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ABSTRACT 

This paper propose an algorithm for the detection of improper parameterization of rational curves using the concept of 
Gröbner bases. The advantage of the proposed algorithm lies in the fact that the Gröbner bases can operate in both uni-
variate and multivariate fields with specified ordering. 
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1. Introduction 

Rational curves (also called unicursal curves) play an im- 
portant role in past and present computer development in 
such areas as geometric modeling and computer graph-
ics.By definition, a rational curve is any curve that can be  

represented parameterically in the form 
 
 

x t
X

w t
 , 

 
 

y t
Y

w t
 , 

 
 

z t
Z

w t
  where  x t ,  y t ,  z t  and  

 w t  are polynomials [1,2]. 
Theoretically, given any curve either in the explicit, 

implicit or parametric form, it is important to know 
whether parameterization exists for the curve or not be-
fore attacking the problem of detecting improper param-
eterization. The above question is simple and can be an-
swered by just checking for the genus of the curve. If the 
genus of a curve is zero, then it can be parameterized 
otherwise no parameterization exists for the curve [3-7]. 
Furthermore, it is only possible to use rational polyno-
mial parametric equations to give an exact representation 
of a curve iff its genus is zero [8,9]. 

The concept of parameterization is very important in 
rational curves (our present interest) in particular and 
curves and surfaces in general; due to the fact that para-
metric representations are very easy to handle (imple-
ment) during computations [10,11]. 

A rational curve [12] is said to either be properly (also 
called faithful in the literature) or improperly parameter-
ized depending on which definition for proper and im-
proper parameterization is considered and, to our knowl- 
edge, two schools of taught exist. One of the schools 
defines a properly parameterized rational curve as one 
which upon reparameterization gives a one-to-one rela-
tionship between the initial curve and the reparameter-
ized curve, otherwise it is improperly parameterized [2]. 
The other school defines proper parameterization in 
terms of the tracing index of the parameterization i.e. the 
number of times the parameterization traces the curve [4]. 
In this piece of work, the former definition is employed. 

In 1986, an algorithm [2] which is capable of detecting 
improperly parameterize rational curves and how to 
reparameterize such curves, so as to attain proper param-
eterization was presented. This algorithm utilizes the 
notion of the Euclidean algorithm to compute the greatest 
common divisor (GCD) of two polynomials in one vari-
able. 

In this paper, we show that it is also possible to detect 
improper parameterization using the concept of Gröbner 
bases. We use a necessary and sufficient condition, i.e. 
the resultant must equal zero [13] to reveal the existence 
of a common Gröbner basis in a system of polynomials. 

The remainder of this paper is organized as follows: 
Section 2 presents our algorithm for the detection of an 
improper parameterization. Section 3 reviews a numeri-
cal example [2]. Analysis of our algorithm is given in *Corresponding author. 
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Section 4, and the last section concludes the work.  

2. Algorithm for Detecting an Improperly 
Parameterized Rational Curve 

In this section, we introduce our algorithm. First of all 
we would like to describe the definition and notation of 
some of the mostly used terms in this paper. 

Definition 2.1: If a polynomial f in 1  with co-
efficients in k is a linear combination of monomials, then 
the polynomial f can be written in the form  

, , nt  t

, ,f b t b k
 


   

where the summation is taken over a finite number of 
n-tuples  1, , n    , where 1, , n 



 are nonnega-
tive integers. This set of polynomials in  with 
coefficients in k is denoted as 

1, , nt  t
1, , nk t t . 

