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ABSTRACT 

The combined effects of Hall current and radiation on an unsteady MHD free convective flow of a viscous incom- 
pressible electrically conducting fluid in a vertical channel with an oscillatory wall temperature have been studied. We 
have considered two different cases 1) flow due to the impulsive motion of one of the channel walls and 2) flow due to 
the accelerated motion of one of the channel walls. The governing equations are solved analytically using the Laplace 
transform technique. It is found that the primary velocity and the magnitude of the secondary velocity increased with an 
increase in Hall parameter for the impulsive as well as the accelerated motions of one of the channel walls. An increase 
in either radiation parameter or frequency parameter leads to decrease in the primary velocity and the magnitude of the 
secondary velocity for the impulsive as well as accelerated motions of one of the channel walls. The fluid temperature 
decreases with an increase in radiation parameter. Further, the shear stresses at the left wall reduce with an increase in 
either radiation parameter or frequency parameter for the impulsive as well as the accelerated motions of one of the 
channel wall. 
 
Keywords: Hall Current; MHD Free Convection; Radiation; Prandtl Number; Grashof Number; Frequency Parameter; 

Impulsive Motion; Accelerated Motion 

1. Introduction 

The mechanism of conduction in ionized gases in the 
presence of a strong magnetic field is different from that 
in metallic substance. The electric current in ionized 
gases is generally carried by electrons, which undergos 
successive collisions with other charged or neutral 
particles. In the ionized gases, the current is not pro- 
portional to the applied potential except when the field is 
very weak in an ionized gas where the density is low and 
the magnetic field is very strong, the conductivity normal 
to the magnetic field is reduced due to the free spiraling 
of electrons and ions about the magnetic lines of force 
before suffering collisions and a current is induced in a 
direction normal to both electric and magnetic fields. 
This phenomenon, well known in the literature, is called 
the Hall effect. The study of hydromagnetic flows with 
Hall currents has important engineering applications in 
problems of magnetohydrodynamic generators and of 
Hall accelerators as well as in flight magnetohydro- 
dynamics. It is well known that a number of astronomical 
bodies posses fluid interiors and magnetic fields. It is 
also important in the solar physics involved in the  

