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ABSTRACT 

The onset of ferromagnetic convection in a micropolar ferromagnetic fluid layer heated from below in the presence of a 
uniform applied vertical magnetic field has been investigated. The rigid-isothermal boundaries of the fluid layer are 
considered to be either paramagnetic or ferromagnetic and the eigenvalue problem is solved numerically using the 
Galerkin method. It is noted that the paramagnetic boundaries with large magnetic susceptibility χ delays the onset of 
ferromagnetic convection the most when compared to very low magnetic susceptibility as well as ferromagnetic 
boundaries. Increase in the value of magnetic parameter M1 and spin diffusion (couple stress) parameter N3 is to hasten, 
while increase in the value of coupling parameter N1 and micropolar heat conduction parameter N5 is to delay the onset 
of ferromagnetic convection. Further, increase in the value of M1, N1, N5 and χ as well as decrease in N3 is to diminish 
the size of convection cells. 
 
Keywords: Micropolar Ferrofluid; Ferromagnetic Convection; Paramagnetic Boundaries; Rigid Boundaries; Magnetic 

Susceptibility 

1. Introduction 

Ferrofluids or magnetic fluids are commercially manu-
factured colloidal liquids usually formed by suspending 
mono domain nanoparticles (their diameter is typically 3 
- 10 nm) of magnetite in non-conducting liquids like 
heptane, kerosene, water etc. and they are also called mag- 
netic nanofluids. These fluids get magnetized in the pre- 
sence of an external magnetic field and due to their both 
liquid and magnetic properties they have emerged as 
reliable materials capable of solving complex engineer- 
ing problems. An extensive literature pertaining to this 
field and also the important applications of these fluids to 
many practical problems can be found in the books by 
Rosensweig [1], Berkovsky et al. [2] and Hergt et al. [3]. 
It is also recognized that these fluids have promising po- 
tential for heat transfer applications in electronics, micro 
and nanoelectromechanical systems (MEMS and NEMS), 
and air-conditioning and ventilation 

Several theories were used to describe the motion of 
ferrofluids and amongst them the continuum description 
of the ferrofluids has been in existence since the work of 
Neuringer and Rosensweig [4]. Their theory is called 
“quasi-stationary theory”. Based on this theory, several 
studies on convective instability in a ferrofluid layer have  

been undertaken in the past. Finlayson [5] has studied the 
convective instability of a magnetic fluid layer heated 
from below in the presence of a uniform vertical mag- 
netic field. Gotoh and Yamada [6] have carried out the 
same study by assuming the fluid to be confined between 
two magnetic pole pieces. Stiles et al. [7] have analyzed 
linear and weakly nonlinear thermoconvective instability 
in a thin layer of ferrofluid subject to a weak uniform 
external magnetic field in the vertical direction. Blen- 
nerhassett et al. [8] have analyzed the heat transfer char-
acteristics in a strongly magnetized ferrofluids. The 
nonlinear stability analysis for a magnetized ferrofluid 
layer heated from below has been performed by Sunil 
and Mahajan [9] for the case of stress free boundaries. 
Whereas, Nanjundappa and Shivakumara [10] have in-
vestigated the effects of variety of velocity and tempera-
ture boundary conditions on the onset of thermomagnetic 
convection in an initially quiescent ferrofluid layer in the 
presence of a uniform magnetic field. By using quasista-
tionary theory but treating the ferrofluids as binary mix-
tures, Shliomis [11] and Shliomis and Smorodin [12] 
have studied convective instability of magnetized ferro-
fluids by considering the influence of concentration gra-
dients and Soret effects. The latter authors have also pre-
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dicted oscillatory instability in a certain region of mag-
netic field and the fluid temperature. In a review article, 
Odenbach [13] has focused on recent developments in 
the field of rheological investigations of ferrofluids and 
their importance for the general treatment of ferrofluids. 

The development of different kinds of ferrofluids ex- 
hibiting significant changes in their microstructure has 
outlined the need of new description for ferrofluids. It is 
believed that quasi-stationary theory is reasonably valid 
for colloidal suspensions of Néel particles in which the 
particle magnetic moment m rotates inside the particle 
and the particle does not rotate itself and hence no mo- 
mentum transfer, from the particle to the fluid, occurs 
when the applied magnetic field has a changing direction 
or magnitude. On the other hand, for Brownian particle 
in which the vector m is locked into the crystal axis of 
the particle and rotates along with the particle rotation, 
with finite magnetic relaxation time, one has to incorpo- 
rate the intrinsic rotation of the particle and there is thus 
momentum transfer to the carrier fluid in the form of a 
viscous friction. Based on these facts, the equations in- 
volving rotational or vortex viscosity and the nonequilib- 
rium magnetization equation, involving Brownian re-
laxation time, are used to discuss thermoconvective in-
stability of a ferrofluid in a strong external magnetic field 
by Stiles and Kagan [14]. However, more appropriate 
equations which allow proper consideration of internal 
rotation and vortex viscosity have been considered by 
Kaloni and Lou [15] to investigate convective instability 
problem in the horizontal layer of a magnetic fluid with 
Brownian relaxation mechanism. Recently, Paras Ram 
and Kushal Sharma [16] have studied the effect of mag- 
netic field-dependent viscosity (MFD) along with poros- 
ity on the revolving Axi-symmetric steady ferrofluid 
flow with rotating disk. 

