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ABSTRACT 

The paper presents a new approach to construct the Bellman function  ,t x  and optimal control  directly by 

way of using strong large deviations principle for the solutions Colombeau-Ito’s SDE. The generic imperfect dynamic 
models of air-to-surface missiles are given in addition to the related simple guidance law. A four examples have been 
illustrated, corresponding numerical simulations have been illustrated and analyzed. 

 ,u t x
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1. Mathematical Challenge: Creating 
a Game Theory That Scales 

What new scalable mathematics is needed to replace the 
traditional Partial Differential Equations (PDE) approach 
to differential games? 

Let  be a probably space. Any stochastic 
process on  is a measurable mapping 
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d





: 0,X T 

 ,u t x

n . Many stochastic optimal control 
problems essentially come down to constructing a func- 
tion  that has the properties 
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  ,t U U  , where J  is the termination payoff  

functional,  is a control and   is some  t  , 0

x
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Markov process governed by some stochastic Ito’s equa- 
tion driven by a Brownian motion of the form  

3)         , ,0
, d ,

tx x
t D s Dx x g x t s DW t      , 

where  ,W t   is the Brownian motion. Traditionally 
the function  has been computed by way of  ,u t x
solving the associated Bellman equation, for which vari- 
ous numerical techniques mostly variations of the finite  
difference scheme have been developed. Another ap- 

proach, which takes advantage of the recent develop- 
ments in computing technology and allows one to con- 
struct the function  ,u x t  by way of backward induc- 
tion governed by Bellman’s principle such that described 
in [1]. In paper [1] Equation (3) is approximated by an 
equation with affine coefficients which admits an explicit 
solution in terms of integrals of the exponential Brow- 
nian motion. In approach proposed in paper [2,3] we 
have replaced Equation (3) by Colombeau-Ito’s Equation 
(4) 
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', 0,1 ,   1, 2   ,  where  ,w t   is  the  

white noise on n , i.e.,   d
,

d
w t W t

t
,   almost  

surely in , and 'D  ' ,w t   is the smoothed white 
noise on n  i.e., 

     ' ', , ,w t w t s t     , 

and '  is a model delta net [2,4]. Fortunately in con-
trast with Equation (3) one can solve Equation (4) with-
out any approximation using strong large deviations 
principle [4]. In this paper we considered only quasi sto-
chastic case, i.e. 0, 0D   . General case will be con-
sidered in forthcoming papers. 

Statement of the novelty and uniqueness of the pro- 
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posed idea: A new approach, which is proposed in this 
paper allows one to construct the Bellman function 

 and optimal control  directly, i.e., 
without any reference to the Bellman equation, by way of 
using strong large deviations principle for the solutions 
Colombeau-Ito’s SDE (CISDE). 

 ,V t x  ,t x

2. Proposed Approach 

Let us consider an m-persons Colombeau-Ito’s differen- 
tial game  ; , , , n

m TCDG f g y G   with a stochastic 
nonlinear dynamics: 
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and m-persons Colombeau-Ito’s differential game 

 with imperfect infor-

mation about the system [5-8]: 
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Here  is the algebra of Colombeau generalized 
functions [9],  is the ring of Colombeau’s general- 
ized numbers [10-12], 

 nG


n       ;  it t  is 
the control chosen by the i-th player, within a set of ad-
missible control values , and the playoff for the i-th 
player is: 
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where  is the trajectory 

of the Equation (1). Optimal control problem for the i-th 
player is: 
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Let us consider now a family  ,
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 of the solu-

tions Colombeau-Ito’s SDE: 
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where  W t  is n-dimensional Brownian motion,  
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Definition 1. CISDE (5) is -dissipative if exist 
Lyapunov candidate function  and Colombeau  



 ,V x t
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  r  r      , such that: 
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Theorem 1. Main result (strong large deviations prin- 
ciple) [5,13]. For any solution t 1, ,, ,t t nx x x     of dis- 
sipative CISDE (5) and  valued parameters 1, , n  , 
there exist Colombeau constant 

   , 0C C R C  
      

 , 

such that  1, , , n      : 
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where a function       1, , , , nU t U t U t,     is 
the solution of the master equation: 

        0, , , , 0,U t J b t U b t U x ,           (7) 

where  ,J J b t     the Jacobian, i.e. J  is a n n - 
matrix: 

   0,, ,i jJ b t b x t x x          . 
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From a general master Equation (7) one obtain the 
next linear master equation: 
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From the differential master Equation (8) one obtain 
transcendental master equation 

       

      

     

2
0

3 2

0

2

exp 3 2

sin

exp 3 2 d 0

t
n m

x t a t b t t

a t b t

a t b t t

  

    

   

     

    

      

 .   (9) 

Numerical simulation: Figures 1 and 2. 
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Here , n       it  t  is the control chosen 
by the i-th player, within a set of admissible control val-
ues , and the playoff of the i-th player is iU
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where  1, , ny y y   and  ,t x t   is the trajec-
tory of the Equation (11). 

Theorem 2. For any solution 
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Figure 1. The solution of the Equation (8) in a comparison 
with a corresponding solution  x t  of the ODE (10). 

 

 

Figure 2.   r  versus R. 
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optimal control problem for the first player:  
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and optimal control problem for the second player: 
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From Equation (14) we obtain corresponding master 
game: 
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Having solved by standard way [14,15] linear master 
game (2) one obtain optimal feedback control of the first 
player: 

     
     

1 1 1 2

1 1 2

, ,

sign

t t x t x t

x t t x

 



  
       



t
 

and optimal feedback control of the second player [5]: 
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Numerical simulation: Figures 3-6 
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Theorem 3. For any solution  
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Figure 3. Optimal trajectory:    1 1 0.4 mx t x T  . 