sunspot development, the solar cycle and the structure of 
magnetic stars. In space technology applications and at 
higher operating temperatures, radiation effects can be 
quite significant. The radiative convective flows are 
frequently encountered in many scientific and environ- 
mental processes, such as astrophysical flows, water 
evaporation from open reservoirs, heating and cooling of 
chambers, and solar power technology. The unsteady 
hydromagnetic flow of a viscous incompressible electri- 
cally conducting fluid through a vertical channel is of 
considerable interest in the technical field due to its 
frequent occurrence in industrial and technological appli- 
cations. The Hall effects on the flow of ionized gas be- 
tween parallel plates under transverse magnetic field 
have been studied by Sato [1]. Miyatake and Fujii [2] 
have discussed the free convection flow between vertical 
plates—one plate isothermally heated and other thermally 
insulated. Natural convection flow between vertical 
parallel plates—one plate with a uniform heat flux and 
the other thermally insulated has been investigated by 
Tanaka et al. [3]. Gupta and Gupta [4] have studied the 
radiation effect on hydromagnetic convection in a vertical 
channel. Hall effects on the hydromagnetic convective  
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flow through a vertical channel with conducting walls 
have been investigated by Dutta and Jana [5]. The 
unsteady hydromagnetic free convective flow with ra- 
diative heat transfer in a rotating fluid has been described 
by Bestman and Adjepong [6]. Joshi [7] has studied the 
transient effects in natural convection cooling of vertical 
parallel plates. Singh [8] have described the natural 
convection in unsteady Couette motion. Singh et al. [9] 
have studied the unsteady free convective flow between 
two vertical parallel plates. The natural convection in 
unsteady MHD Couette flow with heat and mass trans- 
fers has been analyzed by Jha [10]. Narahari et al. [11] 
have studied the unsteady free convective flow between 
long vertical parallel plates with constant heat flux at one 
boundary. The unsteady free convective flow in a vertical 
channel due to symmetric heating have been described 
by Jha et al. [12]. Singh and Paul [13] have studied the 
unsteady natural convective between two vertical walls 
heated/cooled asymmetrically. Sanyal and Adhikari [14] 
have studied the effects of radiation on MHD vertical 
channel flow. The radiation effects on MHD Couette 
flow with heat transfer between two parallel plates have 
been examined by Mebine [15]. Grosan [16] has studied 
the thermal radiation effect on the fully developed mixed 
convective flow in a vertical channel. Guria and Jana [17] 
have discussed Hall effects on the hydromagnetic con- 
vective flow through a rotating channel under general 
wall conditions. Jha and Ajibade [18] have studied the 
unsteady free convective Couette flow of heat generat- 
ing/absorbing fluid. Effects of thermal radiation and free 
convection currents on the unsteady Couette flow be- 
tween two vertical parallel plates with constant heat flux 
at one boundary have been studied by Narahari [19]. 
Rajput and Sahu [20] have studied the unsteady free 
convection MHD flow between two long vertical parallel 
plates with constant temperature and variable mass dif- 
fusion. Das et al. [21] have studied the radiation effects 
on free convection MHD Couette flow started expo- 
nentially with variable wall temperature in the presence 
of heat generation. The effect of radiation on transient 
natural convection flow between two vertical walls have 
been described by Mandal et al. [22]. Das et al. [23] have 
studied the radiation effects on unsteady MHD free 
convective Couette flow of heat generation/absorbing 
fluid. The effects of radiation on MHD free convective 
Couette flow in a rotating system have been discussed by 
Sarkar et al. [24]. Sarkar et al. [25] have studied an 
oscillatory MHD free convective flow between two ver- 
tical walls in a rotating system. 

The aim of the present paper is to study the combined 
effects of Hall current and radiation on the unsteady 
MHD free convective flow of a viscous incompressible 
electrically conducting fluid in a vertical channel with an 
oscillatory wall temperature of one of the channel walls. 
It is found that the primary velocity 1  and the mag- 
nitude of the secondary velocity  decrease with an 

increase in either radiation parameter  or frequency  

u

1v

R
parameter  or Prandtl number  for the impulsive 
as well as the accelerated motions of one of the channel 
walls. It is also observed that the primary velocity 1  
and the magnitude of the secondary velocity 1  increase 
with an increase in either Hall parameter  or Grashof 
number  or time 

n

Gr

Pr

u
v

m
  for the impulsive as well as 

accelerated motions. An increase in Grashof number  
leads to fall the fluid velocity components. An increase 
in the radiation parameter  leads to increase the fluid 
temperature. Further, the shear stress 

Gr

R

x  at the wall 
0   due to the primary flow and the absolute value of 

the shear stress y  at the wall 0   due to the 
secondary flow decrease for the impulsive as well as 
accelerated motions of one of the channel walls with an 
increase in radiation parameter . The rate of heat 
transfer 

R
 0,   at the wall 0   decreases while 

the rate of heat transfer  0,   at the wall 1   
increases with an increase in Prandtl number . Pr

2. Formulation of the Problem and Its  
Solution 

Consider the unsteady MHD flow of a viscous incom- 
pressible electrically conducting radiative fluid between 
two infinitely long vertical parallel walls separated by a 
distance . The flow is set up by the buoyancy force 
arising from the temperature gradient. Choose a Car- 
tesian co-ordinates system with the x-axis along the 
channel wall at 

h

0y   in the vertically upward direction, 
the y-axis perpendicular to the channel walls and z-axis is 
normal to the xy-plane (see Figure 1). Initially, at time 

