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Abstract 
 
In this paper, the existence and nonexistence of nonnegative entire large solutions for the quasilinear elliptic  

equation  2| | = ( ) ( ) ( ) ( )mdiv u u p x f u q x g u   are established, where 2m  , f and g are nondecreasing  

and vanish at the origin. The locally H older continuous functions p and q are nonnegative. We extend results 
previously obtained for special cases of f and g . 
 
Keywords: Entire Solutions, Large Solutions, Quasilinear Elliptic Equations 

1. Introduction 
 
In this paper, we consider the problem  

 2| | = ( ) ( ) ( ) ( ), ( 3)

( ) , | |

m Ndiv u u p x f u q x g u in R N

u x as x

    


 
 (1) 

where 2m  , 1, ([0, ),[0, )) ((0, ),[0, ))f g C C     , 
the locally H o lder continuous functions p  and q  are 
nonnegative on NR . In addition, we assume that  

(0) = (0) = 0; ( ) 0, ( ) 0,

( ) ( ) > 0, > 0

f g f t g t

f t g t for t

  


      (2) 

We call nonnegative solutions of (1) entire large 
solutions. In fact, this problem appears in the study of 
non-Newtonian fluids [1,2] and non-Newtonian filtration 
[3,4], such problems also arise in the study of the 
sub-sonic motion of a gas [5], the electric potential in 
some bodies [6], and Riemannian geometry [7]. 

Large solutions of the problem  
( ) = ( ( )), ,

| = ,

u x f u x x

u 

 
 

        (3) 

where   is a bounded domain in ( 1)NR N   have 
been extensively studied, see [8-20]. A problem with 

( ) = uf u e  and 2=N  was first considered by Bieber- 

bach [13] in 1916. Bieberbach showed that if   is a 
bounded domain in 2R  such that   is a 2C  sub- 
manifold of 2R , then there exisSts a unique 2 ( )u C   
such that ueu =  in   and 2| ( ) ( ( )) |u x ln d x   is 
bounded on  . Here )(xd  denotes the distance from a 
point x  to  . Rademacher [17], using the idea of 
Bieberbach, extended the above result to a smooth 
bounded domain in 3R . In this case the problem plays 
an important role, when 2=N , in the theory of 
Riemann surfaces of constant negative curvature and in 
the theory of automorphic functions, and when 3=N , 
according to [17], in the study of the electric potential in 
a glowing hollow metal body. Lazer and McKenna [6] 
extended the results for a bounded domain   in 

1)( NR N  satisfying a uniform external sphere condi- 
tion and the non-linearity uexpuxff )(=),(= , where 

)(xp  is continuous and strictly positive on  . Lazer 
and McKenna [12] obtained similar results when   is 
replaced by the Monge-Ampere operator and   is a 
smooth, strictly convex, bounded domain. Similar results 
were also obtained for auxpf )(=  with 1>a . 
Posteraro [16], for ueuf =)(  and 2N , proved the 
estimates for the solution )(xu  of the problem (1,2) and 
for the measure of   comparing with a problem of the 
same type defined in a ball. In particular, when 2=N , 
Posteraro [16] obtained an explicit estimate of the 
minimum of )(xu  in terms of the measure of  :  

( ) (8 / | |).minu x ln 


   

*Project Supported by the National Natural Science Foundation of 
China(Grant No.10871060). Project Supported by the Natural Science 
Foundation of the Jiangsu Higher Education Institutions of China 
(Grant No.08KJB110005) 



H. X. QIN  ET  AL. 
 

Copyright © 2010 SciRes.                                                                                  AM 

294 

The existence, but not uniqueness, of solutions of the 
problem (3) with f  monotone was studied by Keller 
[18]. For auuf =)(  with 1>a , the problem (3) is of 
interest in the study of the sub-sonic motion of a gas 
when 2=a  (see [15]) and is related to a problem 
involving super-diffusion, particularly for 2<1 a  
(see [21,22]). Pohozaev [15] proved the existence, but 
not uniqueness, for the problem (1.2) when 2=)( uuf  . 
For the case where ( 2)/( 2)( ) = ( > 2)N Nf u u N  , Loewe- 
ner and Nirenberg [20] proved that if   consists of a 
disjoint union of finitely compact C  manifolds, each 
having co-dimension less than 1/2N , then there exists 
a unique solution of the problem (3). The uniqueness was 
established for auuf =)(  with 3>a , when   is 
a 2C -submanifold and   is replaced by a more 
general second-order elliptic operator, by Kondrat'ev and 
Nikishkin [19]. Marcus and Veron [14] proved the 
uniqueness for auuf =)(  with 1>a , when   is 
compact and is locally the graph of a continuous function 
defined on an 1)( N -dimensional space. 