Thus, polynomials in one, two and three variables lie 
in  1k t ,  1 2,k t t  and  1 2 3, ,k t t t , respectively. There-
fore,  1  denotes a field in n-variables and a 
field with one variable 

, , ntk t
  1k t  is normally denoted by 

k. 
Definition 2.2: An ideal is a subset  1, , nI k t t   

which satisfies the following: 
1) 0 I , 
2) If ,f g I , then f g I  , and 
3) If f I  and  1 n

, ,
, ,h k t t  , then . hf I

Definition 2.3: Let 1 sf f  be polynomials in 
 1, , nk t t  and let the subset I be an ideal. Then I can 

be written in the form  

 1 1 1
1

, , : , , , , .
s

s i i s n
i

I f f h f h h k t t


    
 
    

Definition 2.4: Let  1, , , nu v k t t   denote a non- 
zero polynomial. 

1) By letting  multideg u  ,  multideg v   and 
 1, , n      where  ,maxj j j    for every j; 

then t   is called the least common multiple of  uLM



 
and , written in the form  

, where 
 LM v

t LCM LM     ,u LM v LM u  and  vLM  
are the leading monomials of u and v respectively and 

 and  are the multidegrees of 
u and v respectively. 

 multideg u  multideg v

2) The S-polynomial of u and v is the combination 

     
, ,

t t
S u v u v

LT u LT v

 

     

where  and  are the leading terms of u 
and v respectively. 

 LT u  LT v

Definition 2.5:  ,
G

S u v

 is defined as the remainder  

on division of  by the ordered s-tuple .  ,S u v
Corollary 2.1: Suppose  ,f g k x  are polynomials 

both of positive degrees, then f and g are said to have a 
common Gröbner basis if and only if  

    , , , , 0Res f g x det Syl f g x   

where  , ,Res f g x  denotes the resultant of f and g with 
respect to x and   , ,Syl f g xdet  denotes the determi-
nant of the Sylvester matrix of f and g with respect to x 
([10] p. 157, Proposition 8). 

Corollary 2.2: Given a Gröbner basis  1, , mG g g   
of an ideal  1, , tI k x x   or  I k x , if f I  is 
any polynomial and 1, , nf f f   ,then the following 
statements are true  

1 11 1 1

1 1

m m

n n nm

f a g a g

f a g a gm

  

  





 

where nm  is a constant for , and  ([10] p. 
76, Theorem 4). 

a 0n  0m 

Given a plane rational curve of the form  

 
 

 
 

, .
x p y p

X Y
w p w p

            (1) 

It is well known from Luroth’s theorem [14] that if 
Equation (1) is improperly parameterized i.e. does not 
give a one-to-one correspondence between the initial 
curve and the reparameterized curve, it is possible to 
reparameterize it to a properly parameterized rational 
curve of the form  

 
 

 
 

,
x q y

x y
w q w q

 
 
 

q
              (2) 

where  

 
 

.
f p

q
g p

                  (3) 

If a nonsingular point  ,x y   exists, then  

 
 

 
 

,
x y

x y
w w

 
 

                (4) 

for some  . 

We let 
 
 

x p
x

w p
   and 

 
 

y p
y

w p
   where p is a pa-  

rameter value of a nonsingular point on the curve, and 
determine the values of p that might describe the same 
point  ,x y  , if it exists, by developing the system of 
equations below  

 
 

 
 

 
 

 
 

, .
x x p y y p

x y
w w p w w p

 
 

           (5) 

From Equation (5), we obtain the two equations be-
low.  
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       xP x w p w x p             (6) 

       yP y w p w y p             (7) 

Clearly, xP  and yP  are polynomials in p and if 
Equation (5) is true then, Equations (6) and (7) should 
have a common Gröbner basis which can be written 
(Corollary 2.1) as  

 , , 0.x yRes P P p                (8) 

By changing the value of   to  , in Equation (8) 
we obtain another equation of the form  

 , , 0x yRes P P p   .              (9) 

which implies that there are two polynomials: xP  and 

yP  with a common Gröbner basis. 
If Equations (8) and (9) hold, our next task is to evalu-

ate the common Gröbner basis (Corollary 2.2). Let GB  
denote the common Gröbner basis for xP  and yP , and 
GB  denotes the common Gröbner basis for xP  and 

yP ; and according to Corollary 2.2, we will represent 

1 and 2  as f f  f p  and  g p  respectively and also 
represent the Gröbner basis 1g  and 2g  as GB  and 
GB  respectively and hence we can write:  

 f p a GB b GB              (10) 

 g p c GB d GB              (11) 