0t  , the two walls and the fluid are assumed to be at 
the same temperatu hT  and stationary. At tim > 0 , 
the wall 0

re e t
at y   starts to move in its own plane with a 

velocity  U t  and its temperature is raised to 
 cosT0h hT T t   whereas the wall at y h  is 

stationary and maintained at a constant temperature h , 
where 

T
  is the frequency of the temperature oscil- 

lations. A uniform transverse magnetic field 0  is 
applied perpendicular to the channel walls. We assume 
that the flow is laminar and the pressure gradient term in 
the momentum equation can be neglected. It is assumed 
that the effect of viscous and Joule dissipations are 
negligible. It is also assumed that the radiative heat flux 
in the x-direction is negligible as compared to that in the 
y-direction. As the channel walls are infinitely long, the 
velocity field and temperature distribution are functions 
of y and t only. 

B

Under the usual Boussinesq approximation, the flow is 
governed by the following Navier-Stokes equations 

 
2

0
2

,h y

Bu u
g T T

t y
 


 

   
 

j          (1) 
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Figure 1. Geometry of the problem. 
 

2
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2
,x

Bv v
j

t y



 

 
 

            (2) 

where   is the fluid density,   the kinematic 
viscosity,  and u   are fluid velocity components and 
g  the acceleration due to gravity.  

The energy equation is 
2

2
,r

p

qT T
c k

t yy
   

 
 

            (3) 

T
c

 the fluid temperature,  the thermal conductivity, 

p  the specific heat at constant pressure and  the 
radiative heat flux. 

k

rq

The initial and boundary conditions for the velocity 
and temperature distributions are 

 
 0

0 : 0, for 0 ,

, 0,
0 :

cos at 0,

0 : 0, at .

h

h h

h

t u v T T y h

u U t v
t

T T T T t y

t u v T T y h



     

  
   

    

     (4) 

It has been shown by Cogley et al. [26] that in the op- 
tically thin limit for a non-gray gas near equilibrium, the 
following relation holds 

 
0

4
h

pr
h

h

eq
T T K

y T


 d ,
  

     
         (5) 

where 
h

K  is the absorption coefficient,   is the 
wave length, pe  is the Planck’s function and subscript 
' '  indicates that all quantities have been evaluated at 
the temperature hT  which is the temperature of the 
walls at time . Thus, our study is limited to small 
difference of wall temperatures to the fluid temperature. 

h

0t 

On the use of the Equation (5), the Equation (3) 
becomes 

 
2

2
4p h

T T
c k T T

t y
  

  
 

,I           (6) 

where 

0

d .
h

p

h

e
I K

T


 
  

   
              (7) 

The generalized Ohm’s law, on taking Hall currents 
into account and neglecting ion-slip and thermo-electric 
effect, is (see Cowling [27]) 

  
0

,j j B E qe e

B

 
     B         (8) 

where  is the current density vector, j B  the magnetic 
field vector, E  the electric field vector, e  the 
cyclotron frequency,   the electrical conductivity of 
the fluid and e  the collision time of electron. 

We shall assume that the magnetic Reynolds number 
for the flow is small so that the induced magnetic field 
can be neglected. This assumption is justified since the 
magnetic Reynolds number is generally very small for 
partially ionized gases. The solenoidal relation 0 B  
for the magnetic field gives  every- 
where in the fluid where . Further, if 

0 constazB B 
 00,0, BB

nt

 , ,x y zj j j  be the components of the current density , 
then the equation of the conservation of the current 
density 

j

0 j
0zj
 gives z . This constant is 

zero since 
constantj 

  at the walls which are electrically 
non- conducting. Thus z 0j   everywhere in the flow. 
Since the induced magnetic field is neglected, the  

Maxwell’s equation 
t


  


BE  becomes 0 E  

which gives 0xE

z





 and 0yE

z





. This implies that  

constantxE   and constantyE   everywhere in the 
flow. We choose this constants equal to zero, i.e. 