Since the ferrofluids are colloidal suspensions of nano- 
particles, as suggested by Rosensweig [1] in his mono- 
graph, it is pertinent to consider the effect of microrota- 
tion of the particles in the study. Based on this fact, stud-
ies have been undertaken by treating ferrofluids as mi-
cropolar fluids and the theory of micropolar fluid pro-
posed by Eringen [17] has been used in investigating the 
problems. Micropolar fluids have been receiving a great 
deal of interest and research focus due to their applica- 
tions like solidification of liquid crystals, the extrusion of 
polymer fluids, cooling of a metallic plate in a bath col- 
loidal suspension solutions and exotic lubricants. In the 
uniform magnetic field, the magnetization characteristic 
depends on particle spin but does not on fluid velocity: 
Hence micropolar ferrofluid stability studies have be- 
come an important field of research these days. Although 
convective instability problems in a micropolar fluid 
layer subject to various effects have been studied exten- 
sively, the works pertaining to micropolar ferrofluids is 

in much-to-be desired state. Many researchers [18-23] 
have been rigorously investigated the Rayleigh-Benard 
situation in Eringen’s micropolar non-magnetic fluids. 
From all these studies, they mainly found that stationary 
convection is the preferred mode for heating from below. 
Sharma and Kumar [24] and Sharma and Gupta [25] also 
gave a good understanding of thermal convection of mi-
cropolar fluids. Zahn and Greer [26] have considered in- 
teresting possibilities in a planar micropolar ferromag- 
netic fluid flow with an AC magnetic field. They have 
examined a simpler case where the applied magnetic 
fields along and transverse to the duct axis are spatially 
uniform and varying sinusoidally with time. Abraham 
[27] has investigated the problem of Rayleigh-Benard 
convection in a micropolar ferromagnetic fluid layer per- 
meated by a uniform magnetic field for stress-free boun- 
daries. Reena and Rana [28,29] have studied the some 
convection problems on micropolar fluids saturating a 
porous medium. Recently, Thermal instability problem in 
a rotating micropolar ferrofluid has also been considered 
by Qin and Kaloni [30] and Sunil et al. [31], and refer- 
ences therein. 

However, the increased importance of ferrofluids in 
many heat transfer applications demand the study of the 
onset of ferromagnetic convection in a layer of micropo-
lar ferrofluid for more realistic velocity and magnetic 
boundary conditions. The aim of the present paper is, 
therefore, to investigate the onset of ferromagnetic con-
vection in a micropolar ferrofluid layer heated from be- 
low in the presence of a uniform vertical magnetic field 
by considering the bounding surfaces as rigid- isothermal 
and which are either paramagnetic or ferromagnetic. The 
resulting eigenvalue problem is solved numerically using 
the Galerkin technique. The critical thermal Rayleigh 
number and associated wave number account for the sta-
bility character. 

2. Mathematical Formulation 

The physical configuration considered is as shown in 
Figure 1. We consider an initially quiescent horizontal 
incompressible micropolar ferrofluid layer of character-
istic thickness  in the presence of an applied uniform 
magnetic field 0

d
H  in the vertical direction with the an- 

gular momentum . The lower and the upper bounda-
ries are rigid-isothermal which are either paramagnetic or 
ferromagnetic. Let 0  and  be the tempera- 
tures of the lower and upper rigid boundaries, respec- 
tively with 

ω

T 1 0T T 

 T0 1  being the temperature dif- 
ference. A Cartesian co-ordinate system 

T T 
 , ,x y z  is 

used with the origin at the bottom of the layer and z-axis 
is directed vertically upward. Gravity acts in the negative 
z-direction, ˆgk g  where  is the unit vector in the 
z-direction. 

k̂
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Figure 1. Physical configuration. 
 

