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ABSTRACT 

Early disease detection is extremely important in the 
treatment and prognosis of many diseases, especially 
cancer. Often, proteomic fingerprints and a pattern 
recognition algorithm are used to classify the patho- 
logical condition of a given individual. It has been 
argued that accurate classification of the existing data 
implies an underlying biological significance. Two 
fingerprint-based classifiers, decision tree and me- 
doid classification algorithm, and a biomarker-based 
classifier were examined using a published dataset of 
mass spectral peaks from 81 healthy individuals and 
78 individuals with benign prostate hyperplasia (BPH). 
For all three methods, classifiers were constructed us- 
ing the original data and the data after permuting the 
labels of the samples (BPH and healthy). The finger- 
print-based classifiers produced accurate results for 
the original data, though the peaks used in a given 
classifier depended upon which samples were placed 
in the training set. Accurate results were also ob- 
tained for the dataset with permuted labels. In con- 
trast, only three unique peaks were identified as pu- 
tative biomarkers, producing a small number of rea- 
sonably accurate biomarker-based classifiers. The 
dataset with permuted labels was poorly classified. 
Since fingerprint-based classifiers accurately classi- 
fied the dataset with permuted labels, the argument 
for biological significance from a fingerprint-based 
classifier must be questioned. 
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1. INTRODUCTION 

It is well established that early detection of cancer has a 
positive effect on treatment and longevity. Historically, 
the prediction of the presence of a disease has relied on 
measuring the concentration of a particular protein or 
biomarkers, such as prostate specific antigen (PSA) for 
prostate cancer and cancer antigen (CA)-125 for ovarian 
cancer. The low sensitivity and/or specificity of these 
biomarkers necessitate the search for new biomarkers, 
but the discovery of new biomarkers has been exceed- 
ingly slow. Bioinformatic analysis of data obtained from 
biofluids, such as the undirected search of spectral peaks 
from samples of blood, urine, tears, mucous, and spinal 
fluid may be extremely useful in identifying new bio- 
markers. Unfortunately over 4000 publications have 
“identified biomarkers” in the last 7 - 10 years, but none 
have been FDA approved. This suggests that it is pos- 
sible to correctly classify the available samples without 
reflecting the underlying biology of the disease. 

Informatic analysis has led to a new paradigm for clas- 
sification known as fingerprinting or pattern matching. In 
this paradigm, individuals are classified based upon a 
particular pattern of intensities. If an untested individual 
has the same pattern as an individual with a known con- 
dition, then these two are given the same disease classi- 
fication. Commonly used fingerprint-based classifiers in- 
clude decision trees [1-4] and the medoid classification 
algorithm [5-10] used by the laboratories of Petricoin 
and Liotta. 

Sufficient classification of a training dataset and a 
“blinded” validation set by a fingerprinting classifier is 
commonly used as the basic justification that this par- 
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ticular classifier must be based on some underlying bio- 
logical principal [11]. If a three-node decision tree (Fig- 
ure 1) was selected as the classifier, and was deemed 
biologically relevant because it sufficiently classified a 
training set and a validation set of individuals, then one 
would have to perform an exhaustive search of all pos- 
sible three-node decision trees with all possible cut points 
to determine if any other classifiers performed with suf- 
ficient accuracy (sensitivity = specificity = 90% in this 
hypothetical example). If no others were found, then the 
argument about biological relevance may have merit. If 
more than one were found, then the question of why all 
are biologically relevant remains. 

If a fingerprinting classifier is found that performs ex- 
tremely well on classifying the training data, but clas- 
sifies the validation data poorly, one can either state that 
the classifier is insufficient and therefore not biologically 
relevant, or that there was an incorrect separation of 
training and validation data so that all important finger- 
prints were not present in the training data. Since the dis- 
criminating fingerprints are not known, proper coverage 
cannot be known, and therefore proper selection of the 
training data cannot be known. In addition, since the 
quality of classifying the validation set is the metric used 
to determine biological relevance, the validation set is 
used in the process of constructing the classifier and is 
therefore part of the training process. 

With these points in mind, an effective way to con- 
struct classifiers based on fingerprints is to include all 
data in the search for fingerprinting classifiers and then 
to selectively remove samples for the testing set in a way 
that preserves the coverage of the fingerprint in the train- 
ing data. This statement does not suggest, in any way, 
that this procedure has been used by other research 
groups who present fingerprinting classifiers; it simply 
states that this method is an effective way to ensure that 
all required fingerprints are present in the training data. 
 

 

Figure 1. Hypothetical decision tree. 

In addition, the significance of a fingerprinting classi- 
fier needs to be established. Permutation testing is often 
used to test significance. In this investigation, the phe- 
notypes were scrambled amongst all data to determine if 
a new classifier of the same form (e.g. a three-node de- 
cision tree) could be constructed with comparable ac- 
curacy. The probability that random phenotypes could be 
classified to a given accuracy determines the significance 
of a given model. 

In this study, the publicly available data set used by 
Adam et al. [12] to identify proteomic fingerprints that 
are diagnostic for prostate cancer was examined. In par- 
ticular, spectra from individuals with benign prostate hy- 
perplasia (BPH) were compared to spectra from “healthy” 
individuals without BPH or prostate cancer. Instead of 
using specific or binned mass-to-charge (m/z) intensities, 
a peak-picking algorithm was used to select 158 intensity 
maxima in non-overlapping regions of the spectra, and 
these intensity maxima were used in attempts to classify 
the BPH and healthy individuals using both the true phe- 
notypes and datasets where the phenotypes have been 
randomly scrambled. 

These datasets were examined using two fingerprint- 
ing algorithms, a decision tree (DT) and a medoid classi- 
fication algorithm (MCA). In all known applications of a 
decision tree to produce a classifier using spectral data 
[1-4], a single scoring metric (e.g. Gini Index, entropy 
gain, etc.) was used to determine the cut point at a given 
node so that the two daughter nodes were as homoge- 
neous as possible (e.g. diseased versus healthy). The pro- 
cedure used here was to construct unconstrained decision 
trees that best classify the training and testing individuals. 
A wrapper algorithm was used to determine which fea- 
tures and cut points are to be used in a putative DT clas- 
sifier and the goal was to optimize the overall sensitivity 
and specificity. 