0x yE E  . 
In view of the above assumption, the Equation (8) 

gives 

0 ,x yj mj vB                (9) 

0 ,y xj mj uB               (10) 

where e em    is the Hall parameter. 
Solving (9) and (10) for xj  and yj , we have 

0
2

,
1x

B
j v

m


 


mu             (11) 

0
2

.
1y

B
j mv

m





u             (12) 

On the use of (11) and (12), the momentum Equations 
(1) and (2) along x- and y-directions become 

    
22
0

2 2
,

1
h

Bu u g T T u mv
t y m


 


 

    
  

  (13) 

  
22
0

2 2
.

1

Bv v
v mu

t y m





 

  
  

        (14) 

Introducing non-dimensional variables 
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   

   

1 1 2
0

0
0

,
, , ,

, ,h

h

u v y t
u v

U h h

T T
U t U f

T T

 
2

2

d
Pr 0,

d
R s

 


              (24) ,
 

 

  


 



         (15) 
where 

 2

2

1 i
.

1

M m
a

m





              (25) Equations (6), (13) and (14) become 

The initial and boundary conditions for  ,F s  and 
 , s   are 


2 2

1 1
1 12 2

Gr ,
1

u u M
u mv

m


 
 

   
  

       (16) 

     

   

0, , 1, 0,

1 1 1
0, , 1, 0.

2 i i

F s f s F s

s s
s n s n

 

 

      

     (26) 
2 2

1 1
1 12 2

,
1

v v M
v mu

m 
 

  
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         (17) 

2

2
Pr ,R

  
 
 

 
 

            (18) Solutions of Equations (23) and (24) subject to the 
boundary conditions (26) are given by 

where  2 2 2
0M B h   is the magnetic parameter, 

  2 2
0Gr hg T T h    the Grashof number,  

Pr pc k    the Prandtl number and 24R Ih k   

the radiation parameter. 

 

 

 

2 2

2 2

sinh Pr 1
, for Pr 1

sinh Pr
,

sinh 1
, for Pr

sinh

R ss

s n R s
s

R ss

s n R s



 


  

1


  

 
  

 (27) 

The initial and boundary conditions (4) become 
 

   
    

   

   
  

   

2 2

2 2

,

sinh 1 Gr

sinh Pr 1

sinh 1 sinh Pr 1

sinh sinh Pr

for Pr 1

sinh 1 Gr
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sinh 1 sinh 1

sinh sinh
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F s
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f s

a s s s n

a s R s

a s R s
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f s
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a s R s

a s R s







 



 

  


   


         
    

  
     

            


 

(28) 

 
1 1

1 1

1 1

0 : 0, 0 for 0 1,

0 : , 0, cos at 0,

0 : 0, 0 at 1,

u v

u f v n

u v

  
   
  

     

    

    

     (19) 

where 
2h

n



  is the frequency parameter. 

Combining Equations (16) and (17), we get 

  22

2

1 i
Gr ,

1

m MF F
2

F
m


 

 
  

  
       (20) 

where 

1 1i and i 1.F u v                (21) 

The initial and boundary conditions for  ,F    are 

 
0 : 0 for 0 1,

0 : at 0,

0 : 0 at 1.

F

F f

F

 
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   
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           (22) Now, we shall considered the following cases. 
1) When the wall at  0  started impulsively: 

In this case   1f   , i.e.   1
f s

s
 . Then the inver-  Taking the Laplace transform of Equations (20) and 

(18) and on the use of (19) and (22), we have 
se Laplace transforms of Equations (27) and (28) give the 
solution for the temperature distribution and the velocity 
field as 
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 (30) 

where 

    
2
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1 2 32
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  
                  (31) 

2) When the wall at  0  started acceleratedly: 
 

In this case  f   , i.e.   21f s s . Then the 
inverse Laplace transforms of Equations (27) and (28) 

give the solution for the temperature distribution and the 
velocity field as 
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 

     

     
   

 

2

2 2
1 2

i

i

sinh 1 e 1
2π sin π 1 sinh cosh 1

sinh 2 sinh

sinh i 1 sinh i Pr 1Gr e
cosh sinh 1

2 Pr 1 sinh i sinh i Pr

sinh i 1 sinh i Pr 1e

i sinh i

,

s

k

n

n

a k
k a a

sa a a

a n R n
a a

in a n R n

a n R n

n a n

F







 
  