In the above equations, is the velocity of 
the fluid,  the pressure, 

 , ,u v wqThe basic equations governing the motion of an in-
compressible Boussinesq micropolar ferromagnetic fluid 
for the above model are as follows [1,6,17,30]: 

Continuity equation 

0. q                   (1) 

Angular momentum equation 

   

  

0

2 2r r

p
t

 

  

         
    

q q q g B H

q ω.
 (2) 

Internal angular momentum equation 

    

   
0 0

2

2 2

.

rI
t

  



           
   

ω q ω q ω M H

ω ω


p   the density,   the shear 

kinematic viscosity co-efficient, r  the vortex (rota-
tional) viscosity,  1 2 3, ,   ω  the angular (average 
spin) velocity of colloidal particles along z-axis, I  the 
moment of inertia, 0  the reference density, 0  the 
free space magnetic permeability,   the shear spin 
viscosity co-efficient, 1k  the thermal conductivity, T  
the temperature,   the thermal expansion co-efficient, 
  the micropolar heat conduction coefficient, ,V H  
the specific heat at constant volume and magnetic field, 

 the magnetic induction field, 

C

B H  the magnetic field, 
H  the magnitude of ,H  0H  the constant applied 
magnetic field,  

0 0,H T
 the pyromagnetic 

co-efficient,  the magnetization, 
K M T   

M M  the magnitude 
of , M  0 ,0 0M M H T  the constant mean value of  


 

(3) magnetization,  H0, 0T
M H   

Energy equation 

 

0 , 0 0
, ,

2
1 .

V H
V H V H

DT D
C T

T Dt T D

k T T

  



                  
    

M M
t

H

ω

H

 the magnetic suscep- 

tibility,   the magnetic potential and  
2 2 2 2 2 2 2x y z           is the Laplacian opera-

tor.  

(4) 

The basic state is quiescent and is given by 

 

   

2
0

0 0

2 2 2
0 0 0

2

2

1 2 1

b

gz
p z p gz

M K z K z

 


   
 

  

 
 

 Equation of state 

 0 1 T T     0 .            (5) 

Maxwell’s equation in the magnetostatic limit 
  0bT z T z   0 B , 0 H  or  H      (6a,b) 

 0 01b bT T        0 . B M H                  (7) 

It is considered that the magnetization is aligned with 
the magnetic field and is taken as a function of both 
magnetic field and temperature in the form 

   0
ˆ

1b

K z
z H




k
 

  
  

H  

 , .M H T
H


HM                 (8)    0

ˆ
1b

K z
z M




k
 

  
  

M          (10) 

The magnetic equation of state is given by 
where, T d    is the temperature gradient and the 
subscript b denotes the basic state.   0 0 .0M M H H K T T        (9) 
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To study the stability of the system, the variables are 
perturbed in the form 

   
 

, , ,

,

b b

b b

q p p z p T T z

z

       

    

q ω

H H H M M M

,T 
  (11) 

where, ,q  ,  , , p T  , H  and M  are the 
perturbed quantities whose magnitude is assumed to be 
very small. 

Substituting Equation (11) in Equation (6a) and using 
Equations (8) and (9) and assuming   01K z H   
as propounded by Finlayson [6], we obtain (after drop-
ping the primes) 

 

0 0

0 0

1 , 1

1

,x x x y y

z z z

M M
yM H H M H

H H

M H H KT

   
        

   
   

H
(12) 

where  , ,x y zH H H  and  , ,x y zM M M  are the  
 , , x y z  components of the magnetic field and mag-
netization respectively. 

Using Equation (11) in Equation (2) and linearizing, 
we obtain (after dropping primes) 

 

 

2
0 1

1
0 0 0

2r r

u p
u

t x

H
M H

z

  



           


 



     (13) 

 

 

2
0

2
0 0 0

2r r

v p
v

t y
H

M H
z

  



  
         


 



2
     (14) 

 

 

 

2
0 3

3
0 0 0 0

2
0

0 3

2

.
1

r r

w p
w

t z
H

M H
z
K T

K H

  



 
 



           


  


 


gT



      (15) 

Differentiating Equations (13)-(15) partially with re-
spect to x, y and z respectively and adding, we get 

 2 2
0 0 0

2 2
0

0 0 2(1 )

p M H
z

K T
g K

z z



     


       
    

         

 (16) 

Eliminating the pressure term  from Equation (15), 
using Equation (16) we get 

p

 

 

2 2 2
0 0

2
2 20

0 32
1

r h

h r

w K
t z

K
g T

    

 
  



             
 

      
  

where, 2 2 2 2 2
h x y        is the horizontal Lapla-

cian operator. 
Substituting Equation (11) into Equation (3) and lin-

earizing, we obtain (after dropping primes) 