The medoid classification algorithm was a best attempt 
at reproducing the algorithm used in many of the studies 
conducted in the laboratories of Emmanuel Petricoin and 
Lance Liotta [5-10]. As opposed to the method used in 
the references cited above, this investigation will fix the 
number of features that are present in the classifier. 
Again, a wrapper algorithm is used to determine which 
features will be used in a putative classifier. 

The original and permuted datasets were also examined 
using a biomarker-based classifier embodied in the Bio- 
marker Discovery Kit (BMDK) [13]. A suite of filtering 
algorithms were used to search for putative biomarkers, 
and then only these peak intensities were used in a final 
classifier based on a distance-dependent K-nearest neigh- 
bor (DD-KNN) algorithm. This was different from the 
program that previously identified a form of C3a found 
in the blood as a marker for individuals with colorectal 
cancer and benign polyps [14]. In this earlier investiga- 
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tion, both filter and wrapper algorithms were used to 
identify putative biomarkers, while this investigation only 
used an expanded set of filtering algorithms. 

The next section outlines the procedures used to pre- 
pare the datasets and construct classifiers for each of the 
three methods. This explanation is followed by a section 
that describes the classification of both the true and 
scrambled phenotypes using each method and the fourth 
section contains a discussion of these results and is fol- 
lowed by the overall conclusions of this analysis. 

2. METHODS 

2.1. Dataset Preparation 

The spectra produced by Adam et al. [12] were from 78 
individuals with BPH and 81 healthy individuals. The 
raw data contained intensities (ion counts) at 48,538 m/z 
values from −0.0991 to 198,660. The dataset contained 
two spectra that were acquired from each individual. As 
outlined in the colorectal study [14], the peak-picking 
process initially truncated each spectrum to 17,686 m/z 
values from 1500 to 40,500 and then scaled these inten- 
sities such that their sum (total ion current) is 50,000. 
The BPH and healthy spectra were randomly divided 
into two groups; a training set that contained 104 BPH 
spectra (duplicate spectra from 52 individuals) and 108 
healthy spectra (duplicates from 54 individuals), and a 
testing set that contained the remaining 52 BPH (26 dup- 
licates) and 54 healthy (27 duplicates) spectra. 

The 212 training spectra were averaged together such 
that the intensity at each m/z value was the average of the 
intensities across the 212 spectra. This average training 
spectrum was examined to find the m/z value with the 
highest intensity, which was placed in a peak list. All 
intensities at m/z values within 0.3% of the selected 
value were set to zero and the process was repeated until 
the selected intensity was less than 25% of the average 
intensity (below 0.707); at which point the process stop- 
ped. This processing produced 424 m/z values where the 
average training spectrum contained sufficient intensity 
for further examination. Each of these was taken as the 
center of a spectral region with a half-width of 0.15% of 
the m/z where the individual spectra may have contained 
a peak, a shoulder region, or a non- descript flat region of 
sufficient intensity. To reduce this list further, each of 
these regions in the 212 training spectra were examined 
and a region was kept if the maximum intensity was not 
in the first two or last two m/z values in at least 60% of 
either the BPH or healthy spectra. This process reduced 
the number of spectral regions to 158. These 158 regions 
were examined in each of the training and testing spectra, 
and the maximum intensity within that region was re- 
corded. 

The final step was to average the intensities between 

the two spectra from each individual for each of the 158 
regions. Therefore, the final datasets contained the aver- 
aged maximum intensities in 158 regions. The training 
set contained the averaged intensities for 52 BPH and 54 
healthy individuals while the testing set contained aver- 
aged intensities for 26 BPH and 27 healthy individuals. 

2.2. Classifier Construction 

Two different procedures can be used to determine which 
peak intensities, or features, are used in the classifier; 
one uses a wrapper algorithm and the other uses one or 
more filtering algorithms. A wrapper algorithm uses an 
external stochastic or deterministic algorithm to select 
putative features that are used in the final classifier. Once 
the search for putative feature sets is complete, one or 
more final classifiers are produced. In contrast, a filtering 
method uses one or more independent procedures to 
search for discriminating features, and only these fea- 
tures are used in the final classifier. It is important to 
note that the filtering algorithms should not use the same 
procedure used in the final classifier. Both DT and MCA 
fingerprint-based classifiers used a wrapper algorithm to 
search for the best set of features (and cut points for the 
DT method), while BMDK used a filter method to first 
search for putative biomarkers. 

2.3. Decision Tree Classifier 

Two different procedures were used to construct unre- 
stricted decision trees. For the symmetric, 3-node deci- 
sion tree in Figure 1, all possible feature triplets were 
used in all six combinations and all possible cut points 
were examined. The possible cut points were determined 
by ranking the intensity of a given feature from lowest to 
highest and then selecting the average of consecutive 
intensities. The score for a given decision tree was the 
sum of the sensitivity and specificity for the training data 
in the four terminal nodes. 

For the symmetric, 7-node decision tree shown in Sup- 
plemental Figure 1, a modified Evolutionary Program- 
ming (mEP) procedure [15] was used. Each putative de- 
cision tree classifier was represented by two 7-element 
arrays; the first contained the feature used at each node 
and the second contained the cut values. Both arrays as- 
sumed the node ordering listed in Supplemental Figure 1. 
The only caveats were that all seven features must be dif- 
ferent and that this ordered septet of features was not the 
same as any other putative solution in either the parent or 
offspring populations. When a new putative decision tree 
was formed, a local search was used to find optimum cut 
points for this septet of features. 