 







 







    

                  
   

 
 





 

     
     

   
 

2 1

2

2 1

2 2 2 2
1 2 2 1 1

2 2
1 2

i

sinh i Pr

e e
4π sin π for Pr 1

Pr

sinh 1 e 1
2π sin π 1 sinh cosh 1

sinh 2 sinh

sinh i 1Gr
cosh sinh 1 e

2 sinh

s s

k

s

k

n

R n

s s
k k

s s n s s n

a k
k a a

sa a a

a n
a a

R a a

 








 

 
  












  
 

  
             

    

     





 

   
   

32
i 32

2 2 2 2
1 2 3

sinh i 1

i sinh i

sinh i 1 sinh i 1 ee
e 4π sin π

sinh i sinh i

for Pr 1,

ss
n

k

R n

n R n

a n R n ss
k k

a n R n s n s n






 


























       
   


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    (33) 
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where 1 2,s s  and 3s  are given by (31). 

3. Results and Discussion 

We have presented the non-dimensional velocity com- 
ponents and temperature distribution for several values of 
Hall parameter , radiation parameter , Prandtl 
number , frequency parameter , Grashof number 

 and time 

m R
Pr n

Gr   against   when  and  2 5M
π

4
n   in Figures 2-17. It is seen from Figures 2 and 3  

that the primary velocity 1  and the magnitude of the 
secondary velocity 1v  increase with an increase of 
Hall param ter m  for the impulsive as well as 
accelerated motions of one of the channel walls. 
Figures 4 and 5 show that the primary velocity 1u  and 
the magnitude of the secondary velocity 1v  decrease 
with an increase in radia n parameter R  for both the 
impulsive and accelerated motions of one of the channel  

u

io

 
e

t

 

 

Figure 2. Primary velocity  for different  when  

and 

u1

5

m
.2, Pr 0 71, 2, GrR n   0.5 . 

 

 

Figure 3. Secondary velocity v  for different  when 1 m
2, Pr 0.71, 2, Gr 5R n    and 0.5 . 

 

Figure 4. Primary velocity  for different  wheu1 R n 

0.5, Pr 0.71, 2, Gr 5m n    nd 0.2 a  . 

 

 

Figure 5. Secondary velocity  for different  when v1 R  

0.5, Pr 0.71, 2, Gr 5m n     nd 0.2a  . 

 

 

Figure 6. Primary velocity  for different  when u1 Pr  
   0.5, 2, 2, Gr 5m R n  and 0.2 . 
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Figure 7. Secondary velocity  for different  whe  

 and 

 v1  Pr n

. , , ,   m R n0 5 2 2 Gr 5 0.2 . 

walls. It is illustrated f gures  and 7 that the 
rimary velocity and the magnitude of the secondary 

 th

 
rom Fi  6

p 1

velocity 1v  decrease with an increase in Prandtl number 
Pr  for the impulsive as well as accelerated motions of 
one of the channel walls. Figures 8 and 9 show that both 

 primary velocity 1u  and the magnitude of the 
secondary velocity 1v  decrease with an increase in 
frequency parameter n for both the impulsive and 
accelerated motions of one of the channel walls. An 
increase in Grashof nu ber Gr  leads to increase the 
primary velocity 1u  and the magnitude of the secondary  
velocity 1v  for both the im lsive and accelerated 
motions of one of e channel walls shown in Figures 10 

u  

the

 

m

pu

and 11. It is seen form Figures 12 and 13 that the 
primary velocity 1u  and the magnitude of the secondary 
velocity 1v  increase with an increase in time   for 
both the impulsiv nd accelerated motions of one of the 
channel w lls. It is seen from Figure 14 that the luid 
temperature 

e a
a  f

  decreases with an increase in radiation 
parameter R . This result qualitatively agrees with 
expectations, ince the effect of radiation is to decrease 

the rate of energy transport to the fluid, thereby 
decreasing the temperature of the fluid. It is observed 
from Figure 15 that the fluid temperature   increases 
with an increase in Prandtl number . This is in 
agreement with the physical fact that the thermal 
boundary layer thickness decreases with increasing . 
Figure 16 shows that the fluid temperature 