2 23
0 32 2 3rI w

t
  

    .        
    (18) 

As before, substituting Equation (11) into Equation (4) 
and linearizing, we obtain (after dropping primes) 

 
2

2 0 0
0 0 1 0 0

0 0 3

1

T K
C k T C

t

T K
t z

 
  





w

 

            
       

  (19) 

where, 0 0 0 , 0 .V H bC C K    H  Finally Equations (6), 
after using Equation (12), yield (after dropping primes) 

 
2

20
2

0

1 1 0h

M T
K

H zz

 
  

.        
     (20) 

The principle of exchange of stability is assumed and 
the normal mode expansion of the dependent variables is 
taken in the form 

          
 

3 3, , , , , ,

exp i

w T W z z z z

lx my

     

   
    (21) 

where,  and m are the wave numbers in the l x and  
directions, respectively. 

y

Let us non-dimensionalize the variables by setting 

 , , , ,
x y z

x y z
d d d

      
 

,   ,D Dd  ,a ad 

d
W W


  , 

d




   , 

 
2

2

1

K d

 


 
   , 

3

3 3 ,
d


    

2

1
I I

d
     (22) 

where, 0    is the kinematic viscosity and  

1 0 0k C   is the thermal diffusivity. Equation (21) is 
substituted into Equations (17)-(20) and then Equation 
(22) is used to obtain the stability equations in the fol-
lowing form: 

    

 

22 2 2
1 1

2 2
1 3

1 1

2 0

tN D a W a R M D M

N D a

1       

   


 (23) 

   2 2 2 2
1 3 32 2N D a W N D a 

 
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 (17) 

3 0          (24) 

   2 2
2 5 31 0D a M W N             (25) 

2 2
3 0D a M D                (26) 

where d dD z  is the differential operator,  

Copyright © 2013 SciRes.                                                                               JEMAA 



The Onset of Ferromagnetic Convection in a Micropolar Ferromagnetic Fluid Layer Heated from Below 124 

2a   2m  is the horizontal wave number,  
4

tR gd    is the thermal Rayleigh number,  

 2
1 0 01M K g       is the magnetic number,  

 2
2 0 0 01 0M T K C     is the magnetic parameter,  

   3 0 01 1M M H     is the non-linearity of mag-

netization, 1 rN    is the coupling parameter,  
2

3N d   is the spin diffusion (couple stress) pa-
rameter and 2

5 0 0N C  d  is the micropolar heat 
conduction parameter. The typical value of 2M  for 
magnetic fluids with different carrier liquids turns out to 
be of the order of  and hence its effect is neglected 
when compared to unity. 

610

Equations (23)-(26) are solved using the following 
boundary conditions: 

i) Both boundaries rigid-isothermal and paramagnetic 

30 , 0, 0 at 0W DW z       ,1    (27a) 

 
 

1 , at 0

1 , at 1

a z
D

a z





    
    .

,1

,

z

        (27b) 

ii) Both boundaries rigid-isothermal and ferromag-
netic 

30 , 0, 0, 0 at 0W DW z         . (27c) 

3. Numerical Solution 

Equations (23)-(26) together with the boundary condi-
tions (27a,b) or (27c) constitute an eigenvalue problem 
with the thermal Rayleigh number t  as the eigenvalue. 
For the boundary conditions considered, it is not possible 
to obtain the solution to the eigenvalue problem in closed 
form and hence it is solved numerically using the Galer- 
kin-type weighted residuals method. Accordingly, the va- 
riables are written in a series of basis functions as 

R

     

     

3 3
1 1

1 1

,

, ( )

N N

i i i i
i i

N N

i i i i
i i

W z AW z C z

z D z z E

 

 

   

     

 

 
    (28) 

where, iA , i , i  and i  are the unknown con-
stants to be determined. The basis functions

C D E
 iW z , 

3i , i  and i  are generally chosen such 
that they satisfy the corresponding boundary conditions 
but not the differential equations. Substituting Equation 
(28) into Equations (23)-(26), multiplying the resulting 
momentum equation by 

 z    z  z 

  ,jW z  angular momentum 
equation by 3 j  temperature equation by   ,z  j z  
and the magnetic potential equation by  zj ; per-
forming the integration by parts with respect to z between 
z = 0 and z = 1 and using the boundary conditions (27a,b) 
or (27c), we obtain the following system of 4n linear 
homogeneous algebraic equations in the 4n unknowns 



iA , ,  and ; iC iD iE 1, 2, , :i n 

ji i ji iC E D

 

0ji i ji iC A D F E  

0ji iE

       (29) 

ji iG A H 

0i ji iC K E

                  (30) 

ji iI A jiJ  

0.iD

             (31) 

ji i iL C jP                    (32) 

The coefficients ji jiC P  involve the inner products 
of the basis functions and are given by 

  2 2
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1 3 32ji j i j iG N D DW a W       
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4ji j i
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 21ji j iI M W    

2
ji j i j iJ D D a          

5 3ji jK N    i  

ji jL D i    

 
2

32 1ji j i

a
P D D a M


 j i     


  (33) 

where the inner product is defined as  
1

0

d .z    

The above set of homogeneous algebraic equations can 
have a non-trivial solution if and only if 

0 0
0.

