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ABSTRACT 

Sufficient Fritz John optimality conditions are obtained for a control problem in which objective functional is pseu- 
doconvex and constraint functions are quasiconvex or semi-strictly quasiconvex. A dual to the control problem is for- 
mulated using Fritz John type optimality criteria instead of Karush-Kuhn-Tucker optimality criteria and hence does not 
require a regularity condition. Various duality results amongst the control problem and its proposed dual are validated 
under suitable generalized convexity requirements. The relationship of our duality results to those of a nonlinear pro-
gramming problem is also briefly outlined. 
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1. Introduction 

Optimal control models represent a variety of common 
situations, notably, advertising investment, production 
and inventory, epidemic, control of a rocket, etc. The op- 
timal planning of a river system which is an invincible 
resource of nature, where it is needed to make the best 
use of the water, can also be modelled as an optimal con- 
trol problem. Optimal control models are also poten- 
tially applicable to economic planning and to the world 
models of the “Limits to Growth” kind in general. 

Optimality criteria for any optimization problem are of 
great significance and lay the foundation of the concept 
of duality. Fritz John optimality criteria for a control 
problem were first derived by Berkovitz [1]. Subse- 
quently Mond and Hanson [2], who first investigated 
duality in optimal control pointed out that from Fritz 
John optimal criteria, Karush-Kuhn-Tucker optimality 
criteria can be deduced if normality of the solution of a 
control problem which replaces a regularity conditions is 
assumed. Later, treating a nondifferentiable control pro- 
blem as a nondifferentiable mathematical programming 
problem in an infinite-dimensional space, Chandra et al. 
[3], obtained Fritz John as well as Karush-Kuhn-Tucker 
optimality criteria. 

For a nondifferentiable control problem Using Karush- 
Kuhn-Tucker optimality criteria, they formulated Wolfe 

type dual and derived usual duality results under appro- 
priate convexity assumptions. 

In this research exposition, sufficient Fritz John crite- 
ria are derived for a differentiable control problem in 
which objective functional is pseudoconvex and con- 
straint functions are quasiconvex or semi-strictly pseu- 
doconvex. A number of duality results are proved for 
relating the solution of the control problem with that of 
its proposed dual under suitable generalized convexity 
requirements. The relationship of our duality results to 
those of a nonlinear programming problem is indicated. 

2. Control Problem and Related  
Preliminaries 

Let denotes a n-dimensional Euclidean space, nR
 ,I a b  be a real interval and : n mf I R R R    be 

a continuously differentiable with respect to each of its 
arguments. For the function  , ,f t x u

 
where  

: nx I  R  is differentiable with its derivative x  and 

 is the smooth function, denote the partial 
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For m-dimensional vector function  , ,g t x u  the gre- 
dient with respect to x  is 
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a  matrix of first order derivatives. n p
Here 

 
is the control variable and  u t  x t  is the 

state variable,  is related to u x  via the state equation 
 , , x h t x u . Gradients with respect to  are defined 

analogously. 
u

A control problem is to transfer the state vector from 
an initial state  x a   to a final state  x b   so 
as to minimize a functional, subject to constraints on the 
control and state variables. 

A control problem can be stated formally as, 

(CP):  
,

Minimize , , d ,
b

x X u U
a

f t x u t
    subject to 

   ,x a x b                   (1) 

 , , ,h t x u x t I                  (2) 

 , , 0,g t x u t I                  (3) 

1) f  is as before, : n m pg I R R R    and  
 are continuously differentiable  

functions with respect to each of its arguments. 
: n mh I R R nR 

2) X is the space of continuously differentiable state 
functions : nx I R  such that    ,x a x b     
equipped with the norm x x Dx

 
, and  is 

the space of piecewise continuous control functions 
 has the uniform norm 

  u

:u I R m


3) The differential Equation (2) for 

 and 
x  with the initial 

conditions expressed as  

        , , d ,
t

a

,x t x a h s x s u s s t   I  may be written  

as  , ,Dx H x u
: ,

 where the map 
  ,n , nH X U C I  R C I R

n
 being the space of con- 

tinuous functions from I R
   , .