The mEP procedure started by randomly generating 
2000 unique decision trees. Each decision tree had one or 
two of the features removed and unique features were 
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selected, again requiring that the final septet was unique. 
The local search first tried to find optimum cut points for 
the new features that were added and then the search was 
performed over all seven cut points. The best set of cut 
points was combined with the septet of features to re- 
present an offspring classifier. The score was again the 
sum of the sensitivity and specificity for the training in- 
dividuals over the eight terminal nodes. When the entire 
set of initial, or parent, decision trees generated unique 
offspring, all 4000 scores were compared and the 2000 
decision trees with the best score became parents for the 
next generation. This process was repeated for a total of 
4000 generations and the best classifiers in the final po- 
pulation are examined. Each time a decision tree was 
constructed during the mEP search, each decision node 
was examined. If the number of either BPH or healthy 
samples was a given number (denoted NSTOP) or less, it 
became a terminal node and the feature for this node and 
any subsequent nodes (for nodes 2 and 3) were removed. 
Each time a tree was truncated, all offspring generated 
from this solution also had this truncation. 

2.4. Medoid Classification Algorithm 

While the algorithm described by Petricoin and Liotta 
[5-10] used a genetic algorithm driver to search for an 
optimum set of features, allowing for different putative 
solutions to use different numbers of features (5 - 20 
features), our algorithm used a mEP feature selection al- 
gorithm and all putative solutions had the same number 
of features n. For a given value of n, n features were 
selected and the intensities of these features were re- 
scaled for each individual using the following formula 
[5-10]: 

   min max min– II I I I    

In this equation, I is a feature’s original intensity, I' is 
it’s scaled intensity, and Imin and Imax are the minimum 
and maximum intensities found for the individual among 
the n selected features, respectively. If Imin and Imax were 
from the same features in all samples, a baseline inten- 
sity would be subtracted and the remaining values scaled 
so that the largest intensity was 1.0. Each individual 
would then be represented as a point in an (n − 2)-di- 
mensional unit cube. As designed, and as found in prac- 
tice, Imin and Imax do not represent the same features from 
one individual to the next, so this interpretation does not 
hold. Therefore, each individual represents a point in an 
n-dimensional unit cube. 

The first training sample became the medoid of the 
first cell, with this cell being classified as the category of 
this sample. Each cell had a constant trust radius r, which 
was set to 0.1 (n)1/2, or ten percent of the maximum 
theoretical separation in this unit hypercube. If the sec- 
ond sample was within r of the first, it was placed in the 
first cell; otherwise it became the medoid of the second  

cell and that cell was characterized by the second sam- 
ple’s category. This iteration continued until all training 
samples were processed. Each cell was then examined 
and the categories of all samples in the cell were com- 
pared to the cell’s classification. This calculation allowed 
a sensitivity and specificity to be determined for the 
training data, and their sum represented the score for this 
set of n features. 

The mEP algorithm initially selected 2000 sets of n 
randomly selected features. The only caveat was that 
each set of n features must be different from all pre- 
viously selected sets. The medoid classification algori- 
thm then determined the score for each set of features. 
Again, each parent set of features generated an offspring 
set of features by randomly removing one or two of the 
features and replacing them with randomly selected fea- 
tures, requiring that this set be different from all feature 
sets in the parent population and in all offspring gener- 
ated so far. The score of this feature set was determined 
and the score and feature set was stored in the offspring 
population. After all 2000 offspring had been generated 
the parent and offspring populations were combined. The 
2000 feature sets with the best score were retained and 
became the parents for the next generation. 

It should be noted that for a set of n features, the 
number of unique cells that can be generated is on the 
order of 10n. Since no training set is ever this large (n is 5 
or more), only a small fraction of the possible cells will 
be populated and classified. As will be shown in the next 
section, this limitation caused a significant number of the 
testing samples to be placed in an unclassified cell, 
though none of the publications that used this method 
[5-10] reported an undetermined classification for any of 
the testing samples. Instead of searching through a large 
number of solutions that classified the training samples 
to a significant extent and find those that minimized the 
number of unclassified testing samples, we decided to 
use all samples and limit the number of cells. All samples 
were placed in the training set and the algorithm was run 
with the added requirement that any set of n features that 
produced more than 52 BPH cells or 54 healthy cells was 
given a score of zero. As long as the number of cells that 
used a BPH sample as the medoid was 52 or less, and the 
number of cells with a healthy medoid was 54 or less, it 
was possible to select the medoid samples as the training 
set. All other samples could then be divided to place the 
required number in the testing set and the remainder 
would be part of the training set. 

This restriction also allowed for a test of the depend- 
ence of the result on the order of the samples. In one run 
the order of the samples was the 52 BPH training sam- 
ples, the 54 healthy training samples, the 26 BPH testing 
samples and then the 27 healthy training samples. In the 
second case, the order of these four sets was reversed. 
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2.5. Biomarker Discovery Kit 

In contrast to an earlier version of BMDK [14], 10 dif- 
ferent filtering methods are employed to identify any 
putative biomarkers [13]. Each of the methods (described 
in detail in Supplemental Methods) examined each of the 
158 features and selected those features that produce the 
best scores. In general, five features were selected by 
each method, but this was increased if multiple features 
produced the same good score. Once all features were se- 
lected, the Pearson correlation coefficient was deter- 
mined between all feature pairs and features were placed 
in the same group if r > 0.70. This was done so that at 
most one putative biomarker can be selected from each 
group. The raw spectrum around the selected features in 
each group, and any other feature with r > 0.70 to a se- 
lected feature, was visually examined to ensure that it 
was a well-defined peak (obtained from a single protein, 
protein complex, or fragment). If more than one well- 
defined peak existed within a single group, the peak with 
the highest maximum intensity became the putative bio- 
marker. 

The putative biomarkers were then used in a distance- 
dependent 6-nearest neighbor classification algorithm 
(DD-6NN). This algorithm, also described in detail in 
Supplemental Methods, weighed the probability that a 
test sample had the same classification as one of its 
neighbors by the inverse of the distance to this neighbor. 
This procedure also included the ability to classify a sam- 
ple as “undetermined” if it was sufficiently far from all 
of its neighbors. 

A Euclidean distance was used to determine the se- 
paration between a selected sample and a neighbor sam- 
ple. If more than one peak was used in the classifier, a 
peak with a high maximum intensity had a larger effect 
on the distance than one with a small maximum intensity. 
Therefore, the final classifier was constructed using the 
unscaled peak intensities and the peak intensities after 
they had been scaled by dividing by the standard devia- 
tion across all samples used in constructing the classifier. 