0

0 0

ji ji ji ji

ji ji

ji ji ji

ji ji

C D E F

G H

I J K

L P

          (34) 

The eigenvalue has to be extracted from the above 
characteristic equation. For this, we select the trial func-
tions as follows: 

Case i): Rigid-paramagnetic boundaries 

   
   

4 3 2 2
1 3 1

2
1 1

2 ,

, 1 2

i i i

i i i i
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z z T z T
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 
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,i
  (35) 
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Case ii): Rigid-ferromagnetic boundaries 

  
   

4 3 2 2
1 3 1

2 2
1 1

2 ,

,

i i i

i i i i

W z z z T z z T

z z T z z T

 ,i
 
 

 
 

     

     
  (36) 

where  are the modified Chebyshev polynomials. 
It may be noted that the trial function i  does not sat-
isfy the corresponding boundary conditions in the case of 
paramagnetic boundaries but the residual technique is 
used for the function  (see [6]) and the first term on 
the right hand side of 

'iT s



i
ji  represents the residual term. 

In the case of ferromagnetic boundaries, i  satisfies 
the corresponding boundary conditions and hence pre-
vents the use of residual technique. Then the coefficient 

P

jiP  is given by 
2

3ji j i jD D a MP      i





.     (37) 

The characteristic Equation (34) is solved numerically 
for different values of physical parameters using the 
Newton-Raphson method to obtain the Rayleigh number 

t  as a function of wave number  and the bisection 
method is built-in to locate the critical stability parame-
ters 

 
to the desired degree of accuracy. 

R a

 ,tc cR a

4. Results and Discussion 

The classical linear stability analysis has been carried out 
to investigate the onset of ferromagnetic convection in a 
horizontal micropolar ferrofluid layer. The lower and 
upper boundaries are considered to be rigid-isothermal 
which are either paramagnetic or ferromagnetic. The 
critical thermal Rayleigh number  and the corre-
sponding wave number   are used to characterize 
the stability of the system. The critical stability parame-
ters computed numerically by the Galerkin method as 
explained above, are found to converge by considering 
nine terms in the Galerkin expansion. To validate the 
numerical solution procedure used, a new magnetic pa-
rameter  independent of the temperature gradient, 
was introduced in the form 

 tcR
ca

,S
2 ,m tR R S  where  

  2 2 4 2d0 01S g K   





  . The critical thermal Ra- 
yleigh number , critical magnetic Rayleigh number 

 and the corresponding wave number  com- 
puted numerically in the absence of micropolar effects 

 are compared in Table 1 with the 
previously published results of Blennerhassett et al. [8]. 
It is seen that our results for different values of  are in 
good agreement. Also, it is instructive to know the proc-
esses of convergence of results as the number of terms in 
the Galerkin approximation increases for the problem 
considered. Hence, various levels of the approximations 
to the critical thermal Rayleigh number tc  and the 
corresponding wave number are also obtained for differ-
ent values of  when  ,  

 tcR

5 0

1N

 mcR

N N

 ca

S

R

1m t M

 1 3 N 

3 1,M  100R R

Table 1. Comparison of Rtc and Rmc for different values of S 
with N1 = N3 = N5 = 0 (i.e., in the absence of micropolar 
effect). (a) When heated from below; (b) When heated from 
above. 