, defined by 
  , ,H x u h t x t u t  
Following Craven [4], the control problem can be ex- 

pressed as, 
(ECP): 

,
Minimize ,

x X u U
F x u

 
 subject to 

 , ,Dx H x u
 

 , ,G x u S   

where is function from G  X U  into  , pC I R  gi- 
ven by  from     , ,G x u t g t x   ,t u t

,x X u U t I S , and ;  is the convex cone of func- 

tions in  , pC I R  whose components are non-negative; 
thus  has interior points. S

Necessary optimality conditions for existence of ex- 
termal solution for a variational problem subject to both 
equality and inequality constraints were given by valen- 
tine [5]. Invoking Valentine’s [5] results, Berkovitz [1] 
obtained corresponding necessary optimality criteria for 
the above control problem (CP). Here we state the Fritz 
John type optimality conditions derived by Chandra et al. 
[3] in of the following proposition which will be required 
in the sequel. 

Proposition 1 

(Necessary Optimality Conditions) 
If  ,x u X U   an optimal solution of (CP) and the 
Frechet derivatives     , ,x uQ D H x u H x u   

r
 is 

surjective, then there exist Lagrange multipliers R , 
and piecewise smooth functions : py I R

t I
 and  

 satisfying, for all , :z I  nR
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   

T

T

, , , ,

, , 0,

u u

u

rf t x u y t g t x u

z t h t x u t I



  
          (5) 
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, , 0,y t g t x u t I              (6) 

  , 0,r y t t I               (7) 

    , , 0,r y t z t t I             (8) 

The above conditions will become Karush-Kuhn-Tuc- 
ker conditions if . Therefore, if we assume that the 
optimal solutions 

0r 
 ,x u  is normal, then without any 

loss of generality, we can set . Thus from the above 
we have the Karush-Kuhn-Tucker type optimality condi- 
tions 
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Using these optimality conditions, Mond and Hanson 
[2] constructed following Wolfe type dual. 

(CD): 
     
    

T

T

Maximize , , , ,

, , d

b

a

f t x u y t g t x u

z t h t x u x t


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
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subject to 

     
     
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
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
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

 

In [6], [CP] and (CD) are shown to from a dual pair if f , 
g  and  are all convex in h x  and . Subsequently, 
Mond and Smart [6] extended this duality under general-
ized invexity. 

u

As a follows up, Husain et al. [7] formulated the fol- 
lowing dual (CD) to the primal problem (CP) in the spirit 
of Mond and Weir [8]. 

(CD): Maximize  , , d
b

a

f t x u t  
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They proved sufficiency of the optimality criteria and 
duality for the pair of dual problems (CP) and (CD) un- 
der pseudoinvexity of d

b

a

f t  and quasi-invexity of 

  T T d
b

a

y g z h x t   

,

. 

3. Sufficiency of Fritz Type Optimality  
Criteria 

Before proceeding to the main results of this section, we 
formulate the following definitions which will be re-
quired in the forthcoming analysis: 

Definitions: 1) For  the functional : n mR R I R   

d
b

a

t



 is said to be strict pseudoconvex, if all  

  , , ,x u x u  

        

   

, , , , d
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a a
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Equivalently 

   

        
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, , , , d 0
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2)  the functional For : ,my I R T d
b

a

y g t  is semi- 

strictly pseudoconvex if T d
b

a

y g t  is strictly pseudocon- 

vex for all    0,y t y t
T

0.   

If  and   , , ,t x u y t   , ,g t x u  are independent of 
t and u then the above definitions reduce to those of [6]. 

