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ABSTRACT 

Quantitative structure–activity relationship (QSAR) models were developed to predict for CCR5 binding affinity of 
substituted 1-(3, 3-diphenylpropyl)-piperidinyl amides and ureas using multiple linear regression (MLR) and artificial 
neural network (ANN) techniques. A model with four descriptors, including Hydrogen-bonding donors HBD(R7), the 
partition coefficient between n-octanol and water logP and logP(R1) and Molecular weight MW(R7), showed good sta- 
tistics both in the regression and artificial neural network with a configuration of (4-3-1) by using Bayesian and Leven- 
berg-Marquardt Methods. Comparison of the descriptor’s contribution obtained in MLR and ANN analysis shows that 
the contribution of some of the descriptors to activity may be non-linear. 
 
Keywords: Artificial Neural Network, Descriptors; CCR5; Multiple Linear Regression; 
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1. Introduction 

With rapid progress in exploration of HIV infection 
processes, it was found by recent studies that in addition 
to the CD4 receptor, a new class of seven-membrane- 
domain receptors called chemokine receptors was proved 
to play a crucial role in the membrane-fusion stage of 
HIV infection. In the early stage of HIV infection, the 
virus tends to attack the immune cells by sequentially 
binding to the CD4 receptor and chemokine receptors on 
the cell surface, then the membrane-infusion can be 
achieved. Recognized as a member of the chemokine 
receptor family, CCR5 was discovered to be utilized in 
the early stage of the replication cycle by the most com- 
monly transmitted M-tropic strains of HIV-1. Notable 
findings showed that a few individuals genetically bear- 
ing a defective CCR5 allele were protected from HIV-1 
infection without any unhealthy consequence. Hence the 
idea of setting CCR5 as a possible target for therapeutic 
intervention was brought up and well supported by evi-
dence that blocking the function of CCR5 could strongly 

inactivate HIV virus, resulting in effectively prevention 
of HIV-1 entering into cells while exhibiting few side 
effects. 

On the basis of these studies mentioned above, exten- 
sive exploration into this potential target for anti-HIV 
treatments has motivated the development of some CCR5 
inhibitors as a new group of anti-HIV therapeutics [1]. 

CC chemokine receptor 5 (CCR5) is the major core-
ceptor, in addition to CD4, accountable for the entry of 
human immunodeficiency virus type 1 (HIV-1) and sim-
ian immunodeficiency virus (SIV) into host cells. It be-
longs to the G-protein-coupled, seven-transmembrane 
receptor family and it is the natural target for certain 
proinflammatory chemokines like RANTES, MIP-1α and 
MIP-1β [2]. 

Homozygous individuals with a 32-base pair deletion 
in the gene encoding CCR5 do not express the functional 
receptor and are ultimately resistant to R5-tropic HIV-1 
infection [3]. These facts have inspired a great amount of 
research over the past decade to identify anti-HIV-1 
therapeutics targeting the CCR5-mediated entry mecha-
nism [3]. *Corresponding author. 
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By means of rational drug design methods, this paper 
aims to work on a series of active CCR5 inhibitors bind-
ing to the receptor and provide better understanding of 
structure-activity relationships of CCR5 receptor and its 
inhibitors, which may offer some practical guidelines for 
further modification of CCR5 antagonists. 

The main steps involved in developing a new model 
are: 

1) Selection of the data set;  
2) Calculation of molecular descriptors;  
3) Fitting the statistical model;  
4) Validation of the model [4]. 

The techniques which can be applied for construction 
of model, such as multiple linear regression and artificial 
neural networks, that were used for inspection of linear 
and nonlinear relation between interested activity and  

molecular descriptors, respectively [5]. 

2. Materials and Methods 

2.1. Biological Data 

The chemical structures along with observed activity data 
of the compounds used in this study are shown in Table 
1. The activity data were taken from various published 
studies [6,7]. 

2.2. Molecular Descriptors 

A set of common molecular descriptors related to physico- 
chemical, electronic and geometric properties of the 
molecules was used for this study. As all the compounds 
studied have a common skeleton, we found it judicious to 

 
Table 1. Structures of molecular and their biological activities    50log 1 IC . 