(a) 

 Blennerhassett et al. [10] Present Analysis 

S Rtc ac Rmc Rtc ac Rmc 

0 0 3.6088 2568.47 0 3.60874 2568.76

10−2 5.06 3.6075 2561.11 5.06102 3.60743 2561.39

10−1 15.95 3.6047 2545.24 15.9547 3.60462 2545.53

1 49.96 3.5958 2495.69 49.9597 3.59579 2495.97

10 153.13 3.5688 2344.99 153.142 3.56877 2345.26

102 438.75 3.4920 1925.02 438.777 3.49195 1925.26

103 1024.48 3.3252 1049.56 1024.55 3.32519 1049.71

104 1552.74 3.1649 241.10 1552.88 3.16488 241.136

105 1689.47 3.1221 28.54 1689.63 3.12208 28.5409

∞ 1707.76 3.1163 0 1707.73 3.11638 0.0 

(b) 

 Blennerhassett et al. [10] Present Analysis 

S Rtc ac Rmc Rtc ac Rmc 

0 0 3.6088 2568.47 0 3.60874 2568.76

10−2 −5.08 3.6101 2575.9 −5.08 3.61005 2576.15

10−1 −16.10 3.6129 2591.9 −16.10 3.61289 2592.19

1 −51.41 3.6220 2643.3 −51.41 3.62197 2643.54

10 −167.69 3.6516 2811.9 −167.69 3.65154 2812.22

102 −584.04 3.7536 3411.0 −584.04 3.75355 3411.34

103 −2455.05 4.1464 6027.3 −2455.05 4.1463 6027.65

104 −14797.1 5.5105 21895 −14797.1 5.51039 21895.8

105 −119091 8.2382 141827 −119091 8.23459 141816

 

3 2N  , 5 1N   and the results are tabulated in Table 2 
for different types of magnetic boundary conditions. It is 
seen that with an increase in the number of terms in the 
Galerkin approximation,  goes on decreasing and 
finally for the order 

tcR
9i j 

N 

R

 the results converge. This 
clearly demonstrates the accuracy of the numerical pro-
cedure employed in solving the problem. The critical 
values obtained for different values of 1  and  as 
well as for two values of 3  and 6 are exhibited in 
Table 3. It may be noted that as S increases the magnetic 
Rayleigh number m  decreases, while the value of the 
critical Rayleigh number tc  increases. This implies 
that, in some favorable circumstances it is possible for 
the magnetic mechanism alone to induce convection. 

N S
2

R

The neutral stability curves ( t  against a ) for differ-
ent values of 1

R
M , 1 , 3  and 5  

are shown respec-
tively in Figures 2-5 for paramagnetic/ferromagnetic 
boundaries. The neutral curves exhibit single but  

N N N
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Table 2. Critical values of tcR  and  for different values of  when ca N1 3 1,M  100,mR  N 3 2  and : (a) Para- 

magnetic boundaries when 

N5 1

1  8 ; (b) Paramagnetic boundaries when 0 ; (c) Ferromagnetic boundaries. 

(a) 

i = j = 1 i = j = 3 i = j = 5 i = j = 8 i = j = 9 
N1 

Rtc ac Rtc ac Rtc ac Rtc ac Rtc ac 

0 1692.812 3.14012 1658.586 3.14784 1658.084 3.14792 1658.083 3.14792 1658.083 3.14792

0.2 2529.982 3.11900 2495.969 3.13195 2495.065 3.13204 2495.064 3.13205 2495.064 3.13205

0.4 3821.487 3.08148 3813.226 3.10318 3811.682 3.10335 3811.681 3.10336 3811.681 3.10336

0.6 6049.422 3.00816 6166.736 3.04365 6164.059 3.04397 6164.060 3.04397 6164.060 3.04397

0.8 10707.379 2.84549 11477.222 2.89729 11472.309 2.89794 11472.317 2.89794 11472.317 2.89794

(b) 

i = j = 1 i = j = 3 i = j = 5 i = j = 8 i = j = 9 
N1 

Rtc ac Rtc ac Rtc ac Rtc ac Rtc ac 

0 1673.024 3.12985 1644.147 3.13635 1643.612 3.13648 1643.611 3.13649 1643.611 3.13649 

0.2 2510.090 3.11210 2481.449 3.12425 2480.512 3.12438 2480.511 3.12439 2480.511 3.12439 

0.4 3801.401 3.07695 3798.544 3.09814 3796.967 3.09833 3796.966 3.09834 3796.966 3.09834 

0.6 6028.949 3.00539 6151.699 3.04056 6148.990 3.04090 6148.991 3.04090 6148.991 3.04090 

0.8 10686.048 2.84409 11461.278 2.89572 11456.336 2.89637 11456.344 2.89637 11456.344 2.89637 

(c) 

1i j   3i j   5i j   8i j   9i j   
N1 

Rtc ac Rtc ac Rtc ac Rtc ac Rtc ac 

0 1649.975 3.11652 1628.295 3.12105 1627.728 3.12124 1627.727 3.12124 1627.727 3.12124 

0.2 2486.932 3.10307 2465.523 3.11397 2464.554 3.11414 2464.553 3.11415 2464.553 3.11415 

0.4 3778.005 3.07093 3782.424 3.09135 3780.815 3.09157 3780.815 3.09157 3780.815 3.09157 

