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ABSTRACT 

The present work deals with a detailed analysis of the small-angle X-ray scattering of nanoporous atomistic models for 
amorphous germanium. Structures with spherical nanovoids, others with arbitrarily oriented ellipsoidal ones, with 
monodisperse and polydisperse size distributions, were first generated. After relaxing the as-generated structure, we 
compute its radial distribution function, and then we deduce by the Fourier transform technique its X-ray scattering 
pattern. Using a smoothing procedure, the computed small-angle X-ray scattering patterns are corrected for the termina- 
tion errors due to the finite size of the model, allowing so, for the first time at our best knowledge, a rigorous quantita- 
tive analysis of this scattering. The Guinier’s law is found to be valid irrespective of size and shape of the nanovoids 
over a scattering vector-range extending beyond the expected limit. A weighted combination of the Guinier’s forms 
accounts for well the nanovoid size distribution in the amorphous structure. The invariance of the Q-factor and its 
relationship to the void volume fraction are also confirmed. Our findings support then the quantitative analyses of 
available small-angle X-ray scattering data for amorphous germanium. 
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1. Introduction 

Amorphous semiconductors have been the subject of ex- 
tensive experimental and theoretical investigations. Most 
of the interest has been focused on the tetrahedrally-co- 
ordinated amorphous germanium (a-Ge) due to its simple 
chemical bonding and composition on the one hand, and 
its potential applications in the fields of microelectronics 
and energy-conversion technologies on the other hand. 
As with all materials, the microstructure controls the 
electrical as well as the optical properties, so understand- 
ing and controlling the structure of a-Ge is crucial to its 
technological applications. 

Unlike the crystalline phase, there is no experimental 
technique available that can determine the coordinates of 
atoms in a-Ge. Direct experimental data about atomic 
structure in amorphous materials were essentially limited 
to structure factors derived from X-ray, electrons, or neu- 
tron diffraction experiments [1]. Conventional diffraction 
measurements, principally, show that a-Ge, and other 
materials that form covalent tetrahedrally bonded crystals 
maintain the same pattern of four nearest neighbors in the 

amorphous phase, but do not have the long-range transla- 
tional order that leads to sharp diffraction peaks. Small- 
angle scattering experiments performed on some a-Si and 
a-Ge films have shown a rapid increase of the scattered 
intensity as the scattering vector goes to zero [2-11]. More- 
over, the shape and the magnitude of this small-angle 
scattering are found to be strongly dependent on the 
growth conditions and change after processing steps such 
as annealing or light illumination [12,13]. It is well 
known that such feature in the small-angle scattering data 
mirrors the heterogeneity of the amorphous material at 
the nanoscale. By correlating small-angle scattering re- 
sults with those derived from other experiments [14-20], 
the mass-density measurements principally [19], many 
authors have postulated the existence of nanovoids in 
a-Si and a-Ge films. Indeed, such structural inhomoge- 
neities are commonly believed to result in the mass-den- 
sity of a-Si and a-Ge being lower than their correspond- 
ing crystalline phases; they also generate significant fluc- 
tuations in the density at the nanoscale which can be at 
the origin of the intense small-angle scattering in these 
materials. Many attempts have been made to analyze 
quantitatively the small-angle scattering data in a-Si and *Corresponding author. 
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a-Ge. Using theoretical laws established previously [21], 
some characteristics of the nanovoids in these amorphous 
materials, such as size distribution, shape and number 
density, have been deduced from small-angle scattering 
data. 

Numerical modeling technique has been widely used 
to simulate the structure of a-Ge. Most of the effort has 
been devoted to the analysis of its homogeneous struc- 
ture; the generally accepted topological model is the so- 
called continuous random network (CRN). In this model, 
the main building blocks of the material are the same as 
in its crystalline counterpart, i.e. tetrahedra of Ge, but 
unlike in a perfect crystal, these blocks can be randomly 
oriented and connected, allowing “play” in atomic bond- 
lengths and angles. Several approaches have been pro- 
posed for representing a homogenous tetrahedrally coor- 
dinated CRN models (see [22-24] and references therein). 
Most of these networks successfully reproduce the so- 
called wide-angle scattering data, i.e. for scattering vec- 
tors upper than 1 Å−1. Some numerical simulations deal- 
ing with nanovoids in a-Si have been also reported in the 
literature [25-31], but only two, to the best of our know- 
ledge, are interested in the small-angle scattering [25,26]. 
Biswas et al. [25] were the first to demonstrate that CRN 
in which nanovoids are created accounts for the intense 
small-angle scattering, without altering the wide-angle 
scattering pattern. In our previous work [26], we have 
shown that CRN model containing nanocrystallites, called 
paracrystalline model [31], does not realize the intense 
small-angle scattering; paracrystalline networks contain- 
ing nanovoids, on the other hand, account for the mass- 
density deficit and also the small-angle scattering feature 
observed experimentally. Due to computational limita- 
tions, unfortunately, relatively small atomistic models 
have been examined. However, it is well known that the 
small-angle scattering pattern is very sensitive to the 
model size. Indeed, the finite size of the structure im-
poses a scattering-vector threshold ( 2π L

( )

≈ , where L is 
the size of the model), a features broadening, and also 
results in spurious ripples in the scattered intensity. In- 
creasing the size of the atomistic model allows pushing 
down the scattering-vector threshold and reduces the 
amplitude of the ripples. Recently, Graff and Thorpe [32] 
have used a very large CRN model (105 atoms) to simu- 
late the long-wavelength limit of the structure factor of 
amorphous silicon. Despite this huge model size, how- 
ever, the scattering-vector threshold has moved very little 
(0.05 Å−1 vs 0.1 Å−1 for 4096-atom model), and the most 
remarkable is the persistence of the small-angle spurious 
ripples in the structure factor. The question that arises is 
then: how to make a good estimate of the scattered inten- 
sity free of finite model-size effects? 