 Theorem 1 (Sufficiency): If d
I

f t  is pseudoconvex, 

 T
d

I

y t g t is semi-strictly pseudoconvex and 

   T
d

I

z t h x t is quasiconvex, and if there exist 

r R and piecewise smooth : my I R  and 
: nz I R such that from (4)-(8) are satisfied, then 

 ,x u  is an optimal solution of (CP). 
Proof: Suppose that  ,x u  is not optimal for (CP) i.e. 

there exist    , ,x u x u  such that 

   , , d , , d
I I

f t x u t f t x u t   

This, by pseudoconvexity of d
I

f t  implies  

       T T
u f, , , , d 0x u

I

x x f t x u u t x u t     

and  

        T T
, , , , d 0x u
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x x rf t x u u u rf t x u t      (9) 

with strict inequality in (9) if 0r  . 
Feasibility of  ,x u  for (CP) together with (6) im- 

plies, 

       T T
, , d , , d

I I
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d ,

I
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with strict inequality in (10) if some 

   0, 1,2, ,iy t i m   . 

Also 
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This, in view of quasiconvexity of    T
d

I

z t h x t   

yields 

         
     

        
     

   

T T

T

T T

T T

0
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, , d

, ,

, , d

x
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u

x
I

u
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x x z t h t x u z t

u u z t h t x u t

x x z t




   
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  
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 





  

 

  

 

(By integrating by parts) 

        
     

T T

T T

, ,

, , d

x
I

u

x x z t h t x u z t

u u z t h t x u t

  

 

  

  
     (11) 

(Using (1)) 
Combining (9)-(11), we have 

       
     

       
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x x
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x x rf t x u y t g t x u

z t h t x u z t
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z t h t x u z t h t x u t
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 

  

 


 



 

This contradicts (4) and (5). Hence  ,x u  is an op- 
timal solution of (CP). 

4. Fritz Type Duality 

The following is the Fritz john type dual to the problem 
(CP): 

 rF CD :  Maximize  , , d
I

f t x u t  

subject to 

   ,x a x b                  (12) 

     
   

T

T

, , , ,

0,

x x

x

rf t x u y t g t x u

z t h z t t I



    
           (13) 

     
 

T

T

, , , ,

0,

u u

u

rf t x u y t g t x u

z t h t I



  



          (14) 

   T
, , d 0,

I

y t g t x u t               (15) 

      T
, , d 0

I

z t h t x u x t t            (16) 

  , 0,r y t t I                (17) 

    , , 0,r y t z t t I             (18) 

Theorem 2 (Weak Duality): Assume that 
(A1) satisfies  ,x u  is feasible for (CP) and 

 , , , ,x u r y z  is feasible for (FrCD). 

(A2):  , , d
I

f t x u t  is pseudo-convex, 

   T
, , d

I

y t g t x u t  is semi-strictly pseudo-convex and 

    T
, , d

I

z t h t x u x t  is quasi-convex. 

Then 

   rinf CP Sup F CD   

Proof: Suppose    , , d , , d
I I

f t x u t f t x u t   

This, because of pseudo-convexity of  , , d
I

f t x u t
 

yields         T
, , d 0

T
, ,x u

I

x x f t x u u u f t x u t     

and 

        T T
, , , , d 0x u

I

x x rf t x u u u rf t x u t      (19) 

with strict inequality in the above with . From the 
constraints of (CP) and (FrCD), we have 

0r 

       T T
, , d , , d

I I

y t g t x u t y t g t x u t   

which by semi-strictly pseudo-convexity of 

   T
d ,

I

y t g t  implying 

          T T
d 0x u

I

x x y t g u u y t g t       (20) 

with strict inequality with   0,iy t t I  ,  
 1,2,3, , .i  m  Also, we have 

    

    

T

T

, , d

, , d

I

I

z t h t x u x t

z t h t x u x t



 





 

 
 

Using quasi-convexity of     T
, , d

I

z t h t x u x t  in 

the above, we have 

        TT T
d 0x u

I

x x h x x z t u u h t          (21) 

which as earlier becomes 

      T T
dx u

I

x x zh z u u zh      t  
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Combining (19)-(21), we have 

   
   

T T

T T T 0

x x x
I

u u u

x x rf y g zh z

u u rf y g z h

   

    

  
       (22) 

From (13) and (14), we get 

    
   

T T

T T T

d

d 0

x x x
I

u u u
I


x x rf y g zh z t

u u rf y g z h t

   

    





 

 i.e. 