Pr

Pr
  decreases 

with an increase of frequency parameter . Figure 17 
shows that the fluid temperature 

n
  increases when time 

  progresses. It is seen from Figures 2-13 that the fluid 
velocities for the impulsive motion of one of the channel 
walls is always greater than the accelerated motion. 

The rate of heat transfer at the channel walls 0   

and 1   are respectively  
=0

0,


 


 
 
  

     
 and 

 
=1

1, 





        
 and are given by (see the Equa- 

tions (34) and (35) below). 
where 1 2,s s  and 3s  are given by (31). 

Numerical results of the rate of heat transfer at the 
channel walls 0   and 1   are respectively 

 0,   and  1,   which are presented in Tables 
1-3 for several values of Prandtl number , time Pr  ,  

frequency parameter  when n
π

4
n  . Table 1 shows  

that the rate of heat transfer  0, 
 1,

 decreases while 
the rate of heat transfer  

Pr
  increases with an  

increase in Prandtl number . Table 2 shows that the 
rate of heat transfer  0,    at the wall 0   
decreases whereas the rate of heat transfer  1,   at 
the wall 1   increases when time   progresses. It is 
seen from Table 3 that the rate of heat transfers 

 0,   and  1, 
n

 decrease with an increase in 
frequency parameter . 

For the impulsive motion, the non-dimensional shear 
stress at the wall 0   is given by (see the Equations 
(36) and (37) below).  s
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(35)
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where 1 2,s s  and 3s  are given by (31). 
For the accelerated motion, the non-dimensional shear stress at the wall 0   is as 
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         (37) 

where 





1 2,s s  and 3s  are given by (31). 
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Figure 8. Primary velocity  for different  when  u1


n

, , ,  0.5 2 Pr 0.71 Gr 5m R and 0.2 . 

 

Figure 11. Secondary velocity  for different when  v1 Gr  

, , ,   0.5 2 Pr 0.71 2m R n and 0.2 . 

 

 
 

Figure 9. Secondary velocity  for different  when v1

 and 

 n
, , ,   0.5 2 Pr 0.71 Gr 5m R 0.2

Figure 12. Primary velocity  for different u1   when 

   0.5, 2, Pr 0.71, 2m R n
 

 and M 2 5
. 

 . 

  

Figure 13. Secondary velocity  for differen v1 t   when 

   0.5, 2, Pr 0.71, 2m R n  and M 2 5

Figure 10. Primary velocity  for different  when  u1 Gr

, , ,   0.5 2 Pr 0.71 2m R n and 0.2 . . 
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Table 1. Rate of heat transfer   0,   and   1,   when 2n   and 0.5  . 

  0, 
 

 1, 
 

\ PrR  0.025 0.50 0.71 1.5 0.025 0.50 0.71 1.5 

0.5 

1.0 

1.5 

2.0 

0.81019 

0.91808 

1.01988 

1.11631 

0.61501 

0.73317 

0.84411 

0.94872 

0.53916 

0.66030 

0.77404 

0.88126 

0.35855 

0.47547 

0.58682 

0.69306 

0.65667 

0.60637 

0.56124 

0.52058 

0.74367 

0.68479 

0.63216 

0.58492 

0.77283 

0.71169 

0.65695 

0.60777 

0.78451 

0.73004 

0.68005 

0.63414 

 
Table 2. Rate of heat transfer   0,   and   1,   when 2n   and . 
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0.53517 

2 

0.09949 

0.08631 

0.29145 

0.27539 

0.49835 

0.47252 

0.