ID X R1 R2 R3 R4 R5 R6 R7 R8 R9  50log 1 IC  

1 CH2 CH3 H H H H H H H H 3.114 

2 CH2 CH3 H Cl H H H H H H 2.658 

3 CH2 CH3 H H Cl H H H H H 3.097 

4 CH2 CH3 H Cl Cl H H H H H 3.108 

5 CH2 CH3 Cl H Cl H H H H H 2.585 

6 CH2 CH3 F H H H H H H H 2.721 

7 CH2 CH3 H F H H H H H H 2.854 

8 CH2 CH3 H H F H H H H H 3.18 

9 CH2 CH3 H F F H H H H H 3.161 

10 CH2 CH3 H O-CH3 H H H H H H 3.167 

11 CH2 CH3 H H O-CH3 H H H H H 3.237 

12 CH2 CH3 H O-CH3 O-CH3 H H H H H 3.187 

13 CH2 CH3 O-CH3 H O-CH3 O-CH3 H H H H 2.959 

14 CH2 CH3 H H Br H H H H H 3.237 

15 CH2 CH3 H H Benzyloxy H H H H H 2.456 

16 CH2 CH3 H H Phenyl H H H H H 2.638 

17 CH2 CH3 H H CF3 H H H H H 3.432 

18 CH2 CH3 H H OCF3 H H H H H 3.538 

19 CH2 CH3 H H NHCOCH3 H H H H H 3.167 

20 CH2 CH3 H H CN H H H H H 4.222 

21 CH2 CH3 H H SO2NH2 H H H H H 4.041 

22 CH2 CH3 H H SCH3 H H H H H 3.252 

23 CH2 CH3 H H CO2CH3 H H H H H 3.201 

24 CH2 CH3 H H OH H H H H H 3.328 

25 CH2 CH3 H H NO2 H H H H H 3.824 
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Continued  

26 CH2 Ethyl H H OCF3 H H H H H 3.509 

27 CH2 Ethyl H H CN H H H H H 4.18 

28 CH2 Ethyl H H SO2NH2 H H H H H 4.42 

29 CH2 Ethyl H H SO2CH3 H H H H H 4.119 

30 CH2 Ethyl H H NO2 H H H H H 3.959 

31 CH2 c-propyl H H SO2NH2 H H H H H 4.481 

32 CH2 c-propyl H H SO2CH3 H H H H H 4.292 

33* CH2 c-propyl H H NO2 H H H H H 3.509 

34 CH2 Allyl H H OCF3 H H H H H 3.456 

35 CH2 Allyl H H SO2CH3 H H H H H 4.432 

36 CH2 Allyl H H NO2 H H H H H 3.745 

37 NH CH3 H Cl Cl H H H H H 3.432 

38 NH CH3 H H F H H H H H 3.721 

39 NH Ethyl H H CH3 H H H H H 3.495 

40 NH-CH2 CH3 H H H H H H H H 4 

41 NH-CH2 Ethyl H H H H H H H H 4.208 

42 NH-CH2 Allyl H CH3 H H H H H H 3.62 

43 NH-CH2 Allyl H H OCH3 H H H H H 3.959 

44 NH-CH2 Ethyl H CH3 H H H H H H 4.456 

45 NH-CH2 Ethyl H H OCH3 H H H H H 3.377 

46 NH-CH2 Ethyl H H SO2CH3 H H H H H 4.31 

47 CH2 Ethyl H H H H H F H H 3.509 

48 CH2 Ethyl H H H H H Cl H F 5.071 

49 CH2 Ethyl H H H H Cl H H H 4.237 

50 CH2 Ethyl H H H H Cl Cl H Cl 4.108 

51 CH2 Ethyl H H H H H CH3 H H 4.553 

52 CH2 Ethyl H H H H H CO2CH3 H H 5.149 

53 CH2 Ethyl H H H H H CONH2 H H 3.585 

54 CH2 Ethyl H H H H H OCH3 H H 5.201 

55 CH2 Ethyl H H H H H Ph H H 4.071 

56 CH2 Ethyl H H H H H SCH3 H H 4.921 

57 CH2 Ethyl H H H H H SO2CH3 H H 5.77 

58 CH2 Ethyl H H H H H NH2 H H 3.699 

59 CH2 Ethyl H H H H H NHCOCH3 H H 4.585 

60 CH2 Ethyl H H H H H NHCOPh H H 3.886 

61 CH2 Ethyl H H H H H NHSO2CH3 H H 4.745 

62 CH2 Ethyl H H H H H Cl F H 4.721 

63 CH2 Ethyl H H H H H NH2 F H 3.979 

64 CH2 Ethyl H H H H H NHCOCH3 F H 5.102 

65 CH2 Ethyl H H H H H NHSO2CH3 F H 5.041 
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Figure 1. Basic structure. 
 
describe the molecule by means of properties of the sub-
stituents (R1, R2, R3, R4, R5, R6, R7, R8, R9 and X) at-
tached to the basic skeleton (Figure 1). Determination of 
the pertinent properties for a given substituent may be 
useful for evaluating local interactions between the 
molecule and the receptor site. 