3. RESULTS 

3.1. Original Data 

The 10 methods within BMDK identified a total of nine 
features in the training set that may represent putative 
biomarkers (Table 1). The intensities of the feature at 
m/z 4072.8 correlated with those at m/z 8137.9 across all 
training samples (r > 0.70). In addition, the intensities at 
m/z 7198.5, 8294.5, and 8359.9 also sufficiently corre- 
lated with at least one of these features, and this five- 
feature set was denoted Group 1. The four selected fea- 
tures at m/z 4475.2, 4579.1, 8942.8, and 9149.0 corre- 
lated strongly with each other and none of the other fea- 

tures, so they are combined into Group 2. The selected 
feature at m/z 4876.0 correlated with the feature at m/z 
4860.6 to form Group 3, the selected feature at m/z 
5740.3 correlated with features at m/z 5978.0 and 6122.4 
to form Group 4, and the selected feature at m/z 9662.3 
correlated with features at m/z 9430.7 and 9729.3 to form 
Group 5. The original spectra was examined around each 
of these 17 m/z values to determine if it represented an 
isolated peak that is produced by a single protein, protein 
complex, or fragment. Five of the 17 features represented 
well-defined peaks; one from Group 1, two from Group 
2, and two from Group 4 (Supplemental Table 1). For 
the two groups containing a pair of well-defined peaks, 
the intensities of these peaks were examined and the 
peak with the highest maximum intensity was selected 
for use in the DD-6NN classifier. The intensities of the 
three selected peaks (m/z 4072.8, 6122.4 and 8942.8) are 
shown in Figure 2. This figure shows that the peaks at 
m/z 4072.8 and 8942.8 have significantly higher intensity 
in many of the BPH samples (left column) than for the 
healthy samples (right column). In addition, the peak at 
m/z 8942.8 corresponds to the blood form of complement 
C3a anaphylatoxin (C3a-desArg) that represented the 
observed biomarker for individuals with colorectal can- 
cer and polyps [14]. 

A separate analysis of all samples (combining the train- 
ing and testing sets) selected seven features (Supplemen- 
tal Table 2) which correlated into three groups. A visual 
examination of these seven features and all correlated 
features identified the same three peaks as putative bio- 
markers shown in Figure 2 (Supplemental Table 3); rein- 
forcing the robustness of these markers. 

All combinations of one, two, and three peak inten- 
sities were used in the DD-6NN classifier, revealing the 
classification accuracies shown in Tables 2(a) and (b).  
 

 

Figure 2. Intensities of the BPH (left co- 
lumn) and healthy (right column) sam- 
ples in the training dataset for each of 
the three putative biomarkers.   
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Table 1. Nine features selected by the 10 different filtering methods in BMDK for the training set using unpermuted phenotypes. 
The numbers in each column are the ranks of the features for each method. 

Feature Catboot Student Dtgini Dtinfg Nnfeat Chisq Kruswal Kolsmir Extreme Vartest 

4072.8 3          

4475.2  3  5 5    4 3 

4579.1 1 4 4 4 1 1 1 2 5  

4876.0   5        

5740.3   3 1  4  4 1 4 

8137.9 2    4 5 3 4   

8942.8 4 1 1 3 2 2 2 1 3 1 

9149.0 5 2 1 2 3 3 4 2 2 2 

9662.3  5     5   5 

 
Table 2. Results of the classification of BPH versus healthy samples using the true phenotypes: (a) Best DD-6NN classification 
results using only the three putative biomarkers shown in Figure 2 and an unscaled Euclidean distance; (b) Best DD-6NN classi- 
fication results using only the three putative biomarkers shown in Figure 2 and a scaled Euclidean distance; (c) Quality of the 
final 2000 classifiers using all samples in a symmetric 7-node decision tree; (d) Number of perfect MCA classifiers (sensitivity = 
specificity = 100%) and times particular peaks were used in them. 

(a) 

 Training Data  Testing Data 

Peaks Sens Spec Undet  Sens Spec Undet 

8942.7648 75.0 79.6 0.0  84.6 74.1 0.0 

4072.7775 71.2 77.8 0.0  73.1 81.5 0.0 

6122.3962 42.3 45.3 0.9  52.0 55.6 1.9 

4072.7775 8942.7648 75.0 87.0 0.0  88.0 81.5 1.9 

6122.3962 8942.7648 73.1 87.0 0.0  84.6 81.5 0.0 

4072.7775 6122.3962 66.7 66.7 0.9  69.2 81.5 0.0 

4072.7775 6122.3962 8942.7648 73.1 90.7 0.0  91.7 85.2 3.9 

(b) 

 Training Data  Testing Data 

Peaks Sens Spec Undet  Sens Spec Undet 

4072.7775 8942.7648 76.5 92.6 0.9  92.3 100. 0.0 

6122.3962 8942.7648 69.2 86.3 2.8  95.8 96.2 5.7 

4072.7775 6122.3962 63.5 67.3 1.9  69.2 85.2 0.0 

4072.7775 6122.3962 8942.7648 69.2 86.8 0.9  84.0 92.6 1.9 

(c) 

NSTOP 
Minimum  

(Sens + Spec) 
Minimum  
Sensitivity 

Minimum  
Specificity 

Nodes  
(#Trees) 

Features  
(#Trees) 

0 197.5 98.7 97.5 6(2000) 5533.3(2000), 5740.3(2000), 8137.9(1135), 8942.8(1328)

1 195.0 96.2 96.3 4(10), 5(1990) 2484.1(2000), 5740.3(2000), 8942.8(2000) 

2 195.0 96.2 97.5 4(4), 5(1996) 2484.1(2000), 5740.3(2000), 8942.8(2000) 

(d) 

Original Dataset Order  Inverted Dataset Order 
#Features #Classifiers Features (#Classifiers)  #Features #Classifiers Features (#Classifiers) 

5 45 9149.0(43)  5 55 9149.0(52) 

5 43 9149.0(41)  5 55 9149.0(51) 

6 2000 9149.0(1991), 2484.1(804)  6 2000 9149.0(2000), 2484.1(864)