0.6 6005.043 3.00158 6135.118 3.03633 6132.378 3.03668 6132.380 3.03668 6132.380 3.03668 

0.8 10660.918 2.84198 11443.449 2.89346 11438.477 2.89411 11438.485 2.89411 11438.485 2.89411 

 
Table 3. Critical values of tcR  and mcR  for different values of  with N1 M3 1  and . N5 1

S = 10−2 S = 102 
N3 N1 

Rtc ac Rmc Rtc ac Rmc 

0 5.06079 3.60743 2561.15669 438.754 3.49195 1925.05399 

0.2 5.53993 3.60708 3069.08746 486.25 3.50052 2364.39091 

0.4 5.97264 3.60614 3567.24704 529.19448 3.50662 2800.46800 

0.6 6.36872 3.60496 4056.06846 568.53897 3.51117 3232.36568 

2 

0.8 6.73495 3.60373 4535.95975 604.94257 3.51473 3659.55514 

0 5.06079 3.60743 2561.15669 438.754 3.49195 1925.05453 

0.2 5.54297 3.60738 3072.44943 486.554 3.50085 2367.34421 

0.4 5.98366 3.60709 3580.41825 530.297 3.50763 2812.15115 

0.6 6.39148 3.60665 4085.10372 570.816 3.51299 3258.31489 

6 

0.8 6.77241 3.60614 4586.54893 608.691 3.51732 3705.04294 



The Onset of Ferromagnetic Convection in a Micropolar Ferromagnetic Fluid Layer Heated from Below 127

 
different minimum with respect to the wave number and 
their shape is identical in the form to that of Benard 
problem in a micropolar fluid layer. For increasing 1M  
(see Figure 2),  (see Figure 3), 5  (see Figure 4) 
and decreasing 3  (see Figure 5), the neutral curves 
are slanted towards the higher wave number region. 
From the figures, it is also seen that increasing 

1N
N

N

  is to 

shift the neutral curves towards the higher wave number 
region. Moreover, the effect of increasing 1M  and 3  
as well as decreasing , and 

N

1N 5N   is to decrease the 
region of stability. 

Figure 6(a) represents the variation of critical Ray- 
leigh number tc  as a function of  for different 
values of 

R

1

1N
M  and   for   3  5,M 3N 2  and  

 

2 3 4 5
600

1200

1800

2400

a

  Paramagnetic,  = 7

  Paramagnetic,  =0

  Ferromagnetic

Rt

M1=0

1

2

 

Figure 2. Neutral curves for different values of  when M1 M3 5 , 1 0.2N  ,  and . 3 2N  5 0.5N 
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Figure 3. Neutral curves for different values of  when N1 1 2M  , 3 5M  , 3 2N   and . 5 0.5N 
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Figure 4. Neutral curves for different values of  when N 3 1 2M  , 3 5M  ,  and . 1 0.2N  5 0.5N 
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Figure 5. Neutral curves for different values of  when N 3 1 2M  , 3 5M  , 1 0.2N   and . 3 2N 

 

5  for both ferromagnetic and paramagnetic 
boundary conditions. It is seen that tc  decreases with 
an increase in the value of 1

0.5N 
R

M  and hence its effect is to 
hasten the onset of ferroconvection due to an increase in 
the destabilizing magnetic force and the curve for 

1  corresponds to non-magnetic micropolar fluid 
case. In other words, heat is transported more efficiently 

in magnetic fluids as compared to ordinary micropolar 
fluids. Also observed that tc  increases with increasing 

1 . This is because, as 1  increases the concentration 
of microelements also increases and as a result a greater 
part of the energy of the system is consumed by these 
elements in developing gyrational velocities in the fluid 
which ultimately leads to delay in the onset of ferromag-

0M 

R
NN
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netic convection. Moreover, the system is found to be 
more stable if the boundaries are paramagnetic with 

7   as compared to the case of 0   and the sys-
tem is least stable if the boundaries are ferromagnetic. A 
closer inspection of the figure further depicts that the 
deviation in the tc  values for different magnetic boun- 
dary conditions is more pronounced with increasing cou-
pling parameter. In Figure 6(b) plotted the critical wave 

number  as a function of 1 . It is evident that in-
creasing 1  

R

ca
N

N
,   and 1M  is to increase the value of 

c  and thus their effect is to reduce the dimension of the 
convection cells. 
a

In Figure 7(a) plotted tc  as a function of 1  for 
different values of spin diffusion (couple stress) parame-
ter 3  when 1