In the present work we reexamine the structural prop- 
erties of atomistic models for a-Ge with nanovoids. We 

pay particular attention to the X-ray small-angle scatter- 
ing. We consider structural models larger and more real- 
istic than those considered in our previous work. We 
propose a simple way to get rid of finite model-size ef- 
fects. A quantitative analysis of the estimated small-an- 
gle X-ray scattering is performed and comparison with 
available experimental data is made. 

2. Computation Method 

The present investigations are based on the class of CRN 
models generated with the Wooten-Winer-Weaire bond- 
switching algorithm by Barkema and Mousseau [23], 
resulting in N-atom models with periodic boundary con-
ditions. 4096-atom models are provided to us by the 
courtesy of Normand Mousseau. To generate voids in the 
preceding amorphous network, a cluster of atoms is re- 
moved within a prescribed volume centered on a site 
selected at random. By choosing the centers of the voids 
to be sufficiently far apart, a number of non-overlapping 
voids are then constructed. After this, the dangling bonds, 
thus created on the void surface, are rebonded; in prac- 
tice, the reconstruction of dangling bonds that would 
produce an unrelaxed bond of length greater than the 
second-neighbor distance (4 Å) and four-membered rings 
is rejected.  

In order to obtain the equilibrium coordinates of these 
structures, a relaxation procedure is needed to minimize 
the deformation energy of the system. In the present 
work, the anharmonic Keating model proposed by Rücker 
and Methfessel [33] was used. Within the framework of 
this model, the strain energy of the system is given by: 

( )222 2
0 0

, , ,

1
3ij ij ij ijk ij ik

i j i j k

V r rα β= − + +⋅ ⋅     r r r r

r r

  (1) 

The first sum in this expression is on all atoms i in the 
supercell and their nearest-neighbors specified by j. The 
second sum is on all atoms i and pairs of distinct 
neighbors. ij  and ik  are the vectors connecting atom 
i with its first-neighbors j and k, respectively. R0 = 2.45 
Ǻ is the unstrained length of the Ge-Ge bond. The force 
constants α and β essentially describe the bond-stretching 
and bond-bending restoring forces, respectively. Their 
dependence laws are given by [33]: 

4 7/2
2

0 0
0 0andij ijk

ij ij ik

r r

r r r
α α β β

   
= =      

   
      (2) 

The force constants α0 and β0 are treated as empirical 
parameters; they have been fixed at their crystalline val-
ues 42.09 N·m−1 and 5.72 N·m−1, respectively [34]. The 
total strain energy given by Equation (1) was minimized 
by an iterative conjugate gradient method. In this relaxa- 
tion procedure, variations of the supercell sizes are al- 
lowed. 
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Now, given the equilibrium coordinates of all the at- 
oms of the relaxed network, its structural characteristics 
can be easily computed such as the pair correlation func- 
tion, the average bond-length, the average bond-angle, 
the average coordination number, the macroscopic mass 
density and the static structure factor. The partial pair 
correlation function, g(r), is defined by the relationship: 

( ) 4dn r = ( )2
0πr n g r dr

( )sin d

           (3) 

where dn(r) is the average number of atoms lying within 
the spherical shell of radii r and r + dr centered at an 
atom taken as the origin, and n0 is the macroscopic num- 
ber density of the model. Given the finite sizes of our 
structural models, their computed g(r)s are corrected for 
the supercell size effects. From the computed g(r) we 
deduce an important structural characteristic of a-Ge, 
which is directly obtainable from scattering experiments, 
namely the reduced scattering intensity, F(k), or the 
structure factor, S(k), defined as: 

( ) ( )
0

1F k k S k
∞

= −   G r kr r=

( )0 1rn g r= −  

r

r r< maxr r>

( )1 sin d

    (4) 

where G(r), called the reduced radial distribution func- 
tion, is defined by: 

( ) 4πG r          (5) 

The integral in Equation (4) reminds us of the one- 
dimensional Fourier sine transform of G(r). This trans-
formation between real and reciprocal spaces is only 
perfect if G(r) is known for an infinite range of r values; 
in practice, this is obviously not the case and the data are 
terminated at some finite max . This is equivalent to G(r) 
being multiplied by a modification function, M(r), where 
M(r) = 1 for  and 0 for ; the effective 
result is thus: 

max

( ) ( ) ( )
0

F k k S k G r
∞

′ ′= − =    M r kr r

( )( )

   (6) 

or, in a more condensed form: 

( )F k F M k= ∗  

( )

′               (7) 

where M k 

( )sin kr

 is the Fourier cosine transform of M(r) 
and * stands for he convolution product. This leads to the 
introduction of termination errors in the “perfect” Fourier 
transform F(k), which for the step-function M(r) given 
above is equivalent to features in F(k) being convoluted 
with the Fourier cosine transform of M(r), i.e. the sinc 
function max . The effect of this is twofold: a loss 
in resolution is incurred since wave-numbers in recipro- 
cal space less than maxπ r  are lost, resulting in a fea- 
tures broadening of maxπ r≈

( )
, and spurious termination 

ripples at values max  are introduced 
(where n is an integer), which decay with increasing k.  