6 2000 9149.0(1980), 2484.1(866)  6 2000 9149.0(1998), 2484.1(1046) 
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Table 3. Results of the classification of BPH versus healthy samples using the true phenotypes: (a) Sensitivity and specificity of the 
best DD-6NN classifiers using between one and three putative biomarkers for the training dataset using an unscaled Euclidean 
distance; (b) Sensitivity and specificity of the best DD-6NN classifiers using between one and three putative biomarkers for the 
training dataset using a scaled Euclidean distance; (c) Average quality (%) of the classification using a symmetric 7-node decision 
tree for the best and 200th best solution for eight different runs when either all samples are used in the training (All) or when the 
score is the average of the sensitivity and specificity for both the training and testing sets (Avg); (d) Specific DT results for the best 
results from the fourth and seventh All runs; (e) Sensitivity and specificity of the best and 100th best medoid classifier for each of 
two runs where the number of features (#F) was varied from five to eight and the classifier was required to have at most 52 BPH cells 
and 54 healthy cells and regularly used features. 

(a) 

Features Sensitivity Specificity Undetermined 

6122.4 71.2 69.8 0.9 

4831.2 67.3 60.4 0.9 

5716.6 8685.7 68.7 75.9 0.9 

4831.2 6122.4 60.8 76.0 4.7 

5716.6 8685.7 9951.7 61.2 82.7 4.7 

4831.2 7443.8 10656.8 74.0 66.0 2.8 

(b) 

Features Sensitivity Specificity Undetermined 

5716.6 8685.7 70.2 68.0 8.5 

3321.7 8685.7 67.3 64.8 2.8 

3321.7 5716.6 8685.7 71.7 78.8 7.5 

3321.7 4796.7 8685.7 68.0 68.5 1.9 

(c) 

Run All Avg 

1 81.51 to 81.03 83.44 to 82.55 

2 83.55 to 81.36 84.35 to 82.98 

3 83.55 to 82.93 86.31 to 85.36 

4 83.64 to 81.16 85.42 to 83.97 

5 82.93 to 82.31 84.85 to 83.01 

6 83.52 to 82.88 83.35 to 82.87 

7 84.26 to 83.07 86.25 to 85.29 

8 83.48 to 82.29 84.28 to 83.35 

(d) 

 Training Testing 

Features (in order 1 - 7) Sens Spec Sens Spec 

13574.7, 2823.9, 10082.3, 14145.9, 3035.7, 2484.1, 3129.6 82.7 83.3 84.6 85.2 

14925.8, 3582.9, 3824.5, 12064.6, 4451.8, 3150.2, 2823.9 82.6 85.2 84.6 85.2 

(e) 

Original Dataset Order Inverted Dataset Order 
1st  

Classifier 
100th 

Classifier 
1st  

Classifier
100th  

Classifier 
#F 

Sens Spec Sens Spec 
Important Features 

Sens Spec Sens Spec
Important Features 

5 98.7 87.7 94.9 85.2  85.9 98.8 87.2 92.6  
5 98.7 87.7 93.6 86.4  85.9 98.8 87.2 92.6  
6 97.4 92.6 96.2 88.9  91.0 98.8 88.5 96.3  
6 100. 87.7 97.4 87.7  94.9 95.1 89.7 95.1  
7 100. 91.4 97.4 90.1 3035.7(69) 94.9 97.5 89.7 98.8 3514.0(68), 28251.5(62) 5978.0(53), 7935.3(52)
7 98.7 93.8 97.4 90.1 3035.7(67) 92.3 100. 93.6 93.8 4796.7(54) 

8 100 93.8 94.9 96.3 2887.7(54), 3035.7(54) 3651.5(50) 96.2 97.5 93.5 96.3 
3514.0(86), 28251.5(85)  

5978.0(62), 7935.3(62), 5586.7(50) 

8 97.4 96.3 98.7 91.4 
3035.7(83), 3651.5(83)  
2887.7(81), 3451.1(74) 

96.2 96.3 92.3 97.5 
3514.0(86), 4796.7(84)  

3035.7(69), 14049.9(60), 4579.1(54) 
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The results in Table 2(a) are obtained if the Euclidean 
distance between a pair of samples uses the unscaled in- 
tensities. The best two-feature classifier used the peaks at 
m/z 4072.8 and 8942.8. There was an imbalance in the 
contribution of these peaks to the distance since the C3a 
peak at m/z 8942.8 had a maximum intensity of 635.5 
while the peak at m/z 4072.8 had a maximum intensity of 
only 120.9 (Figure 2). In order to equalize their con- 
tribution to the classifier the intensities of each peak 
were first scaled by the inverse of the standard deviation 
as determined by the training samples. This produced the 
results in Table 2(b) and showed an increase in the ac- 
curacy of this classifier for both the training and testing 
data. 

An exhaustive search for symmetric 3-node decision 
trees was conducted with the requirement that the train- 
ing set had a sensitivity and specificity of 94% or more. 
This search identified a total of 12,344 unique decision 
trees, meaning that they all had different features and/or 
cut points. It should be noted that the discriminating 
peaks at m/z 4072.8 and 8942.8 represent a total of nine 
features since they are members of groups that contain 
five and four features, respectively (Supplemental Table 
1). Of the 12,344 unique 3-node decision trees producing 
a sensitivity and specificity of 94% or more for the train- 
ing set, 1653 trees did not use any of the nine features 
from these two groups. Therefore, it is possible to obtain 
good results for the training set without using the puta- 
tive biomarkers. 

The 3-node decision tree with the best results for the 
training set (sensitivity = 98.1%, specificity = 98.1%) 
only produced a sensitivity of 81.5% for the testing set. 
This suggests that a necessary piece of the underlying 
fingerprint was missing from this decision tree. There- 
fore, all samples were used to construct decision trees 
that contained up to seven decision nodes (Supplemental 
Figure 1). 

Running the mEP search for 4000 generations with a 
population size of 2000 produced the results listed in Ta- 
ble 2(c) for the final population of 2000 unique decision 
trees. Here the uniqueness was over features, meaning 
that no two trees could have the same features at the same 
nodes, independent of the cut points used. 