Equation (3) can be evaluated using Equations (10) 
and (11), while the values of a, b, c and d must be deter-
mined by using the conditions: when , 0p  0q   and 
when ,  since the endpoint interpolation 
property must be satisfied by both curves i.e. the properly 
and improperly parameterized curves. 

1p  1q 

After obtaining  f p  and  g p  our final task is to 
determine the coefficients of Equation (2) i.e. the prop-
erly parameterized rational curve. Let  f p  and  g p  
have a maximum degree m, and u be the degree of the 
improperly parameterized rational curve. Hence, the de-  

gree of the properly parameterized curve shall be 
u

r
m

 .  

Finally; Equation (2) takes the form  

  0 1 ,r
rx q x x q x q              (12) 

  0 1 ,r
ry q y y q y q              (13) 

  0 1 .r
rw q w w q w q              (14) 

We now use the method of undetermined coefficients 
[15] to find the coefficients jx , jy , and jw . 

The whole algorithm is summarized as follows: 
1) At the beginning we pick  values of p. 1r 
2) We follow the procedures above and compute 

 
 

f p
q

g p
 . 

a) If 
 
 

f p
q

g p
  gives a one-to-one relationship be-  

tween q and p (i.e. properly parameterized) the algorithm 
will CONTINUE by selecting a new value of p from step 
1. 

b) If 
 
 

f p
q

g p
  doesn’t give a one-to-one relation-  

ship between q and p (i.e. improperly parameterized) the 
algorithm will TERMINATE. 

Our algorithm will not terminate at step 2(a) iff the  

equation 
 
 

f p
q

g p
  gives a one-to-one relationship 

between q and p i.e. properly parameterized; but will 

terminate at step 2(b) if 
 
 

f p
q

g p
  does not give a one-  

to-one correspondence between q and p i.e. improperly 
parameterized. 

In this paragraph, we would throw light on how the 
Gröbner basis of an ideal is computed using Buchber-
ger’s algorithm ([10] p. 90, Theorem 2). The uniqueness 
of the Buchberger algorithm in this paper is that, it gives 
not only Gröbner basis as is usual but a common Gröbner 
basis when applied to a  k x  field. Given a polynomial 
ideal  01, , nI f f   then, the algorithm proceeds 
as follows: 

Input:  1, , nF f f    
Output: a Gröbner basis  for I, with  1, mG g g  

F G  
:G F   

REPEAT  
:G G    

FOR each pair  ,u v ,  in G  DO u v 

 : ,
G

S S u v


   

IF 0S   THEN  
 :G G S 
G

 
UNTIL G  
At the initial phase of the algorithm, G is enlarge by  

adding the remainder  : ,
G

S S u v


  for ,u v G . If  

G I , then u, v and  ,S u v
G

 are also in I and therefore, 
since we are dividing by I  , we obtain  G S  I . 
It is interesting to note that G contains the given basis F 
of I and as such, G is a real basis of I. The algorithm ter-  

minates when G G , which means that  : ,
G

S S u v


  0  

for ,u v G . 
Finally, it is necessary to note that if the polynomial 

ideal I is in the  k x  field, then the above algorithm 
will give only one Gröbner basis (i.e. common Gröbner 
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basis) that is common to both ideal members.  

3. Review of a Numerical Example 

In this section we solve a numerical example from [2] 
using our algorithm to detect improper parameterization. 