   
   

T T

T T T 0

x x x
I

u u u

x x rf y g zh z

u u rf y g z h

   

    

  
      (23) 

The relation (22) and (23) are in contradiction, thus 

   , , d , , d
I I

f t x u t f t x u t   

Implying 

   inf sup .rCP F CD  

Theorem 3 (Strong Duality): If  ,x u is an optimal 
solution of (CP), then there exist  and piecewise 
smooth  and  such that  

r R
kR: my I R :z I 

 , , , ,x u r y z  is feasible for (FrCD) and objective values 
are equal. If hypotheses of Theorem 2 hold, then 
 , , , ,x u r y z  is an optimal solution of (FrCD). 

Proof: Since  ,x u is an optimal solution of (CP) by 
Proposition 1, there exist r R , piecewise smooth 

 and  such that : my I R : kz I R
T T ,x x xrf y g z h z t I               (24) 

T T 0,u u urf y g z h t I               (25) 

   T
, , 0,y t g t x u t I             (26) 

 , , 0,g t x u t I               (27) 

 , , 0,h t x u t I               (28) 

  , 0,r y t t I               (29) 

    , , 0,r y t z t t I             (30) 

The relation (26) implies 

   T
, , d 0

I

y t g t x u t               (31) 

and the relation (28) along   0,y t t I  gives 

   T
, , d 0

I

z t h t x u t                (32) 

The relation (24), (25), (29)-(32), yields the feasibility 
of  , , , ,r x u y z  for (FrCD). Equality of objective func- 

tionals of (CP) and (FrCD) is obvious from their for- 
mulations. 

Consequently the optimality for (FrCD) follows, given 
the pseudo-convexity of the d ,

I

f t semi-strict pseudocon- 

vexity of T d ,
I

y g t

d ,h x t  

 and quasi-convexity of 

 by Theorem 2.   T

I

z t
Theorem 4 (Strict-Converse duality): Assume that 

(A1): df t  is strictly pseudo-convex,  is 

semi-strictly pseudo-convex and  is 

quasi-convex. 

 T
dy t g t

 T
dh x t z t

(A2):  0 0,x u  is an optimal solution of (CP) and 
(A3):  , , , ,x u r y z  is an optimal solution of (FrCD). 
Then  ,x u  is an optimal solution of (CP) with 

   0 0, , ,x u x u t I  . 
Proof: we suppose   0 0, , x u x u  and exhibit a con- 

tradiction. Since  0 0,x u  is an optimal solution of (CP) 
by theorem (Strong Duality) that there exist 

    , , , t Ir y t z t   where  and piecewise smooth 
 and piecewise smooth  and 
 such that 

r R
: my I R
: kz I R

: my I R
 , , , ,x u r y z  is also an optimal 

solution for (FrCD), it follows that 

   0 0, , d , , d
I I

f t x u t f t x u t   

By strict pseudo-convexity of d
I

f t  gives, this implies 

    0 0 d 0x u
I

x x f u t
T T

u f     

and multiplying the above by  0r 

    T T

0 0 d 0x u
I

x x rf u u rf t           (33) 

with strict inequality if  From the constraints of 
(CP) and (FrCD), we have 

0.r 

       T

0 0, , d , , d
I I

y t g t x u t y t g t x u t        (34) 

Also 

    

    

T

0 0 0

T

, , d

, , d

I

I

z t h t x u x t

z t h t x u x t



 





 

 
          (35) 

By semi-strict pseudoconvexity of and from 

(34), we have 

 T
d

I

y t g t

        T TT T
0 0 d 0x u

I

x x y g u u y g t        (36) 

with strict inequality in the above if, 

  0, , 1, 2,3, ,iy t t I i m      
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This contradicts the feasibility of  , , , ,x u r y z  for 
(FrCD), hence  ,x u  is an optimal solution of (CP) and 
   0 0, ,x u x u . 