 

Figure 4. Optimal velocity:     /2 2 0.4 m secx t x T   . 

 

 

Figure 5. Optimal control of the first player. 
 

 

Figure 6. Control of the second player. 
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Example 3. Game with imperfect measurements. 
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Having solved by standard way linear master game (2) 
one obtain local optimal feedback control of the first 
player [5]: 

          1 1 1 1 2sign nt x t t t x t  
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and local optimal feedback control of the second player:  
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Thus, finally we obtain global optimal control of the 
next form [5]: 
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where  is a part-whole of a number  ceil x x . 
Thus, for numerical simulation we obtain ODE: 1 2 ,x x  
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Numerical simulation: Figures 7-12. Game with im- 
perfect measurements: red curves    1 2,x t x t . Classical 
game: blue curves    1 2, .y t y t     t 2sint A  . 

3. Homing Missile Guidance with Imperfect 
Measurements Capable to Defeat in 
Conditions of Hostile Active 
Radio-Electronic Jamming 

Homing missile guidance strategies (guidance laws) dic-
tate the manner in which the missile will guide to inter-
cept, or rendezvous with, the target. The feedback nature 
of homing guidance allows the guided missile (or, more 

generally, the pursuer) to tolerate some level of (sensor) 
measurement uncertainties, errors in the assumptions 
used to model the engagement (e.g., unanticipated target 
maneuver), and errors in modeling missile capability 
(e.g., deviation of actual missile speed of response to 
guidance commands from the design assumptions). Nev-
ertheless, the selection of a guidance strategy and its 
subsequent mechanization are crucial design factors that 
can have substantial impact on guided missile perform-
ance. Key drivers to guidance law design include the 
type of targeting sensor to be used (passive IR, active or 
semi-active RF, etc.), accuracy of the targeting and iner-
tial measurement unit (IMU) sensors, missile maneuver-
ability, and, finally yet important, the types of targets to 
be engaged and their associated maneuverability levels.  

Figure 13 shows the intercept geometry of a missile in 
planar pursuit of a target. Taking the origin of the refer-
ence frame to be the instantaneous position of the missile, 
the equation of motion in polar form are [16]: 
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1) The variable  R R t  denotes a true target-to- 
missile range  TM

2) The variable 
R t . 

 R R t   denotes the it is real meas-
ured target-to-missile range .  TMR t

3) The variable  t   denotes a true line-of-sight 
angle (LOST) i.e., the it is true angle between the con-
stant reference direction and target-to-missile direction. 

4) The variable  t    denotes the it is real meas- 
ured line-of-sight angle (LOSM) i.e., the it is true angle 
between the constant reference direction and target-to- 
missile direction. 
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the missiles acceleration along direction which perpen-
dicularly to line-of-sight direction. 
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the missile acceleration along target-to-missile direction. 
7) The variable  n

Ta t  denotes the target acceleration 
along direction which perpendicularly to line-of-sight 
direction. 
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Ta t  denotes the target acceleration 
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Using replacement z R   into Equation (17) one 
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Figure 7. Uncertainty of speed measurements  t . 

 

 

Figure 8. Cutting function .   11. 10t   

 

 

Figure 9. Optimal trajectory. 
 

 

Figure 10. Optimal velocity. 

 

Figure 11. Optimal control of the first player. 
 

 

Figure 12. Optimal control of the second player. 
 

 

Figure 13. Planar intercept geometry.  
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Let us consider antagonistic Colombeau differential 
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Optimal control problem of the first player is: 
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From Equations (21)-(23) one obtain corresponding 
linear master game: 
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From Equation (24) we obtain quasi optimal solution 
for the antagonistic differential game 
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Thus, for numerical simulation we obtain ODE: 
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Example 4: Figures 14-24. 
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4. Conclusions 

Supporting Technical Analysis: Let us consider optimal 
control problem from Example 1, corresponding Bellman 
type equation is: 

 

Figure 14. Cutting function: 

 

  t . 

 

Figure 15. Uncertainty of measurements of a variable 

   :R t t . 

 

 

Figure 16. Target-to-missile range  R t .   37.2 10  m R t .
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     2 2
1 2, ,V T x x x t T    0,            (27) 

 

 

Figure 17. Speed of rapprochement missile-to-target:  R t . 

 

 

Figure 18. Variable  z t R  . 

 

 

Figure 19. Variable     2.172z T  . z t
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   0 0.3 t    . Figure 20. Variable 

 

 

Figure 21. Missile acceleration along target-to-missile 
direction: 

 

 r
Ma t . 

 

Figure 22. Missile acceleration along direction which 
perpendicularly to line-of-sight direction:  n

Ma t . 

 

 

Figure 23. Target acceleration along target-to-missile direc- 
tion:  r

Ta t . 

 

Figure 24. Target acceleration along direction which 
perpendi larly to line-of-sight direction:  na t . cu

 
Complete constructing the exact analytical solution for 

PDE (27) is a complicated unresolved classical problem, 
because PDE (27) is not amenable to analytical treat-
ments. Even the theorem of existence classical solution 
for boundary Problems such (27) is not proved. Thus, 
even for simple cases a problem of construction feedback 
optimal control by the associated Bellman equation com-
plicated numerical technology or principal simplification 
is needed [17]. However as one can see complete con-
structing feedback optimal control from Theorems 1-2 is 
simple. In study [6], the generic imperfect dynamic mod-
els of air-to-surface missiles are given in addition to he 
related simple guidance law. 
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