2 1 π 2kr n≈ +

r

r

( )

Increasing max  these ripples migrate down but at the 
expense of an increase in amplitude. The usual procedure 
used to minimize termination errors employs a damping 
factor which multiplies the finitely ranged G(r) in the 
Fourier transform [Equation (6)], replacing a sharp dis- 
continuity at max  by a smoothly varying function. The 
most used factor is the Lorch function defined by [35]: 

max
max

max

max

π
sin

π

0

r r
r r

r r

M r

r r

  
<  
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= 
 >


( ) ( ) ( ) ( )( )

         (8) 

This form reduces the termination ripples but at the 
expense of signal distortion such as broadening, reduc- 
tion in the intensity and, most interestingly, downward 
shift. It should be noted here that these effects are no- 
ticeable in the range of small values of k, i.e. in the 
small-angle scattering range which interests us most in 
this work. Other sources of noise, always related to the 
finite size of the atomistic model, contribute to a sup- 
plementary contamination of this part of the signal. In- 
deed, a deviation, even infinitesimal, from the exact 
value of the macroscopic density of the atomistic model 
leads to additional spurious ripples along the scattering 
pattern; in addition, statistical errors arising from the 
computation of radial distribution function are reflected 
in the Fourier transform in extra wrinkles too. The re- 
duced scattering intensity can then be reformulated as 
follows: 

k F M k B M k′ = ∗ + ∗  

( )

F       (9) 

where the function B(k) reflects the noise we discussed 
above. The question one might ask at this level is how to 
estimate the function F(k) from F k′

( )( )

? 
We limit ourselves here to the small-angle scattering 

range where one expects a monotonically varying inten- 
sity. The function B(k) can complicate the task if it had 
features reflecting correlations in r-space. But this is not 
the case, fortunately, in our problem. Indeed, the noise 
sources we discussed above relate to numerical problems 
and have nothing to do with the structural properties of 
the atomistic model in question. Thus, we expect that B(k) 
modulates the function F M k∗  

( )

 without any distor- 
tion. The problem of finding F(k) reduces then to a prob- 
lem of smoothing the noisy data F k′

( )

. So, we propose 
a least square fitting procedure. It consists to, first, 
choose a function F(k), then, perform its convolution by 
M k 

( )

 and, finally, minimize the root-mean-square de- 
viation between the convoluted function thus obtained 
and the raw data F k′ . It should be noted here that 
according to Equation (6) the function F(k) must be cho- 
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sen to be odd. What form do we choose for F(k)? 
The choice of the form of F(k) is dictated in fact by 

that of the X-ray scattering intensity I(k), given that these 
two quantities are related to each other. Indeed, I(k) is 
expressed in terms of the reduced correlation function 
G(r) as follows [1]: 

( ) ( ) ( )sin  d2

0

1
1I k f k

k

∞

= + G r kr r
 
 
 

( ) ( )

    (10) 

where f(k) is the atomic scattering factor. Now, according 
to Equation (4), this relation can be rewritten as: 

( ) 2 1
F k

k
k

 
+ 

 

( )
( )

I k f=          (11) 

which gives: 

( ) 2
1

I k
k

f k

 
= −  

 

2
1 3e K k

F k           (12) 

A simple phenomenological model describing the de- 
pendence of f on the scattering vector for Ge atom is 
available [34], viz.: 

( )f k K K−= +          (13) 

with K1 = 31.53, K2 = 0.13 and K3 = 2.10. For a homo- 
genous structure such as the CRN, it is well established 
that I(k) decreases slowly toward “zero” as k tends to 
zero; thus, a polynomial form can be a good representa- 
tion of the small-angle scattering intensity. Structural 
heterogeneities such as nanovoids in a homogenous ma- 
trix can be treated as nanoscatterers leading to small- 
angle scattering. In the limit of low concentrations, the 
small-angle scattering intensity is expected to obey the 
Guinier’s law [36]. For monodispersed scattering centers, 
this law gives: 

( ) ( )
2 2

xp
3

GR k 
− 
 

0 eI k I=         (14) 

where RG, called the radius of gyration, represents the 
average size of electron density fluctuations in the mate- 
rial. For polydispersed widely separated centers, the rela- 
tion (14) can be generalized as follows: 

( ) ( )
2 2

xp
3

GR k 
− 
 

1R k <

( ) ( )2 2

1

exp
N

i i
i

k a b k
=

= −I

0 e
G

G

R
R

I k I=       (15) 

Theoretically, the Guinier approximation is the as- 
ymptotic behavior of I(k) at very small values of k; it is 
usually valid at k-range such that G . Beyond this 
limit, the expression of I(k) is unknown, but it is ex- 
pected to be a simple monotonically decreasing function 
with increasing k. We propose here to reproduce the 
small-angle scattering intensity I(k) by a weighted sum of 
Gaussians that can be formulated as follows: 

        (16) 

where ai can be positive or negative. The number N of 
the Gaussians and their characteristics { },a b

( )

i i  are ad- 
justable parameters. Such form must give the Guinier’s 
law at very small k-values; moreover, we have verified 
that it reproduces very nicely simple polynomial func- 
tions and consequently the scattering intensity due to 
atomic centers at k < 1.5 Å−1. 