Moreover, we tried to take into account properties of 
the molecule such as its molecular weight, size, height 
etc. This is justified by the fact that, before their possible 
interaction with a given receptor site, the molecules must 
be transported through many liquid layers and correct 
general dimensions for site access [8]. 

Molecular properties used for each substituents were: 
 Size and shape described by means of van der waals 

volume (V) and surface (S) [9]. 
 Molecular dimension (length, width and height). 

Length (L) is the distance along the screen x-axis 
between the left and right most atoms plus their van 
der Waals radii. Width (W): is the distance along the 
screen y-axis between the top and bottom most atoms 
plus their van der Walls radii. Height (H): is the dis-
tance along the screen z-axis between the nearest and 
farthest atoms plus their van der Waals radii. 

 Ratios V/L, V/W, W/H were also calculated.  
 logP, the partition coefficient between n-octanol and 

water. 
 Molar refractivity (MR) [10]. 
 Hydrogen-bonding donors (HBD) and hydrogen-bond- 

ing acceptors (HBA). 
All these descriptor were calculated with the demo 

version of the molecular modelling program (MMP).  

3. Statistical Methods 

3.1. Stepwise Multiple Linear Regression 

This method was used to generate linear models between 
the activity and the molecular descriptors used. Because 
of the large number of descriptors considered, a stepwise 
procedure combining the forward and backward algori- 

thms was used to select the pertinent descriptors [11]. 
The predictive activity of the model is quantified in 

terms of  which is defined as Equation (1): 2r
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In this equation iy  and ˆiy  are the predicted and the 
experimental values of the target property for the obser-
vation  respectively. The mean value of target prop-
erty is noted as 

i
y  [12] an 2r  is the internal correla-

tion coefficien
d 

t.  

3.2. Cross-Validation Technique 

Since a high-correlation coefficient only indicates how 
well the equations fit the data, cross-validation procedure 
[13] was carried out in order to explore the reliability of 
the proposed models. In this aspect, the well-known 
“leave-one-out” (LOO) approach was used in which a 
number of models were developed with one sample ig-
nored each time. Then, the ignored data were predicted 
by each model and the differences between predicted and 
observed activity values were evaluated. The LOO cross- 
validation coefficient  that is given by Equation (2) 
was used as an indicator of the predictive performance 
and stability of a model. In general, LOO cross-validated 
coefficient  being higher than 0.5 can be considered 
as a statistical proof of the high-predictive ability [14]. 
The formulae used to calculate the aforementioned statis-
tics are presented below [15] (Equation (2)) 
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In the case of LMO, M represents a group of randomly 
selected data points which would leave out at the begin-
ning and would be predicted by the model which was 
developed using the remaining data points. So, M mole-
cules are considered as prediction set. The 2

LMOr  can be 
calculated by Equation (3) [16]: 
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where in yexp and ypred are the observed and predicted 
values for the dependent variables, respectively, and y is 
the average observed value [14]. 

3.3. Quality of Fit and Predictive Ability of a 
QSAR Model 

The statistical quality of the equations was judged by 
different parameters [17] like square of correlation coef-
ficient  2r , explained variance , standard error of  2

ar
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estimate  s  and variance ratio  F  at specified de-
grees of freedom  [18].  df

3.4. Artificial Neural Network Model 

ANN is a massive parallel-distributed information proc-
essing system that has certain performance characteris-
tics, resembling biological neural networks of the human 
brain. ANN has been developed as a generalization of 
mathematical models of human cognition and neural bi-
ology [19]. The available data set is partitioned into two 
parts, one corresponding to training and the other corre-
sponding to test of the model. The purpose of training is 
to determine the set of connection weights and nodal 
thresholds that cause the ANN to estimate outputs that 
are sufficiently close to target values. This fraction of the 
complete data to be employed for training should contain 
sufficient patterns so that the network can mimic the un- 
derlying relationship between input and output variables 
adequately [20]. 

The network consists of an input layer, an output layer 
and a number of hidden layers. At each node in a layer 
the information is received, stored, processed and com-
municated further to nodes in the next layer. All the 
weights are initialized to small random numeric values at 
the beginning of training. These weights are updated or 
modified iteratively using the generalized delta rule or 
steepest-gradient descent principle. The training process 
is stopped when no appreciable change is observed in the 
values associated with the connection links or some ter-
mination criterion is satisfied. Thus, the training of 
aback-propagation network consists of two phases: a 
forward pass during which the processing of information 
occurs from the input layer to the output and a backward 
pass when the error from the output layer is propagated 
back to the input layer and the interconnections are 
modified [21]. 