When NSTOP = 0, the minimum value of (sensitivity 
+ specificity) was 197.5% across all 2000 decision trees, 
while the minimum values for the sensitivity and speci- 
ficity were 98.7% and 97.5%, respectively, in any given 
tree. All 2000 final trees contained six decision nodes, 
and the intensities at m/z of 5533.3 and 5740.3 were used 
in all 2000 trees. The peak intensity for m/z of 8942.8 
was used in 1328 trees while m/z of 8137.9 was used in 
1135 trees. When NSTOP was increased to one, the mini- 
mum (sensitivity + specificity) was 195.0% for all 2000 
decision trees, while no tree had a sensitivity or speci- 

ficity below 96.2% or 96.3%, respectively. Note that 10 
of these decision trees used only four decision nodes 
while the remaining 1990 trees used five decision nodes. 
This means that 4000 unique decision trees were cons- 
tructed in these two runs. 

The medoid classifier algorithm started with searches 
that used four features, which is smaller than the number 
considered by the groups of Petricoin and Liotta [5-10]. 
Forty-four different combinations were found to produce 
100% sensitivity and specificity for the training data. The 
best result for the testing data (sensitivity = 100%, spe- 
cificity = 95.0%) used features at m/z of 2484.1, 2589.7, 
4876.0, and 9149.0, but caused 18.9% of the testing 
individuals to receive a classification of “unknown”. The 
classifier that minimized the number of “unknowns” used 
a completely different set of features at m/z of 4072.8, 
7480.3, 7935.3, and 9300.8. It yielded an “unknown” 
classification for only two testing samples (1.8%), but 
caused the sensitivity for the testing set to drop to only 
40%. In addition, two of the 44 sets of four features did 
not include any of the nine features from the groups that 
contained the putative biomarkers at m/z 4072.8 and 
8942.8. 

When five features were used in this classifier, the 
mEP algorithm produced a final population where all 
2000 of the unique feature sets produced a 100% sen- 
sitivity and specificity for the training data. This result 
means that there were at least 2000 5-feature MCA clas- 
sifiers that yielded perfect training results. One could 
search through all possible results to find the ones that 
performed sufficiently well on the testing data; or one 
could use the method described above to ensure coverage 
of any identified fingerprint in the training set. 

When all data were placed in the training set, two mEP 
run found 43 and 45 different sets of five features, res- 
pectively, that produced perfect results without forming 
more than 52 BPH cells and 54 healthy cells (Table 2(d)). 
Both mEP runs using six features produced final popu- 
lations of 2000 unique feature sets that produced overall 
sensitivities and specificities of 100%. When the order of 
the datasets was reversed, both 5-feature mEP runs pro- 
duced 55 models that perfectly classified all of the data. 
If six features were used in the classifier, all 2000 mem- 
bers of the final population produced 100% sensitivities 
and specificities in both mEP runs. 

3.2. Permuted Phenotypes 

The BPH/healthy classifications were randomly scram- 
bled between the 106 training individuals and indepen- 
dently scrambled between the 53 testing samples. This 
process ensured that the same peak intensities were pre- 
sent in the training and testing sets. 

When the 10 filtering methods in BMDK examined 
this dataset with no biological information, 25 features 
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were selected (Supplemental Table 4). A correlation ana- 
lysis caused these 25 peaks to form 19 groups. Instead of 
visually inspecting the original spectra about each of 
these 25 features, and all features that correlated with 
them, the feature from each group with the highest maxi- 
mum intensity was selected for use in a DD-6NN clas- 
sifier. The 19 selected features are shown with an asterisk 
in Supplemental Table 4 and their intensities are dis- 
played in Supplemental Figure 2. As expected, none of 
the features shown in the figure represented a strong pu- 
tative biomarker. 

A search over all possible combinations of one, two 
and three features produced the classification results for 
the training data shown in Tables 3(a) and (b). The clas- 
sification accuracies for the training data using either 
unscaled intensities (Table 3(a)) or intensities scaled by 
the standard deviation (Table 3(b)) were definitely worse 
than the results shown in Tables 2(a) and (b) for the un- 
permuted phenotypes. 

A symmetric 7-node decision tree (Supplemental Fig- 
ure 1) was again used to classify the data. If the tree was 
constructed just using the testing data, a large number of 
unique trees produced good sensitivity and specificity. In 
one run, all 200 of the top trees had an average quality 
that was above 88%. Unfortunately, the quality on the 
training set was generally not any better than a random 
guess (as expected). To see if decision trees could be 
built that effectively classified both the training and test- 
ing data, two different methods were employed to pro- 
mote fingerprint coverage in the training set. The first 
(denoted All) simply combined all data into the decision 
tree, allowing one to manually extract the training set 
after the tree was built. This had the advantage that it had 
the best possible coverage of a given fingerprint. The 
second method (denoted Avg) was to augment the score 
of a given decision tree so that it was the average of the 
sensitivity and specificity for both the training and test- 
ing sets. This method had the advantage that the division 
between training and testing was fixed, but effectively 
weighed the testing results twice as much as in the All 
runs. 

The mEP feature selection algorithm was run eight 
times with different seeds to the random number gen- 
erator to produce the average sensitivity and specificity 
for the best and 200th best solution, as shown in Table 
3(c). For the All runs, these numbers are the average 
sensitivity and specificity for the decision trees that pro- 
cessed all of the data, but it is easy to extract a testing set 
from all individuals such that the training and testing 
qualities are approximately equal. For example, Table 
3(d) lists the features in order for the best decision trees 
from the fourth and seventh All runs, along with sen- 
sitivities and specificities after 26 BHP and 27 healthy 
individuals were extracted to form a testing set. Though 

the qualities of these decision trees were very similar, 
and very good considering the fit was to random pheno- 
types, the features used in each tree were quite different. 
The feature at m/z 2 823.9 was the only one appearing in 
both trees, but in the first decision tree it separated those 
samples who have a low intensity at m/z 13 574.7 while 
in the second it treated individuals with high intensities 
in m/z 14 925.8 and 3 824.5. 