In [23], the authors considered the problem of 
existence and nonexistence of positive entire large 
solutions of the semilinear elliptic equation  

= ( ) ( ) , 0 < .u p x u q x u       

Recently [24], which is to extend some of these results 
to a more general the problem  

= ( ) ( ) ( ) ( ) , 3,

( ) | | .

Nu p x f u q x g u in R N

u x as x

  


  
 

Quasilinear elliptic problems with boundary blowup  

 2| | = ( ( )), ,

| = ,

mdiv u u f u x x

u





   



      (4) 

have been studied, see [9,25,26] and the references 
therein. Diaz and Letelier [10] proved the existence and 
uniqueness of large solutions to the problem (4) both for 

1>,=)( muuf  (super-linear case) and   being 
of the class 2C . Lu, Yang and E.H.Twizell [25] proved 
the existence of Large solutions to the problem (4) both 
for NRmuuf =1,>,=)(   or   being a boun- 
ded domain (super-linear case) and NRm =1,  
(sub-linear case) respectively. 

Recently [27], which is to extend some results of [28] 
to the following quasilinear elliptic problem  

 2| | = ( ) ( ),

( ) ,

mdiv u u p x f u in

u x on

   


 
     (5) 

where  NR , the non-negative function )()( Cxp , 
and the continuous function f satisfies (2) and the 
Keller-Osserman condition  

1/

1 0
[ ( )] = , ( ) = ( )

smF s ds F s f t dt
          (6) 

then the author also consider the nonexistence for the 
non-negative non-trivial entire bounded radial solution 
on NR  of (5) when p  satisfies  

1/( 1)
* *0 | |=

( ( )) = , ( ) = ( ).min
m

x t
tp t dt p t p x

        (7) 

On the other hand, if f  does not satisfy (6), that is  



 <)]([ 1/

1
dssF m , we can obtain from Lemma 2.4 in  

[29] that  

1/( 1)1

1
<

( )m
ds

f s



               (8) 

which is also shown in [30]. In this paper, we will 
require the above integral to be infinite, that is  

1/( 1)1

1
=

( )m
ds

f s



              (9) 

which is a very important condition in our main results. 
Furthermore, motivated by the results of [24], we also 
admit the following condition which is opposite to (7), 
that is  

* 1/( 1) *

0 | |=
( ( )) < , ( ) = ( ).max

m

x t
tp t dt p t p x

       (10) 

As far as the authors know, however, there are no 
results which contain the existence criteria of positive 
solutions to the problem (1). In this paper, we prove the 
existence of the positive large solutions for the problem 
(1). When 2=p , the related results have been obtained 
by A.Lair and A.Mohammed [24]. The main results of 
the present paper contain extension of the results in [24] 
and complement of the results in [10,25,26]. 

The plan of the paper is as follows. In Section 2, for 
the convenience of the reader we give some basic 
lemmas that will be used in proving our results. In 
Section 3 we state and prove the main results. Section 4 
contains some consequences of the main theorems, and 
other results. In Section 5 we present an Appendix where 
we state and prove three lemmas needed for proofs in 
previous sections.  
 
2. Preliminary 
 
In this section, we give some results that we shall use in 
the rest of the paper. 

Lemma 2.1.(Weak comparison principle)(see [25]) 
Let   be a bounded domain in NR ( 2)N   with 
smooth boundary   and )(0,)(0,:   is con- 
tinuous and non-decreasing. Let )(, 1,

21  mWuu  satisfy 
2

1 1 1

2
2 2 2

| | ( )

| | ( )

m

m

u u dx u dx

u u dx u dx

  

  



 



 

   

    

 
 
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for all non-negative )(1,
0  mW . Then the inequality 

 onuu 21  

implies that  

.21  inuu  

Lemma 2.2. Let f  verify (9), and )[0,)[0,:   
be continuous. Then  

1 1( ( ( ))) = ( ) ( ), > 0

(0) = , (0) = 0

N N
mr v r r r f v r

v v




   



    (11) 

admits a non-negative solution v  defined on )[0, , 
where sss m

m
2|=|)(  . If in addition f  is nondecrea- 

sing and   satisfies (7), then )(rv  as r . 
Proof. First we note that (11) has a solution )(0,1 RCv  

for a maximal R<0 . As a consequence of (7) we 
claim that =R . By way of contradiction, let us 
suppose that <<0 R  instead. Then we must have 

)(rv  as  Rr . Let  

0>},<0:)({sup:=)( ttsst   

Then   is nondecreasing, and clearly )()( tt    
for 0>t . Integrating Equation (11) from 0  to r  
yields 

1 1

0
( ( )) = ( ) ( ( ))

rN N
m v r r s s f v s ds        (12) 