3. Results 

The original CRN of Barkema and Mousseau [23] was 
first relaxed using the enharmonic Keating potential 
given by Equation (1). Next, voids of various size and 
concentration have been introduced into the preceding 
CRN. To prevent any correlation between the inclusions, 
the nanovoids are choosen sufficiently far apart and re- 
duced in number. So, nine nanoporous networks for a-Ge 
(denoted hereafter by NPN) have been constructed with 
void volume fractions of practically 3% and 5%, and 
nanopores centers-separation greater than 24 Å. Finally, 
the obtained models are relaxed starting with initial 
configuration in which all the atoms in the supercell are 
randomly displaced from their positions in the CRN. 
More structural details of our nanoporous models are 
summarized in Table 1. 

Standard measures of the short-range disorder for our 
structural models, characterized by the bond length, bond 
angle and dangling bonds density are given in Table 2. A 
measure of the mass density of the amorphous models is 
also reported in this table. The pair correlation functions 
computed for these structural nanoporous models as well 
as CRN model are reported in Figure 1. The corre- 
sponding reduced scattering intensities, F k′

r

, have 
been computed according to the relation (6) in which the 
cutoff max  has been fixed at 30 Å for all the examined 
amorphous models. Two types of “modification func- 
tion” M(r) have been used, namely the step function and 
the Lorch function. The results are displayed in Figure 
2(a) for k values below 3 Å−1. These curves were fitted to 
the model function given by Equation (14) in the k-range 
extending from max  to 1.5 Å−1. The results of the 
best fits are displayed in Figure 2(b) by continuous lines 
superimposed on their corresponding 

π r

( )F k′  curves 
shown by dashed lines. Our fitting procedure is accom- 
plished by gradually incrementing the number of Gaus- 
sians (N) by 1 from N = 1; at each step the rms deviation 
is minimized for all the 2N parameters starting with ran- 
dom values for aN and bN, and the values obtained in the 
preceding step for the first (2N−2) parameters. The pro- 
cedure is stopped when the rms deviation stabilizes. The 
best fits shown in Figure 2(b) were obtained with rms 
values varying between 0.2 and 0.4. 
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Table 1. The structural characteristics of the nanoporous atomistic models as-generated before relaxation. 

Coordination statistics (%) 
Model Model size (atoms) Nanovoids diameters (nm) Nanovoids number Void volume fraction (%)

sp1 sp2 sp3 

NPN1(a) 3970 0.98 5 3.00 0.13 2.17 97.71 

NPN2(a) 3971 1.19 3 2.98 0.18 1.71 98.11 

NPN3(a) 3972 1.36 2 2.96 0.10 1.21 98.69 

NPN4(a) 3875 0.98 9 5.24 0.16 3.82 96.03 

NPN5(a) 3878 1.19 5 5.31 0.23 2.68 97.09 

NPN6(a) 3878 1.41 3 5.26 0.36 2.53 97.11 

NPN7(a) 3881 1.63 2 5.38 0.28 2.01 97.53 

NPN8(b) 3865 
1.63

0.98





1

5
 





 5.64 0.16 3.22 96.62 

NPN9(c) 3878 (1.41, 1.09, 1.09) 5 5.19 0.13 2.73 97.14 

(a)monodispersed spherical nanovoids; (b)polydispersed spherical nanovoids; (c)monodispersed arbitrarily oriented ellipsoidal nanovoids. 

 
Table 2. Standard measures of the local disorder for the atomistic models as-generated after relaxation. 

Model Bond length (Ǻ) Bond angle (degrees) 
Mass density 

(g·cm−3) 
Dangling bond density 

(×1022 cm−3) 
Diameter of  

gyration (nm) 
Energy (eV/atom)

CRN 2.479 ± 0.024 109.328 ± 5.584 5.213 0.000 - 0.187 

NPN1 2.477 ± 0.024 109.308 ± 5.569 5.067 16.596 0.640 0.210 

NPN2 2.479 ± 0.024 109.317 ± 5.578 5.058 16.592 0.840 0.214 

NPN3 2.478 ± 0.024 109.320 ± 5.578 5.067 16.654 1.016 0.206 

NPN4 2.479 ± 0.024 109.262 ± 5.586 4.963 16.096 0.627 0.210 

NPN5 2.478 ± 0.024 109.301 ± 5.562 4.948 16.078 0.883 0.214 

NPN6 2.478 ± 0.023 109.295 ± 5.571 4.961 16.181 1.023 0.206 

NPN7 2.479 ± 0.024 109.308 ± 5.576 4.938 16.153 1.267 0.211 

NPN8 2.474 ± 0.024 109.321 ± 5.577 4.950 16.128 1.058* 0.215 

NPN9 2.479 ± 0.023 109.274 ± 5.539 4.941 16.102 0.887 0.212 

*Weighted diameter of gyration. 