The Avg results in Table 3(c) were the average sensi- 
tivities for both the training and testing sets. The higher 
quality results were due to a larger weight of the testing 
data relative to the training data. For example, the best 
result from the third Avg run had a sensitivity and speci- 
ficity of 78.8 and 85.2% for the training data, respec- 
tively, but 92.3 and 88.9%, respectively, for the testing 
data. The reported Avg value was simply (78.8 + 85.2 + 
92.3 + 88.9)/4.0 = 86.3, the average of these percentages. 
If the same model was used to produce an All result, the 
sensitivity and specificity of the training data would have 
twice the weight and the score would be determined from 
the equation    2 78.8 85.2 92.3 88.9 6.0 84.87.       
Note that this All score was worse than the correspond- 
ing Avg score, but better than any of the All results listed 
in Table 3(c). This was likely due to a better search over 
features, and particularly the cut points, when a smaller 
training set was used in the Avg runs. Therefore, while 
the results in Table 3(c) are good, better results should 
be possible if a more extensive search was performed, 
especially for the All runs. 

When the medoid classification algorithm was used to 
construct a classifier using all available data, the results 
in Table 3(e) are obtained. Again, the mEP search was 
run for 4000 generations and the population size was 
2000 putative models, requiring that the final classifier 
does not contain more than 52 BPH cells and more than 
54 healthy cells. Table 3(e) lists the sensitivity and speci- 
ficity of the best classifier and the 100th best classifier in 
the final population, as well as any features used in 50 or 
more of the top 100 classifiers. The number of features 
was varied from five to eight and each mEP search was 
run twice, with different seeds to the random number 
generator, using both the original order of the datasets, 
and these datasets in an inverted order. 

Table 3(e) shows that a sensitivity and specificity of 
approximately 95% was obtained for the datasets with 
randomized phenotypes using only six features, and that 
many good results were obtained when more than six 
features were used. 

4. DISCUSSION 

This investigation used a dataset that contained only 158 
features (peak intensities) and 159 samples from 78 in- 
dividuals with BPH and 81 individuals with healthy pro- 
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states. The 10 filtering methods in BMDK identified three 
uncorrelated features (Figure 2) from a training set of 52 
BPH and 54 healthy individuals. These three features 
were also identified from an examination of all 159 sam- 
ples. After scaling the peak intensities by their standard 
deviation, the 2-feature DD-6NN classifier using the peaks 
at m/z of 4072.8 and 8942.8 performed better on both the 
training and testing sets than the classifier using all three 
putative markers (Table 2(b)). The DD-6NN classifier 
therefore has the property that using more features does 
not necessarily make the classifier better. 

It should be stressed that other final classifiers could 
be used with the filtered putative biomarkers. For exam- 
ple, in the earlier study of colorectal cancer [14], the 
blood-based form of C3a (m/z 8942.8 in this study) was 
used in a simple decision rule using peak intensities and 
ELISA blood concentrations, like that shown in Figure 4. 
When this was done for BPH using all samples, an indi- 
vidual was predicted to have BPH if the intensity of this 
peak was above 138.0, with a sensitivity of 88.6% (Table 
4). If this intensity was below 89.0, they were predicted 
to not have BPH with a specificity of 93.7%. An indi- 
vidual obtained an “unknown” classification about 16% 
of the time, and other procedures would have to be used 
to test for BPH. 

After permuting the phenotypes, the filtering methods 
in BMDK identified 19 features (Supplemental Table 4), 
but none appeared to be a strong candidate as a bio- 
marker (Supplemental Figure 2). Tables 3(a) and (b) 
show that no combination of one, two or three features 
was able to construct a DD-6NN classifier with an aver- 
age sensitivity and specificity above 75%. 

The DT and MCA fingerprint methods showed similar 
behavior for both the original dataset and the dataset 
after label permutations. For the dataset with correct phe- 
notypes, an exhaustive search of symmetric 3-node 
decision trees identified 12,344 trees which fit the train- 
ing data with a sensitivity and sensitivity of 94% or more. 
At least 2000 5-feature MCA classifiers fit the training 
data with a sensitivity and specificity of 100%. The pur- 
pose of the testing data would then be to determine 
which of these many classifiers contained the proper fin- 
gerprint; making the testing data part of the training pro- 
 
Table 4. Predicted results using the decision rules BPH if 
I(8942.8) > 138.0, healthy if I(8942.8) < 89.0, otherwise 
undetermined. 

Group Sensitivity Specificity Undetermined 

Training 84.8% 93.5% 13.2% 

Testing 95.8% 94.4% 20.8% 

Overall 88.6% 93.7% 15.7% 

cess. In addition, many decision trees and MCA classi- 
fiers did not use any of the nine peaks associated with 
m/z 4072.8 or 8942.8, so good results were obtained for 
the training data without using one of the putative bio- 
markers identified by BMDK. 

Since these results were for just a single division of 
the samples into a training set and a testing set, all such 
divisions would have to be examined. Instead, a short-cut 
method was used to identify classifiers that would fit 
both the “training” and “testing” sets. Over 4000 deci- 
sion trees were produced that, using between 4 and 6 
nodes, yielded a sensitivity and specificity of 96.2% or 
higher (Table 2(c)). In addition, 55 5-feature and at least 
2000 6-feature MCA classifiers correctly classified all in- 
dividuals (Table 2(d)). 

It should be stressed that the “testing” set was strictly 
used to determine which of the thousands of classifiers 
that properly classified the “training” data also had high 
classification accuracies for the samples not used in the 
classifier construction. These thousands of qualifying 
classifiers have therefore never been validated. Any new 
sample would have to be independently analyzed and 
used to determine which of these classifiers still pos- 
sessed the proper fingerprints and/or used in the training 
of new classifiers to incorporate any missing fingerprint. 
Therefore, this new sample would have to become part 
of the training process. Since this is a cyclic argument, 
no new sample could simply be tested and neither of 
these types of classifier could ever be generalizable [16, 
17] to the entire population. 