By quasi-convexity of  and from 

(35), we get 

   T
d ,

I

z t h x t  

Theorem 5 (Converse duality): Let  , , ,x r y z  be 
an optimal solution of (FrCD), Assume       

    
0 0

T T
0 d 0

x
I

u

x x zh x x z t

u u z t h t

  

  

   
        (37) 

(A1)  d
I

f t t  is pseudo-convex,  is 

semi-strictly pseudo-convex and is quasi- 

convex. 

 T
d

I

y t g t

 dx t  T

I

z hAs earlier, this reduces to 

      
    

T

0

T

0 d 0

x
I

u

x x z t h z t

u u z t h t

 

  

  
 

(A2) The set       T T
,x xy t g z t h z t  

 
or  

combining (33), (36), and (37), we have 

      
      

TT
0

T T T

0 d 0

x x
I

u u u

x x rf y g z t h x

u u rf y t g z t h t

   

    

  

    T T
,uy t g z t hu  is linearly independent. 


 

(A3)  for  

some column vector 

       T
d 0, 0, ,

I

v t M t v t t t t I   

 v t  and where 

 

         
   

T T T T

T TT

xx xx xx xu xu

ux ux ux uu uu uu

rf y t g z t h rf y t g z t h
M t

rf y g zh rf y t g z t h

    
 
     

xu  

 
and (A4)     0z a z b        , , , , , , 0,t t t t         I       (48) 

 ,x u  is optimal for (CP). Then 
Multiplying (41) by  y t  and integrating, and then 

using (43) and (46), we have 
Proof: By Proposition 1, there exist , ,R R     

,R R,    piecewise smooth : mI R  and  
 such that : nI R 

      
      

       

T T T

T T T

T T
0,

x xx xx xx

ux ux ux

x x

f t rf y t g z t h

t rf y t g z t h

y t g z t h z t t I

 



 

  

  

    

          T T T T
d 0x u

I

t y t g t y t g t    




I







    (38) 
which can be written as 

      
 

T

T
, x

I u

y t g
t t t

y t g
 

 
  
 
 

 d 0            (49) 

     
      

T T T

T T T
0,

u ux ux ux

uu uu uu

f t rf y t g z t h

t rf y t g z t h t

 



  

   
   (39) 

Multiplying (42) by   ,z t and then integrating we get 

          
       

T T T T

T T

d

d d

x u
I

I I

t z t h t z t h t

t z t t z t h x t t I

 

 



0, ,   



   
 

   T T
0x ut f t f              (40) 

d
where and ,

d d

dx
x

t t

    using (44), this yields      T T
0,x ut g t g g t t I            (41) 

          
   

          
       

T T T T

T

T T T T

0 d

d ,

0 d

d

x u
I

I

x u
I

t b

t a
I

t z t h t z t h t

t z t t t I

t z t h t z t h t

z t t t z t t

 



 

 




 

 

 

 









 

 

 

       T T
0,x ut h t h h x t t I              (42) 

 T
d 0

I

y t g t                (43) 

   T
d 0

I

z t h x t                (44) 

0r                     (45) 

   T
0,t y t t I                (46) 

(by integrating by parts)   , , , , 0,t t       I            (47) which in view of (A4), implies 
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           T T T T
d 0x u

I

t z t h z t t z t h t         

This can be written as 

        
 

T
T T

T
, dx

I u

z t h z t
t t t

z t h
 

 
  
 
 


 

0      (50) 

Using (13) in (38) and (14) in (39), we have 

           
      
      

