a partial solu- 
tion of the contaminant concentration in the step st = 5 
for a simple non stationary flow problem (Dirichle— 
Newman conditions). Using q = 1, Kx = 1, Ky = 1, Vx = 1, 

 

 

Figure 5. A contaminated river zone. 
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Figure 6. The contaminant concentration dynamic. 
 
Vy = 0.01, the following dimensionless means values by a 
Monte Carlo procedure [10] resulted:  
xx [1] = 0.0012   xx [2] = 0.003    xx [3] = 0.004 
xx [4] = 0.0043   xx [5] = 0.0036   xx [6] = 0.0029 
xx [7] = 0.0410   xx [8] = 0.069    xx [9] = 0.074 
xx [10] = 0.073   xx [11] = 0.051   xx [12] = 0.053 
xx [13] = 0.9000  xx [14] = 0.770   xx [15] = 0.590 
xx [16] = 0.450   xx [17] = 0.250   xx [18] = 0.290 
xx [19] = 0.0410  xx [20] = 0.069   xx [21] = 0.074 
xx [22] = 0.073   xx [23] = 0.051   xx [24] = 0.053 
xx [25] = 0.0012  xx [26] = 0.003   xx [27] = 0.0041 
xx [28] = 0.0043  xx [29] = 0.0036  xx [30] = 0.0029 

In Figure 6, it is presented the contaminant concentra-
tion dynamic for different times of the flow. 

As it was expected the solution is symmetric. 
There are simple resemblances between different con- 

cepts and operators in geostatistics and SFE as for exam- 
ple: blocs, interpolation operator, minimization of the va- 
riance (energy). 

7. Conclusion 

SFE and Geostatistic applications are of the great impor- 

tance in environmental resources, nuclear and renewable 
energy, ecology, forestry, geology, climate, water and air 
pollution, mapping as well as on their uncertainty, risk 
analysis and optimization [1,5,14,15,20,21]. 
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