 
Once we have the estimated function F(k) we can now 

easily deduce the estimated scattering intensity per atom, 
I(k), according to the relation (10). Figure 3 shows the 
fitted scattering intensities superimposed on their corre- 
sponding noncorrected ones for the CRN and the six 
nanoporous models based on it. For comparison, we have 
reported in this figure three available experimental data 
[2]. The characterization of the small-angle scattering in 
our nanoporous amorphous models has been performed 
by means of the Guinier plot of ( )ln I k 

( )2

0
dQ k I k k

+∞
= 

( )ln

   versus k2 [36] 
and by the computation of the so-called “invariant” Q 
defined by [21]: 

        (17) 

The integration in Equation (17) was truncated to 1 
Å−1 for reasons which we will come back again later. The 
Guinier plots of I k 

( )

   versus k2 for some nanopor- 
ous models are displayed in Figure 4. For comparison, 
we have reported in this figure two available experimen-  

tal data [2]. The dependences of the “invariant” Q and 
the ratio 2 22π 0k I Q  on the radius of gyration of the 
nanovoids are shown graphically in Figure 5. 

4. Discussion 

4.1. The Structural Properties of the Atomistic 
Models 

From the last column of Table 2, we stress that the 
nanoporous models are not hypothetical high energy 
configurations, but are energetically competitive with the 
starting CRN. The former present strain energies are some- 
what greater than the bare CRN one. This small energy 
excess is reflected primarily in the bond-angle distortion. 
Indeed, as can be noted from the 3rd column of this table, 
the average bond-angle decreases slightly while the stan- 
dard deviation varies in both senses relative to the CRN 
ones; the bond length distribution, by cons, is found to be 
insensitive to the presence of nanovoids in a-Ge model.  
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Figure 1. The pair correlation functions computed for the 
CRN model and six nanoporous models based on it. Traces 
are vertically offset by six for clarity. Inset: direct compa- 
rison between pair correlation functions of the CRN (blue) 
and the nanoporous model denoted by NPN7 (red) over the 
nanoscale range. 

 
As shown in the 4th column of Table 2, the CRN relaxed 
with the anharmonic Keating potential is less dense than 
the crystalline phase by practically 2%. Incorporating 
nanovoids in the CRN leads to even further less dense 
amorphous phase. The density decreases with increasing 
void volume fraction, but it is practically independent on 
the nanovoid size. For amorphous models considered 
here, the density deficit with respect to the crystal varies 
between 2% and 10%, which is well within the range of 
measured values. In addition, the corresponding dangling 
bond densities, reported in the 5th column of Table 2, 
are of the same order of magnitude as those estimated 
from electron spin resonance measurements (see Ref. [2] 
and references therein). 

Now we turn our attention to the pair correlation func- 
tions displayed in Figure 1. An overall inspection of this  

 

Figure 2. (a) The raw reduced scattering intensities com- 
puted for the CRN model and six nanoporous models based 
on it, using the step function (dashed line) and the Lorch 
function (continuous line) as modification functions. Inset: 
direct comparison between the raw structure factors com- 
puted for the NPN6 model; (b) The corrected reduced scat- 
tering intensities (continuous line) superimposed on their 
corresponding raw data (dashed line). Inset: the noise func- 
tion derived for the NPN6 model after correction. 

 
figure shows that the g(r)s of nanoporous models are 
indistinguishable from that of the CRN. They reproduce 
very well the overall aspect of the experimentally derived 
pair correlation function for pure a-Ge over the experi- 
mentally accessible range 0 - 10 Å. They show that only 
the two first neighbor shells, at ∼2.46 and ∼4 Å, are well 
defined (first- and second-nearest neighbors, respectively). 
Beyond 5 Ǻ, the correlation between pairs of atoms be- 
comes relatively much weaker, and virtually disappears 
from ∼12 Å. A careful examination of this figure shows 
that nanoporous models exhibit a pair correlation func- 
tion more intense than that of the CRN just over the 
pair-separation range of the order of the nanovoid radius. 
This fact is well illustrated in the inset showing a direct  
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Figure 3. The scattering intensities computed for the CRN 
model and six nanoporous models based on it: the data 
corrected for the finite size of the models (continuous line) 
are superimposed on their corresponding raw data (dashed 
line). Traces are vertically offset for clarity. Insets: (on the 
left) direct comparison of the SAXS patterns computed for 
the CRN (blue), the NPN1 (green) and NPN4 (red) models; 
(on the right) experimental SAXS data for electrodeposited 
(continuous line), sputtered (dashed line) and evaporated 
(dot-dashed line) a-Ge films (from Shevchik and Paul [2]). 

 
comparison of the g(r)s computed for the CRN and one 
nanoporous model based on it denoted by NPN7 in Ta- 
ble 1; for clarity, only the intermediate pair-separation 
range was shown. The elevation of g(r) in this nanometer 
range particularly, will have considerable effects on the 
small-angle scattering as we will see later. It should be 
noted here that this result agrees with the finding of 
Opletal et al. [31] who used Monte Carlo methods to 
simulate the structure of porous a-Si. 