The results in Tables 3(c) and (e) show that very good 
results could be obtained for all of the available data 
when the phenotypes were scrambled. This is related to 
Ransohoff’s concept of chance [16,17], though differences 
do exist. Several symmetric 3-node decision trees and 4- 
feature MCA classifiers were able to accurately classify 
the training data without using any of the nine peaks that 
correspond to the putative biomarkers at m/z of 4072.8 
and 8942.8. Therefore, a chance fitting to the data is the 
construction of a classifier that accurately fits the data 
without using a putative biomarker. If thousands of fin- 
gerprints can be generated for a given classification mo- 
del, it is also highly unlikely that all of them have a bio- 
logical basis. The present study shows that there was a 
problem with the flexibility of the classifier and its abil- 
ity to fit random data. If the data is known to be random 
and the accuracy of the classifier is comparable to the 
accuracy using the initial data, then the classifier based 
on the initial data is not significant. This does not mean 
that the original data is necessarily random and does not 
contain putative biomarkers; it means that the proposed 
classifier is overly flexible and can produce good results 
using any dataset. It should also be emphasized that both 
the DT and MCA classifiers have the property that the 
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classification accuracy cannot get worse across the po- 
pulation of putative classifiers if the number of features 
present in the classifier increases. Therefore, if the qua- 
lity is insufficient, the investigator simply has to use more 
features in the classifier. 

Since we have shown that it is impossible to produce a 
generalizable classifier using a fingerprint-based method, 
the “personalized medicine” approach [18-22] needs to 
be clarified. Stating that fingerprint-based classifiers 
should not be used does not imply that all BPH patients 
are necessarily the same. For example, a scatter plot of 
the best overall 2-feature DD-6NN classifier is shown in 
Figure 3. The feature at m/z 2633.8 was found to be a 
well-defined peak in those spectra with significant in- 
tensity, and those individuals with significant intensity 
all had low intensity in the m/z 8942.8 peak and pre- 
dominantly had BPH. This classifier had a sensitivity and 
specificity of 84.6 and 94.4% for the training data and 
88.5 and 88.9% for the testing data, respectively, with no 
undetermined individuals. This was better than the DD- 
6NN results using m/z 8942.8 alone (Table 2(a)) and 
gives a specificity that was significantly better than the 
best result using two putative biomarkers. Since the peak 
around m/z 2633.8 had significant intensity for so few 
samples, it did not appear in enough models to be se- 
lected by BMDK. 

The results in Figure 3 suggest two possibilities; ei- 
ther the improvement caused by including m/z 2633.8 in 
the classifier is due to chance [16,17] (i.e. a full analysis 
of a much larger population would show that m/z 2633.8 
also has significant intensity in healthy individuals and/ 
or individuals with a high intensity in m/z 8942.8), or the 
BPH category is actually composed of two states (one 

 

 

Figure 3. Scatter plot of the best 2-feature, 6-neighbor 
DD-KNN result for the BPH (black) and healthy (gray) 
individuals. 

with a sufficient intensity in m/z 8942.8 and a second, 
smaller group with a sufficient intensity in m/z 2633.8). 
If the latter possibility turns out to be true, then one may 
well expect that any treatment for individuals in one 
BPH state would be different than that for those in the 
other BPH state. 

Though it has been stated [23] that multiple biomar- 
kers should be able to classify a set of samples better 
than a single biomarker, multiple markers should not be 
used in a concerted fashion, as in a fingerprint. Since a 
single disease may be composed of multiple states, ge- 
netic or proteomic markers would be needed to properly 
stratify the population and then use the biomarker appro- 
priate for that state. If two or more biomarkers were used 
to distinguish samples in a single state, it would be dif- 
ficult to determine if the markers were all dependent 
upon the state of the samples as opposed to correcting 
specific samples. For example, if a single state was re- 
presented by the samples shown in Figure 4, and one of 
the markers used in the classifier was the one shown in 
this figure, any other features could be used to disting- 
uish those that are “undetermined” by this marker. There- 
fore these other features could be used to classify those 
specific samples with an intermediate intensity for the 
marker, and represents a fingerprint, or proteomic pattern, 
for these samples. Since fingerprint-based classifiers 
should be avoided, this is equivalent to stating that a 
classifier should not use features which predominantly 
act on a subset of samples within a single state. A later 
publication will describe a method for testing a classifier 
to determine the extent to which sample specific features 
are used. 

5. CONCLUSIONS 

These results showed that putative biomarkers obtained 
strictly from the training data using the filtering methods 
in BMDK were able to produce classifiers without the  
 

 

Figure 4. Peak intensity plots for a putative biomarker. 

Copyright © 2013 SciRes.                                                                       OPEN ACCESS 



B. T. Luke et al. / J. Biomedical Science and Engineering 6 (2013) 453-465 464 

use of the testing data. Poor results for the training set 
were obtained when the phenotypes were scrambled; 
therefore significance is not a problem. As long as the 
experimental design does not introduce bias into the 
spectra, a biomarker-based classifier may be generalizable 
to the full population to the extent to which the known 
samples effectively cover the intensity range for the bio- 
markers. 

A fingerprint-based classifier algorithm has particular 
problems with ensuring that there is sufficient coverage 
of viable fingerprints in the training data. An a priori 
division of the available data into a training set and test- 
ing set can hide a potentially viable fingerprint due to 
incomplete coverage. Fingerprint-based classifiers also 
have a problem with uniqueness since it is shown that a 
large number of classifiers are able to distinguish be- 
tween individuals with BPH and those that are healthy. 
In addition, fingerprint-based classifiers of even a mo- 
dest complexity were shown to classify a random dataset 
to a relatively high quality, causing significance to be a 
problem. 

Coverage and uniqueness require that any new data 
must effectively be used as part of the training process; 
either to reduce the number of classifiers that produce 
sufficiently good results or to modify the existing classi- 
fiers because of insufficient coverage. Therefore, DT and 
MCA fingerprint-based classifier cannot be apriori gen- 
eralizable to the full population. 

Though the concept of “personalized medicine”, as is 
pertains to the use of protein fingerprints, is found to be 
invalid, the results presented here do suggest that a 
phenotypic category may be composed of more than one 
state. As shown in Figure 3, it may be possible that the 
BPH category represents two states and each state is 
identified by its own biomarker. Therefore, any classifi- 
cation algorithm should try to classify on a specific state, 
not on overall categories or personal fingerprints. 
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