From (12) we see that 0)(  rv , therefore, v  is a 
non-decreasing function and we can obtain from (12)  

that ( ( )) ( ) ( ( ))m

r
v r r f v r

N
  . Then we can obtain  

1/( 1)
1/( 1)

1/( 1)0 0

( )
( )

( ( ))

m
r r m

m

v t t
dt t dt

Nf v t







    
    

That is  
1/( 1)

( ) 1/( 1)
1/( 1) 0

1
( )

( )

m
v r r m

m

t
ds s ds

Nf s






   
    

Letting Rr  , and recalling that )(rv , we 
conclude that  

1/( 1)
1/( 1)

1/( 1) 0

1
( )

( )

m
R m

m

R
ds s ds

Nf s



 


   
    

which is an obvious contradiction. Thus, indeed v  is 
defined on )(0, . 

We now show that )(rv  as r . For this we 
will use (7) on  . Integrating the equation in (11) we 
find  

 1/( 1)
1 1

0 0

1/( 1)
1/( 1)

*0

( ) = ( ) ( ( ))

( )
( ( ))

mr tN N

m
r m

v r t s s f v s ds dt

f
t t dt

N

 

 


 






   
 

 


 

That is  

1/( 1)
*0

( ) ( , , ) ( ( )) , > 0
r mv r C m N t t dt r     

and as a consequence of (7) we conclude that )(rv  
as r . 
 
3. Main Theorems 
 
In this section, we will state the first of our main results. 

Theorem 3.1. Under the following hypotheses 

     1

1
1 ,    0;

t
H t ds t

f s
    

     
       

      
   

1/ 1 1/ 1*
*0

1/ 1

*0

2  

,  ,

m m

m t

H p t p t

tf p t dt p t sp s ds

 





  




 

where   is the inverse of  ; 

          1/ 1
*

0
3

m

H tq t g p t dt


   

Let f  and g  satisfy (2). Furthermore, assume that (9) 
and (10) hold. If p  satisfies (7), then (1) admits a 
solution. 

Proof. Let v  be an entire radial large solution of 
)(|)(|=)|(| *

2 vfxpvvdiv m    such that =(0)v  for 
some 1<<0  . This is possible by Lemma 2.2, since 
f  satisfies (9) and *p  satisfies (7). Thus v  is a 

super-solution of (1). We proceed to construct a 
sub-solution u  of (1) such that vu   on NR . Then 
by the standard regularity argument for elliptic problems, 
it is a straight forward argument to prove that (1) would 
have a solution w  such that vwu   on NR . For 
each positive integer n , let nu  be a solution of 

2

* *

(| | )

= (| |) ( ) (| |) ( ),0.4 ,

( ) = ,0.4 ,

m

n

n

div u u

p x f u q x g u cm in B

u x v cmon B

  



 

   (13) 

where )(0,= nBBn  is the ball of radius n  centered at 
the origin. That such a solution exists is shown in 
Lemma 5.2 of Appendix. Then we note that each nu  is 
a radial solution and that  

10 < , .n n nu u v on B    

Let  

( ) := ( ), .lim
N

n
n

u x u x x R


  

Since each nu  is radial, it follows that u  is radial as 
well. By a standard argument we can show that u  is a 
solution of the differential equation in (1). Clearly vu   
on NR . So We only prove that u  is nontrivial and that 

)(xu  as || x . 
Recalling that nu  and v  are radial and that  

)(=)( nvnun  we see that 
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   
1 1 * * 1/( 1)

0 0

1/( 1) 1/( 1)
1 1 1 1

* *0 0 0 0

(0) ( ( ( ) ( ) ( ) ( )) )

= (0) ( ) ( ) (0) ( ) ( )

n tN N m
n n n

m mn t n tN N N N
n

u t s p s f u q s g u ds dt

v t s p s f v ds dt v t s p s f u ds dt

  

 
   

 

  

 

   
 

for 20,  mx , we can use the inequality  1)1/(1)1/( 1)(1   mm xx , then we obtain  

   
 

1/( 1) 1/( 1)
1 1 * 1 1 *

0 0 0 0

1/( 1)
1 1

*0 0

(0) ( ) ( ) ( ) ( )

( ) ( ) (0) =

m mn t n tN N N N
n n n

mn tN N
n

u t s p s f u ds dt t s q s g u ds dt

t s p s f u ds dt v 

 
   


 

 

 

   

 
 

that is  

 
 

(1 )/ ( 1) 1 * 1/( 1) 1 1/( 1)
*0 0 0

1/( 1)
1 1 *

0 0

(0) ( ( ( ) ( ) ) ( ( ) ( ) )