4.2. X-Ray Scattering Patterns of the Atomistic 
Models 

We arrive now to the reduced scattering intensities com- 

 

Figure 4. Guinier plots of ln[I(k)] versus k2: (a) computed 
for nanoporous atomistic models for a-Ge denoted by NPN4, 
NPN6, NPN7 and NPN8; (b) and (c) measured for a-Ge 
films (from Shevchik and Paul [2]). The dashed lines repre- 
sent the results of a linear regression fits. Insets: fractional 
void volume distributions. 

 
puted for our structural models and shown in Figure 2(a). 
As we are concerned mainly with the small-angle scat-
tering, only the data for small values of k were shown. 
Owing to the finite size of our structural models, the data 
are available for k > 0.1 Å−1. This figure illustrates well 
the truncation effects and the noise we discussed in the 
computation method section. The apparent effects are 
spurious ripples along the k-range. The use of damping 
function such as the Lorch function effectively reduces 
these spurious effects; the ripples disappear almost com- 
pletely from the wide-angle scattering data, i.e. for k > 1 
Å−1, but persist at very small values of k and increase in 
amplitude as k goes to zero. Moreover, a small down- 
ward shift of the small-angle features has been shown but 
it is more obvious in the computed structure factors 

 as illustrated in the inset of this figure. ( )sS k′
From this figure, we note that the wide-angle scatter-  
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(a)                          (b) 

Figure 5. (a) The Q-factor values computed for our nanopor- 
ous atomistic models for a-Ge with void volume fractions of 
∼3% (circles) and ∼5% (triangles). The full and empty 
symbols refer to the members left and right of Equation 
(19), respectively. Each horizontal line represents the Q 
value computed by taking the average of the void volume 
fractions and the average of the electron density deficits of 
the corresponding nanoporous atomistic models; (b) The 
2π2I(0)/Q values computed for our nanoporous atomistic 
models for a-Ge. The continuous line is the result of a linear 
regression fit. 

 
ing data are practically insensitive to the presence of 
voids in a-Ge network. This is not the case, however, for 
the small-angle scattering data. Indeed, despite the spu- 
rious ripples, one can identify an evolution of the overall 
aspect of ( )F k′

( )( )

 at small k-values by introducing nano- 
voids of progressive size and concentration in the CRN. 
One can foresee, in particular, a large feature that grows 
in the range 0 - 0.5 Å−1 with increasing the void size 
and/or the void volume fraction. This expected small- 
angle feature, free of truncation errors and noise, has 
become more evident through our Gaussians fitting pro- 
cedure whose results are displayed in Figure 2(b). The 
Gaussians fitting procedure has been also applied to the 
voidless CRN model; the result is shown in the bottom of 
this figure. An excellent agreement with what one would 
expect for a homogeneous monoatomic amorphous struc- 
ture is thus obtained. More interestingly, applied inde- 
pendently to the raw scattering data obtained with the 
step function and those obtained with the Lorch function, 
the Gaussians fitting procedure gives virtually indistin- 
guishable results. In order to check the validity of the 
hypotheses that we have made about the sources of noise, 
we have computed the difference ( )F k F M k− ∗  

( )( )B M k∗  

( )

′  
which must give, according to the Equation (9), the ex- 
pected noise function convoluted by the Fourier trans- 
form of the corresponding modification function, i.e. 

. The inset of Figure 2(b) shows one result 
corresponding to the nanoporous model NPN7; the same 

aspect is observed with the other models. We obtain thus, 
as expected, a function that oscillates symmetrically 
about zero and is quickly damped when k increases from 
zero. The two last results provide support for our formu- 
lation of the problems of truncation and noise expressed 
by Equation (9), as well as the proposed Gaussians fitting 
procedure. 

Usually in a many-particles scattering problem, inter- 
ference phenomena are expected to be observed in the 
scattering pattern. Our simulated scattering patterns dis- 
played in Figure 2(a) don’t show any interference. Indeed, 
if there were interferences, the shape of the scattered in- 
tensity and its amplitude must vary considerably between 
models with nanopores of same size but in different 
numbers. This is not the case, however, as can be deduced 
from the comparison of NPN2 and NPN5 scattering pat- 
terns (shown in Figure 2) or those of NPN1 and NPN4 
models (not shown). As a matter of fact, interferences 
exist but, for the choosen nanopores centers-separation of 
24 Å, they manifest themselves below ∼0.1 Å−1 and so not 
accessible by our finite size structural models. These ob- 
servations lead us to assert that the estimated reduced 
scattering intensities F(k) on the 0 - 1 Å−1 k-range are 
devoid of interference phenomena. 