0. 7 

0. 998 

6 

 
Table 3. Rate of heat transfer   0,   and   1,   when 0.5   and . 

 

Pr 2
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0.5 
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0.20490 

0.29290 

0.37966 

0.09219 

0.17048 

0.24863 

0.32643 

0.71936 

0.67574 

0.63501 

0.59701 

0.67272 

0.63838 

0.60540 

0.57386 

0.56856 

0.54692 

0.52516 

0.50352 

0.44258 

0.43254 

0.42146 

0.40961 

 

 

Figure 14. Temperature   for different  when 

and

R
Pr 0.71, 2n    0.2 . 

 
Numerical results of the non-dime sional shear 
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Figure 15. Temperature   for different  when Pr
2, 2R n   and 0.2 . 
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π

4
n 2 5M  . Figures 1 nd 19 show that the  
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Figure 16. Temperature   for different  for 
 and 0.2

n
Pr 0.71, 2R   . 
 

 

Figure 17. Temperature   for different time   for 
Pr 0.71 2  and 2R  . 

 

, n  

 

Figure 18. Shear stress x

 

Figure 19. Shear stress y  for different  when 

2, G

R
Pr = 0.71, = r = 5n and 0.2 . 

 

 

xFigure 20. Shear stress  for different  when 

 and 

Pr

R = 2, = 2, Gr = 5n 0.2 . 

 

 
 for different  when R

Gr 5, Pr 0.71, 2n   and 0.2
Figure 21. Shear stress y  for different  when 

 and . 
Pr

2, 2, 0.2R n   G 5r . 
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Figure 22. Shear stress x  for different n  hen 

, Gr

w

 and 2, Pr 0.71 5R    0.2 . 

 

 

Figure 23. Shear stress y  for different  when 

 and 5

n

2, 0.2, Pr 0.71R   
 

 Gr  . 

 

ress Figure 24. Shear st x  fo different  when 
 and 

r Gr
2, Pr 0.71, 2R n   0.2 . 

 

Figure 25. Shear stress  for different  wheGry n 

0.2, Pr 0.71, 2n    and 2 . R
 

 

xFigure 26. Shear stress  for different time   whe  n

2, Pr 0.71, 2R n   and G 5 . r

 

 

Figure 27. Shear stress y  ime for different t   when 
2, Pr 0.71, 2R n  a  . nd Gr 5
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walls with an increase in radiation parameter . It is 
seen from Figures 20 and 21 that for the impul ve and 
accelerated motions of one of the channel walls the shear 
stress 

R
si

x  and the magnitude of the shear stress y  
Fig- increase with an increase of Prandtl number 

ures 22 and 23 show that the shear stress 
Pr . 
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s
m

e channel 
o

e w
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 increase i
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for m accelerated m
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 and how t h the im ve an
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s 24
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nnel walls, the

for 
tions 
 25. 

d 
 

0.3m 
of on
Figures 26
accelerated 

 
e of th

both the i
anne
27 s

motions of one

pulsive and 

hat fo
 
 

ow i
r

n 
 bot

of the 
pul

magnitude of the share stress x  decreases whereas the 
re stress ymagnitude of the sha   increas  with an 

 time 
es

increase in  . 

4. Conclusion 

The combined effects of Hall current and radiation on the 
unsteady MHD free convective flow in a vertical channel 
with an oscillatory wall temperature have been studied. 
Radiation has a reterding influence on the fluid velocity 
components for both the impulsive as well as accelerated 
motions of one of the channel walls. Hall currents 
accelerates the fluid velecity components for the 
impulsive as well as accelerated motions of one of the 
channel walls. In the prence of radiation the fluid 
temperature   decreases. Further, the shear stress x  
and the abso alue of the shear stress lute v y  at the wall 

0   
R for the

decr  with an increase in radi n param
 impulsive as well as accelerated m tions of 

te 

ease atio
o

eter 
one 

of the channel walls. The ra of heat transfers  0,   
and  


1,   

R  . 
 ase wi n increase in iation incre th a
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