An example of a network topology is shown in Figure 
2 [22]. 

4. Results and Discussion 

4.1. Multiple Linear Regression Analysis 

MLR analysis was performed on the compounds de-
scribed in Table 1; we have included all 65 molecules of 
the training set for the model generation. 

After collecting the data, we submitted all parameters 
to regression; a few suitable models were obtained. The 
best model is shown in Equation (4): 
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Figure 2. Example of an artificial neural network topology 
with one input layer, one hidden layer and one output layer. 
 

65n   0.8364r   0.4168s    4,60 34.94F   
*LogP: Hydrophobic descriptor for all the molecular, 

LogP(R1): Hydrophobic descriptor for the substituent 1, 
HBD(R7): Hydrogen-bonding donors for the substituent 
7 and MW(R7) : Molecular weight for the substituent 7. 

We take away the one molecule having  higher 
than 

id
2s moy  as defined in Equation (5):  

2i i
i

i

Obs Cal
d s

Obs


  moy  

With  is the mean of the observed activity. 
Consequently, a new regression model was derived using 
64 molecules Equation (6): 

moy
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 
   
   

50

1

7

7

Log 1 IC

3.1728 0.3124 0.1812 0.0451

Log P 1.1638 0.1574 Log P R

2.9756 0.6252 HBD R

0.0179 0.0026 MW R

   

   

  

 


   

64n   0.852r   0.4012s    4.59 39.01F   
*LogP: Hydrophobic descriptor for all the molecular, 

Log P(R1): Hydrophobic descriptor for the substituent 1, 
HBD(R7): Hydrogen-bonding donors for the substituent 
7 and MW(R7): Molecular weight for the substituent 7. 

In QSAR equations, n is the number of data points, r is 
the correlation coefficient between observed values of 
the dependent and the values calculated from the equa-
tion, r2 is the square of the correlation coefficient and 
represents the goodness of fit, q2 is the cross-validated r2  
(a measure of the quality of the QSAR model), and s is 
the standard deviation [23].  
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 about the regression line. The smaller the value of s 
the better the QSAR model. The value of s for this 
QSAR model is 0.4168. 

The 64 active compounds were randomly divided into 
a training set of 43 compounds and a test set of 21 com-
pounds. The training set compounds were used to de-
velop a QSAR model, and the test set compounds were 
used to validate the reliability and the predictive ability 
of the model (Table 2). 

 Fischer statistics (F): Fischer statistics (F) is the ratio 
between explained and unexplained variance for a 
given number of degree of freedom. The larger the 
value of F the greater the probability that the QSAR 
model is significant. 

The result of the credibility test of 64 molecules shows 
that the descriptors used express the activity studied very 
well because the statistical quality of the model decreases 
dramatically. The correlation coefficient, standard devia-
tion and Fischer statistics pass are respectively 

0.852, 0.4012, 39.01r s F  
0.5364, 0.6464, 5.96r s F

 to 
   . Finally, the plot of 

experimental and predicted values of activity (Figure 3) 
from multiple linear regressions showed a good fitting 
function. 

In the above results, the most significant variable is 
Hydrogen-bonding donors descriptor , fol-
lowing by the contribution of the 

 7HBD R
 1R lolog P  and , 

respectively. Molecular weights contribute poorly. This 
result is justified by calculating the descriptors contribu-
tion (Table 3), according to the method of Gore (1952). 
[24,25] (Equation (7)):  
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i ii
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With:  Regression coefficient for descriptor  ia i

isd Standard deviation for descriptor i . 
 Fraction of the variance  r 2 : It is believed that 

the closer the value of r2 to unity, the better the 
QSAR model. The value of r2 for this QSAR model is 
0.8364 which suggest that these QSAR model explain 
83.64% of the variance in the data. According to the 
literature, the predictive QSAR model must have 

2 0.6r  . 

4.2. Artificial Neural Network (ANN) 

As a second step, we were interested to investigate the 
non-linear characteristics of the activity parameter. There- 
fore, a back propagation artificial neural network [19] 
was developed using the descriptors appearing in the 
MLR model as its inputs. 

 Cross-validation test: The values of 2
LOOq  for these 

QSAR models are 0.72 with multiple regressions in 
the other hand; the value 2

LOO%q is 0.724 with artifi-
cial neural network. The high values of q2 validate 
these QSAR models. According to the literature, the 
predictive QSAR model must have 2 0.5q   [26]. 