T T

T T T

T T
0

x x

xx xx xx

ux ux ux

r y t g r z t h z t

r t rf y t g z t h

r t rf y t g z t h

   





   

  

   

 

 

These can be combined as 
 

                
      

T T T T

T T
0

u u ux ux ux

uu uu uu

r y t g r z t h r t rf y t g z t h

r t rf y t g z t h

    



     

   

T



    
 

     
 

       
       

 
 

T T

T T

T T T T

T T T T
0

x x

u u

xx xx xx ux ux ux

ux ux ux uu uu uu

y t g z t h z t
r r

y t g z t h

rf y t g z t h rf y t g z t h r t

r trf y t g z t h rf y t g z t h

   




   
     
   
   

      
          

 

 

Pre-multiplying this by     T T
,r t r t 

T 

and then integrating we have 

        

 
          

 

            
       

    

T
T T T T

TT

T T T T
T T

T T T T

, d , d

, ,

x x

I I uu

xx xx xx ux ux ux

I ux ux ux uu uu uu

y t g z t h z t
r r t r t t r r t r t t

z t hy t g

rf y t g z t h rf y t g z t h
r t r t r t r t t

rf y t g z t h rf y t g z t h

       

   

      
   

  

                 

 



 

d 0

d 0

 

Using (49) and (50) , this implies 

            
       

    
T T T T

T T

T T T T
, ,xx xx xx ux ux ux

I ux ux ux uu uu uu

rf y t g z t h rf y t g z t h
r t r t r t r t t

rf y t g z t h rf y t g z t h
   

                 
  

 
which in view of (A2) implies 

      , 0, t r t r t t    I  implies 

   0, 0, r t r t t I  

I

           (51) 

In view of (A3), the equality constraint implies  
. Consequently, we have 0 . . 0 r i e r

   0, , 0, ,   t t I t t            (52) 

Using (52), along with , we have 0r 

      T T
0

         
   

 x xy t g z t h z t
r r

      

This, in view of (A3), 

0, 0
r r

                    (53) 

If 0,   (53), implies 0  
   0,t 

. Thus 
   , ,t t   , , , ,    contradiction. 

Hence 0   and consequently 0   and 0  . 
From (41) and (42), we have 

   , , 0, , , , ,g t x u t I h t x u x t I      

These relations yield the feasibility of  , x u  for (CP) 
and objective functionals of (CP) and (FrCD) are equal 
there. Hence under the stated convexity hypotheses, by 
Theorem 2,  ,x u  is an optimal solution of (CP). 

5. Mathematical Programming Problems 

If the problems (CP) and (FrCD) are independent of t and 
x, these problems reduce to essentially to the static cases 
of nonlinear programming problem. Letting 1b a  , the 
problems (CP) and (FrCD) become the pair of dual non- 
linear programming problems formulated by Husain and 
Srivastav [9]. 

(CD0): Minimize  f u  
subject to 
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(FrCD): Maximize  f u  
subject to 

     
 
 

 
 

T T

T

T
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0,

0,

, 0
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u u urf u y g u z h u

y g u

z h u

r y

r y z

 









,



 

where f is pseudoconvex,  Ty g  is semi-strictly pseu- 
doconvex and  is quasi-convex. If only inequality 
constraint in (CD0) is given, then (CP0) and (FrCD0) be- 
come a pair of dual the nonlinear programming problems 
considered by Weir and Mond [10]. 

Tz h

6. Conclusion 

In this paper, sufficient optimality conditions are derived 
for a control problem which appears in various real life 
situations under generalized convexity assumptions. In 
order to formulate the dual to this control problem, Fritz 
John optimality conditions are used instead of Karush- 
Kuhn-Tucker optimality condition and hence the require- 
ment of regularity condition is eliminated. Various dual- 
ity results are obtained and the linkage of our duality 
results to those of a nonlinear programming problem is 
indicated. Our results can be seen in the setting of mul- 
tiobjective control problems. 
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