We consider the rational cubic Bezier curve defined by 
the equations  

3 2

2

16 12 12
,

3 3 1

q q q
X

q q

  


  
 

3 2

2

54 84 30

3 3 1

q q
Y

q q

 


  
q

 

and compute the parametric substitution that gives the 
equations below  

6 5 3 2

6 5 4 2

8 12 32 24 12
,

3 3 3 3 1

p p p p
x

p p p p p

   


    
p

 

5 4 3 2

6 5 4 2

24 54 54 54 30
.

3 3 3 3 1

p p p p
y

p p p p p

   


    
p

 

We pick 2   and 4  . When 2  , we have:  
2 6 5 4

2

224 1092 1512 1120

672 1092 504,

xP p p p

p p

   

  

3p

p

.

 

2 6 5 4 3

2

1044 3972 1242 1890

5022 2082 1044.

yP p p p

p p

   

  
 

The resultant of these two polynomials is:  

 2 2, , 0x yRes P P p   

This means that 2
xP  and 2

yP  have a common 
Gröbner basis . Therefore, the  of these two 
polynomials is:  

 2GB  2GB

 2 2 2
2 , , 6 5x yGB P P p p p   .  

When 4  , we have:  
4 6 5 4

2

8136 46644 68880 59296

24408 46644 22960,

xP p p p p

p p

   

  

3

3p

 

4 6 5 4

2

34200 147072 2538 100062

202662 47010 34200.

yP p p p

p p

   

  
4

 

The resultant of xP  and 4
yP

4 4

 is:  

 , , 0x yRes P P p  .  

This tells us that there is a common Gröbner basis for 
the two polynomials. Hence, GB4 for the two polynomi-
als is:  

 4 4 2
4 , , 20 17 3 .x yGB P P p p p    

Our parametric substitution becomes  

 
 
  
  




2 4

2 4

2 2

2 2

6 5 20 17 3
.

6 5 20 17 3

f p a GB b GB
q

g p c GB d GB

a p p b p p

c p p d p p

  
 

  

    


    

 

We now use the endpoint interpolation property i.e. 
0q   when 0p   and  when  and deter-

mine a, b, c and d to compute our parameter. The first 
condition gives 

1q 

0 0b

1p 

6 2a   , and then select 10a   
and 3b  

c
. The second constraint gives , we 

choose 
3c d 1

4  and 1d   , and finally obtain our pa-  

rameter 
2

2 3 4

p p
q

p p




 
.  

4. Analysis 

In [2], the algorithm uses an assumption for the existence 
of a common factor for the two polynomials and finally 
compute this common factor using the concept of the 
Euclidean algorithm. 

In this piece of work, we utilize a necessary and suffi-
cient condition to confirm that the two polynomials have 
a common Gröbner basis.In Section 3, we see that the 
existence of common Gröbner basis for both values 

2   and 4   is confirmed by the fact that both 
 , , p2 2Px y  and Res P  4 4, ,x yRes P P p  equals zero. After 

confirming the existence of a common Gröbner basis the 
algorithm is then used to compute this common Gröbner 
basis. 

From Section 3, we see also that there is a one-to-two 
correspondence between parameter values of q and p, i.e. 
one value of q gives two values of p as it is evident from  

the obtained parametric relation 
2

2 3 4

p p
q

p p




 
; and  

also the parameterization has a tracing index of two i.e. 
the curve is doubly traced.Therefore, the curve is im-
properly parameterized.   

5. Conclusions 

The algorithm in [2] assumes that there is a common 
factor for the two polynomials and then uses the notion 
of the Euclidean algorithm to compute the common fac-
tor. However, it is interesting to note that the Euclidean 
algorithm requires divisibility in the field  k x  [10]. 
Our algorithm, first of all, confirms the existence of a 
common Gröbner basis before any computational attempt 
is made. 

The advantages of our algorithm are as follows: Our 
algorithm always confirms the existence of a common 
Gröbner basis before computation. Secondly, it is based 
on the concepts of Gröbner bases, which requires opera-
tions in the field  1, , nk x x . We just need to indicate 
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