We now turn to the discussion of the computed scat- 
tering intensities I(k) displayed in Figure 3. This figure 
shows, for each structural model, the scattered intensity 
derived from the fitted interference function F(k) super- 
imposed on that deduced from the raw data F k′ . This 
comparison highlights the dramatic effect of the finite 
size of the structural model on the scattering intensity at 
small values of k. As can be seen in this figure, only the 
SAXS is affected by the presence of nanovoids in a-Ge. 
A direct comparison between the SAXS patterns of the 
CRN and two nanoporous networks are shown in the 
inset (on the left) of this figure. As expected for a homo- 
geneous structure of a-Ge, I(k) decreases monotonically 
to zero as k goes to zero. More interestingly, the scatter- 
ing intensity in this case does not vanish at 1 Å−1, con- 
trary to what is expected. In presence of nanovoids in 
a-Ge networks, the scattering intensity increases rapidly 
from 1 Å−1 practically and tends to a finite value at k = 0. 
The latter is found to increase rapidly with increasing the 
void size and/or the void volume fraction. The SAXS due 
to nanovoids in a-Ge overlap thus with the scattering by 
atomic centers of the host matrix, but do not exceed 1 
Å−1. 

A comparison with available SAXS data has been 
made in this figure. The inset shows three measured 
scattering patterns reported by Shevchik and Paul [2] for 
a-Ge films grown by three different methods such as 
evaporation, electrodeposition and sputtering. The ex- 
periment shows clearly that the SAXS depends on the 
preparation method. This variation is well accounted for  
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by our structural models. More interestingly, the overall 
aspect of experimental SAXS curves is well realized by 
our simulation data corrected for termination errors and 
noise. This finding thus provides support for our Gaus- 
sians fitting procedure. Moreover, it leads us to assert 
that the structure of electrodeposited film is closer to a 
continuous random network, while those of sputtered and 
evaporated films are rather nanoporous. Even more, the 
sizes of nanovoids in sputtered films cannot exceed those 
considered in our present simulation, but they surpass 
many in evaporated films. In fact, Shevchik and Paul [2] 
have reported largest void radius of 2 Å, 5 Å and 40 Å 
for electrodeposited, sputtered and evaporated a-Ge, re- 
spectively. 

4.3. Quantitative Analysis of the SAXS Patterns 

Our simulated SAXS patterns adjusting for the effects of 
truncation and noise are now ready for a rigorous quanti- 
tative analysis. The Guinier plots of ( )ln I k    versus k2 
are displayed in Figure 4, whereas the computed invari- 
ant Qs and the ratios ( )2 22π 0k I Q

( )ln

 are shown graphi- 
cally in Figures 5(a) and (b), respectively. As can be 
noted from Figure 4(a), the Guinier plots reveal linear 
relationships over a limited k-range close to zero. A lin- 
ear regression fit of each data, I k   ( ) ( ) versus k2, is 
performed over the same k-range (0 - 0.447 Å−1) and the 
results are shown by dashed lines in the same figure. 
From this comparison, we note that the extent of the 
range on which the relation is linear depends on the void 
size; it shrinks with increasing void size. The maximum 
extent corresponds thus to the smallest void size detect- 
able by SAXS measurements. As we will show in the 
following, this corresponds practically to the smallest 
void radius examined in our present work, i.e. ∼5 Å. We 
expect thus a maximum extent of ∼0.7 Å−1. From the 
results of the linear regression fits, and according to 
Equation (14), the diameters of gyration (2RG) in our 
nanoporous models with monodisperse distribution of 
nanovoids were extracted and reported in the 6th column 
of Table 2. For comparison, we have reported in the 
same column the diameters of gyration corresponding to 
the starting void diameters reported in Table 1. As shown 
in this column, the diameters of gyration after structural 
relaxation are smaller than their corresponding values 
before. In addition, this finding holds for spherical as 
well as ellipsoidal nanovoids. Therefore, the relaxation of 
nanoporous structures results in a significant compres- 
sion in the volume of the individual voids. We can stress 
then that voids in a-Ge with diameter smaller than 10 Å 
will dissolve practically after relaxation leading so to a 
no detectable SAXS. 

It is known that the Guinier approximation is usually 
valid at k-range such that RGk < 1 [21,34]. Our present  

simulation shows, however, that this law holds even well 
beyond this limit. For the largest nanopores examined in 
our present work, this limit reaches 2. It is worthwhile to 
note here that several of the small-angle scattering stud- 
ies on a-Si and a-Ge also fitted data with the Guinier 
form in the angular region where RGk > 1 (see Refs. [7,11] 
and references therein). Our findings are therefore a sup- 
port to these experimental works. 

A comparison with available experimental SAXS data 
has been made in this figure. In Figures 4(b) and (c) we 
have reported the Guinier plots of the measured SAXS 
patterns for a-Ge films already shown in Figure 3. Both 
data show a different behavior. Only the former is ap- 
parently in agreement with our simulation data. It shows, 
indeed, a linear behavior over a relatively wide range 
extending from ∼0 to ∼0.4 Å−1. Void radius of gyration 
of 3.8 Å is deduced for the sputtered a-Ge film. The data 
of evaporated a-Ge film [see Figure 4(c)], however, 
don’t show a linear behavior over the explored 0 - 0.4 
Å−1 k-range. This nonlinearity is usually attributed to a 
polydisperse void size distribution in the sample. The 
data were accounted for theoretically by a distribution of 
Guinier intensities according to the following relation 
[3]: 

2 2
3 exp

3
G

G
G G

R

R k
I k M R R

 
≈ − 

 