The optimal architecture of the selected NN model 
was [4-3-1] after optimization study (Figure 4), which 
means that the model had 4 input neurons in the input 
layer (the selected descriptors), 3 hidden neurons in the 
hidden layer, and one neuron in the output layer. Data set 
was separated into two groups: training and test sets. 

The training set, consisted of 43 molecules, was used  Standard deviation(s): s is the standard deviation  
 

Table 2. Validation tests of the reliability and predictive ability of model. 

Set models n R S F 

Training set 

 
   
   
   
   

50

1

7

7

Log 1 IC

3.838 0.064 0.254 0.066 Log P

0.3987 0.072 Log P R

0.3602 0.09552 HBD R

0.477 0.085 MW R

    

  

  

 

 43 0.854 0.4194 25.69 

Test set 

 
   
   
   
   

50

1

7

7

Log 1 IC

3.809 0.087 0.113 0.1 Log P

0.441 0.097 Log P R

0.273 0.12 HBD R

0.458 0.2 MW R

    

  

  

 

 21 0.864 0.393 11.84 

Total set 

 
   
   
   
   

50

1

7

7

Log 1 IC

3.1728 0.3124 0.1812 0.0451 Log P

1.1638 0.1574 Log P R

2.9756 0.6252 HBD R

0.0171 0.0026 MW R

    

  

  

 

 64 0.8364 0.4168 39.01 
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Figure 3. Experimental and predicted value from MLR. 
 

 

Figure 4. Error as a function of the number of iterations 
(epochs). 
 

Table 3. Descriptors contribution in Equation (6). 

Descriptors Contribution 

Log P  4.067% 

 1Log P R  32.145% 

 7HBD R  63.72% 

 7MW R  0.067% 

 
for the model ge ration. However, the , consisted 
of 21 molecules, was used to take care rtrain-
ing. 

The standard deviation between c d and ob-
served activity w s 0.345 by using erg-Mar- 

uardt Method, which was found to be superior that ob-

 value 0.8724 by using Levenberg-Marquardt Me- 
thods. 

Finally, the plot of experimental and predicted values 
of activity (Figure 5) from artificial neural network 
showed a good fitting fu  

4.3. Analysis of Descriptor’s Contribution in 
ANN Model 
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nction.
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mated from the [4-3-1] neural network architecture. The 
descriptor under study was removed from the [4-3-1] 
calculated the outp olecule as usual. The 
mean of the deviations absolute values im  between the 
observed activity and the estimated one for all com-
pounds

m
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ch descriptor. Finally, the contribution 4

iC  of each 
descriptor i  is given by Equation (8) [27]:  
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Figure 5. Experimental and predicted value from ANN. 
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Figure 6. Comparison of descriptors contribution in the 
ANN and MLR models. 
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Table 4. Property of the physicochemical descriptors and 
their contributions. 

Descriptors Names 
Properties 

(binding affinity) 
Contribution

LogP 
Lipophilicity of the 

molecule 
4.067% 

LogP(R1) 
Lipophilicity of the 

substituent R1 

Lipophilic 

32.145% 

HBD(R7) 
Hydrogen bond 

donor of the  
substituent R7 

Electronic 63.72% 

MW(R7) 
Molecular weight of 

the substituent R7 
Geometric 0.067% 

 
According to the results above (Figure 6), it ap ars 

th s 
LR and ANN) used but the other descriptors have 

changed order 

pe
at LogP have the same classification in the two method

(M
     1 7Log P R , HBD R and MW R

dicate the existence of non-linear rela-
7  . 

These results in
tionships between activity and molecular descriptors that 
appeared pertinent for the linear model. 

5. Conclusions 

QSAR methodologies have been applied successfull  to 
establish a mathematical relationship between the activ-

 and ANN techniques. Superiority of 
non- N) e linear (MLR) model revealed 
th ity h line

The results e QSAR study obtained in
this  in tivity depended  on 
the Hydrogen-bond ors s expressed by

s 

y

ity and physico-chemical, topological and electronic in-
dices. 

The activity of the above compounds was investigated 
by means of MLR

linear (AN
at the activ

 over th
as non- ar characteristics. 

(Table 4) of th
dicate that the ac

ing don

 

 
 work strongly

 factors a
 7D RHB , hydrophobic factor  Log P and L  1og P R 

lar and Molecu weight  7R
t im

MW . 
portance of hydrophobic Model has 

ef hem cal ns, th ity
depends on me age, and it might generally be
hypo e ili of ch
co h  m  

In addition, the approach used for the contribu
n
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