R N

N 2M  , 3  and 5 . Here, it 
is observed that  curves for different  coalesce  

5

0.5

M 0.5N 
3NtcR
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Figure 6. Variation of (a) tcR  and (b) as a function of  for different values of  when  ca N1 M1 3 5,M  3 2N   and 

. 5 0.5N 
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when 1  The impact of 3  on the stability char-
acteristics of the system is noticeable clearly with in-
creasing 1  and then it is seen that the critical Rayleigh 
number decreases with increasing  indicating the spin 
diffusion (couple stress) parameter 3  has a destabiliz-
ing effect on the system. This may be attributed to the fact 
that as 3  increases, the couple stress of the fluid in-
creases, which leads to a decrease in microrotation and 
hence the system becomes more unstable. Figure 7(b) 
illustrates that increase in 1  and decrease in 3  for 
non-zero values of 1  is to increase ca  and hence 
their effect is to decrease the size of convection cells. 

0.N 

N

N

N

3N
N

N N
N

The variation of critical thermal Rayleigh number  

as a function of 1  for different values of 5  for 

1

tcR

N N
2M  , 3 5M   and 3 2N   is shown in Figure 8(a). 

It is observed that increasing micropolar heat conduction 
parameter  always has a stabilizing effect for nonzero 
values of 1  

When 5  increases, the heat induced into 
microelements of the fluid is also increased, thus decreas-
ing the heat transfer from the bottom to the top. This de-
crease in heat transfer is responsible for delaying the onset 
of ferromagnetic convection. Figure 8(b) illustrates that 
increase in 1  and 5  is to increase c  and hence 
their effect is to decrease the size of convection cells. 

5N
.N

N

tcR

N

N a

Figure 9 shows the locus of the critical thermal Ray- 
leigh number  and the critical magnetic Rayleigh 
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Figure 7. Variation of (a) tcR  and (b) as a function of  for different values of  when  ca N1 N 3 1 2,M  3 5M   and 

. 5 0.5N 
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Figure 8. Variation of (a) tcR  and (b) as a function of  for different values of  for , ca N1 N5 M1 2 M3 5  and 

. 3 2N 

 

mc  for 3 1 3  and 5R 5, 0.2, 2M N N   0.5N  . In 
the figure, the regions above and below the curves, corre- 
spond, respectively, to unstable and stable ones. It is ob- 
served that there is a strong coupling between the critical 
thermal Rayleigh and the magnetic Rayleigh numbers 
such that an increase in the one decreases the other. Thus, 
when the buoyancy force is predominant, the magnetic 
force becomes negligible and vice-versa. The stability 
curves are slightly convex and in the absence of buoyancy 
forces , the instability sets in at higher values of   0tc R

mc  indicating the system is more stable when the mag- 
netic forces alone are present. The stability region in- 
creases with increasing 

R

  and also for paramagnetic 
boundaries when compared to ferromagnetic boundaries. 

5. Conclusions 

The linear stability theory is used to investigate the onset 
of ferromagnetic convection in a micropolar ferromag-
netic fluid layer hated from below in the presence of a 
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Figure 9. Locus of tcR  and mcR  for 3 5,M    1 0.2,N  3 2N   and . 5 0.5N 

 
uniform applied vertical magnetic field for more realistic 
rigid boundary conditions which are considered to be 
either paramagnetic or ferromagnetic. The resulting ei-
genvalue problem is solved numerically by employing 
the Galerkin method. 

From the foregoing study, the following conclusions 
may be drawn: 

i) The neutral stability curves for various values of 
physical parameters exhibit that the onset of ferromag-
netic convection retains its unimodal shape with one dis-
tinct minimum which defines the critical thermal Ray- 
leigh number and the corresponding wave number. 

ii) The system is more stabilizing against the ferro-
magnetic convection if the boundaries are paramagnetic 
with high magnetic susceptibility and least stable if the 
boundaries are ferromagnetic. It is observed that  

   
 

0 0

rigid-ferromagnetic

and and

and

tc c tc c

tc c

R a R a

R a

  



. 

iii) The effect of increasing the value of magnetic 
number 1M  is to hasten the onset of ferromagnetic 
convection. 

iv) The effect of increasing the value of coupling pa-
rameter 1  and micropolar heat conduction parameter 

5  
is to delay, while increasing the spin diffusion (cou-

ple stress) parameter  is to hasten the onset of fer-
romagnetic convection. 

N
N

3N

v) The effect of increasing 1 , 5 , N N   and 1M as 
well as decrease in  is to increase the critical wave 
number. 

3N

vi) The magnetic and buoyancy forces are comple-

mentary with each other and the system is more stabiliz-
ing when the magnetic forces alone are present. 
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