( )ln

     (18) 

where M(RG) is the volume fraction of the voids with 
radius of gyration RG. The derived fractional void vol- 
ume distribution is reported in the inset of Figure 4(c). 
The latter reflects the occurrence of many void radii of 
gyration between 10 and 40 Å in the examined a-Ge film. 
To check this argument, we have generated a nanoporous 
structure of a-Ge with a “polydisperse” void size distri- 
bution, denoted by NPN8 in Table 1. The corresponding 
Guinier plot of I k    versus k2 is shown in the top 
of Figure 4(a), together with the result of its regression 
linear fit. A neat deviation from linearity can be noted 
from this curve, when compared with the other curves in 
the same figure. Using now a least-squares procedure we 
have derived M(RG) by fitting the simulated scattering 
intensity to the empirical one given by Equation (18); the 
result is shown in the top inset of Figure 4(a). As ex- 
pected, the latter shows a bimodal void size distribution. 
More importantly, the two characteristic radii of gyration, 
3.0 and 5.5 Ǻ, in this distribution as well as their weights 
are in close agreement with their corresponding theoreti- 
cal values. Applied to nanoporous models with mono- 
disperse void size distributions, this procedure gave the 
distributions reported in the insets of Figure 4(a). The 
latter clearly show the expected monodisperse void size 
distributions. Our findings are thus in favor of the quan- 
titative analysis of SAXS data using the empirical law 
expressed by the Equation (18). 
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Now we conclude our discussion with the computed 
Q-factors and the ratios ( )22π 0I Q

) ( )2
1

 displayed graphi- 
cally in Figure 5 as functions of the void radius of gyra- 
tion. The Q values are obtained from Equation (17) in 
which the integral was truncated to k = 1 Ǻ−1. This choice 
is now obvious, because in our above discussion we have 
seen that this value represents the cut-off of the SAXS in 
a-Ge. As expected, the computed Q-factor is practically 
independent on the void radius of gyration, but enhances 
when increasing the void volume fraction. The relation- 
ship between the integrated k2-weighted SAXS intensity 
and the void volume fraction vf has been established 
theoretically for a simple two-phase system, and is given 
by [21]: 

( ) (2 2

0
d 2π f fv v−k I k k V ρ

+∞
= Δ    (19) 

In this equation V stands for the total volume and Δρ is 
the difference in electron density of the two phases. We 
have computed the second member of Equation (19) for 
our nanoporous models. The results are also displayed in 
Figure 5 for comparison. Both results are in close agree- 
ment, which supports the theoretical relation (19). The 
latter is often used in practice to estimate the volume 
fraction vf of the microstructural feature producing the 
SAXS. In order to go further in the quantitative analysis 
of the SAXS, an interesting relation coupling the invari- 
ant Q and the scattering intensity at zero-angle, I(0), has 
been derived theoretically for a simple two-phase system, 
and is given by [21]: 

( )
22π

0 cI v
Q

=

3R

             (20) 

Here vc is a correlation volume that measures the mean 
size of the heterogeneities. It is interesting to note here 
that this relation is independent on the volume fraction vf 
of the heterogeneities in the system. For nanoporous 
network, vc reduces to the mean volume of the nanopores 
and thus must scale as G . Figure 5(b) shows  

( )22π 0ln I Q  

( ) 2.300G +

 versus ln G  computed for all the 
nanoporous models listed in Table 1. A linear variation 
law is obvious. More interestingly, this law is independ- 
ent on the void volume fraction as expected theoretically. 
A linear regression fit of these data has given  

 which compares favorably with 
the expected law  

( )R

R2.701ln

( ) ( )34
ln ln π 1.29 3ln

3c Gv R
 = =  

( ) 2.196GR + . 

5. Conclusion 

We have presented a detailed analysis of the small-angle 
X-ray scattering of nanoporous atomistic models for 
a-Ge. The starting point was the high-quality CRN gen-  

erated by Barkema and Mousseau with the improved 
WWW method. Widely separated nanovoids of various 
sizes were introduced in the preceding CRN, resulting in 
nanoporous models with void volume fractions that don’t 
exceed 6%. Each generated structure is, first, relaxed to 
its minimum strain energy described by the anharmonic 
Keating potential, then, its pair correlation function is 
computed, and finally, its X-ray scattering pattern is de- 
duced. Using a Gaussians fitting procedure, the SAXS 
patterns are corrected for the finite size of the models, 
allowing so a rigorous quantitative analysis of this scat- 
tering. We have shown that at 1 Å−1 the scattering by the 
nanovoids is separated from that due to the atoms of the 
host matrix. Moreover, we confirm that the Guinier’s 
famous law is valid whatever the shape of the nanovoids. 
In addition, its k-range extends beyond the expected limit, 
in agreement with experimental observations. Furthermore, 
the invariance of the integrated SAXS intensity, on the 
one hand, and its relationship to the void volume fraction 
as well as the nanovoids size, on the other hand, are 
confirmed by our simulation. As a matter of fact, our 
present simulation is limited to relatively small and 
simple-shaped nanovoids, but consistent with the size of 
the basic CRN model. Our present work deserves to be 
extended to larger nanovoids with complex shapes in 
order to get closer to reality, but this obviously requires 
larger atomistic models. 
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