( ) ( ) (0) =

n t tN m N m N m
n n n

mn tN N
n

u t s p s f u ds s p s f u ds dt

t s q s g u ds dt v 

     


 

 

 

  

 
 

Since )(* sp  is increasing and )(* sp  is decreasing, so 

   
   

1/( 1) 1/( 1)
(1 )/( 1) 1 * 1

*0 0 0

1/( 1)
(1 )/( 1) * 1/( 1) 1 1/( 1) 1 1/( 1)

*0 0 0

* 1/( 1) 1/(
*0

( ) ( ) ( ) ( )

(( ) ( ) ( ( )) ( ) ( ) ( ( )) )

( ) ( ) ( )

m mn t tN m N N
n n

mn t tN m m N m N m
n n

n m m

t s p s f u ds s p s f u ds dt

t p t s f u s ds p t s f u s ds dt

p t p

 
   


      



  
 

 

 

  

  

    
  

 

1/( 1)
1) (1 )/( 1) 1

0

1/( 1)
* 1/( 1) 1/( 1)

*0 0

* 1/( 1) 1/( 1) 1/( 1)
1 *0

( ) ( ( )

( ) ( ) ( ) ( ) ( ( ))

( ) ( ) ( ) ( ) ( ) ( ( ( )))

mtN m N
n

mn tm m
n

n m m m
n

t t s f u s ds dt

p t p t f u s ds dt

C m p t p t tf u t dt


   


 

  

 

 



 



 

and 

   
1/( 1) 1/( 1)1 1 * *

20 0 0
( ) ( ) ( ) ( ) ( ( ))

m mn t nN N
n nt s q s g u ds dt C m tq t g u t dt

     
Therefore we get 

   1/( 1)* 1/( 1) 1/( 1) 1/( 1) *
1 * 20 0

(0) ( , ) ( ) ( ) ( ) ( ) ( ( )) ( , ) ( ) ( )
mn nm m m

n n nu C m N p t p t tf u dt C m N tq t g u dt 
          (14) 

Now, let )(t  be the inverse of the increasing 
function defined in (9). We note that 1)( t  for all 

0t . Furthermore, we have  
0.>)),(())((=)()),((=)( ttftfttft    

Let w  be an entire large solution of |)(|= * xpw  
such that 0=(0)w . Set ))((:=)( xwxa  . Then 

)(|)(|* afxpa  . Since  
0>(0)=>1(0))(=(0) vwa   , we invoke Lemma 

2.1 in [24] to conclude that )()( xaxv   for all 
x NR .  

Moreover, ,)(:=)()( *0
dtttprprw

r

  we have  

|))(|()( xpxv  . 
Now, recalling that vun   for all Nn  we see that 

* * *

* 1/( 1) 1/( 1) 1/( 1)
*

* 1/( 1) 1/( 1) 1/( 1)
*

* 1/( 1) 1/( 1) 1/( 1)
*

( ) ( ( )) ( ) ( ( )) ( ) ( ( ( ))),

(( ) ( ) ( ) ( ))( ( ( )))

(( ) ( ) ( ) ( ))( ( ( )))

(( ) ( ) ( ) ( ))( ( ( ( ))))

n

m m m
n

m m m

m m m

tq t g u t tq t g v t tq t g p t

p t p t tf u t

p t p t tf v t

p t p t tf p t





  

  

  

 



 

 

 

Take note of (9) and (10), we invoke the Lebesgue 
dominated convergence theorem to infer from (14) that  

 
 

* 1/( 1) 1/( 1) 1/( 1)
1 *0

1/( 1)*
2 0

(0)

( , ) ( ) ( ) ( ) ( ) ( ( ))

( , ) ( ) ( ) > 0.

n m m m

mn

u

C m N p t p t tf u dt

C m N tq t g u dt 

  



 

 





 

This shows that u  is nontrivial. Now we note that  

  
 

1/( 1)
1 1 * *

0 0

1/( 1)
1 1 *

0 0

( ) = (0)

( ) ( ) ( ) ( )

( ) ( ) .

n n

mr tN N
n n

mr tN N
n

u r u

t s p s f u q s g u ds dt

t s p s f u ds dt


 


 

 



 

 

 

Recalling that vun   for all n , we invoke the 
Lebesgue dominated convergence theorem again, on 
letting n   

 1/( 1)
1 1 *

0 0
( ) ( ) ( ) .

mr tN Nu r t s p s f u ds dt


     
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Since u  is nontrivial we see that 0>)
2

( 0ru  for 
some 0>0r . Thus for 0> rr , we have  

dtdsspst
r

ufru
m

NtNr

r

m
1)1/(

*1

0

1

0

01)1/( )()
2

()(


 












   

then  

dtttp
N

r
ufru mr

r

m
m 1)1/(

*
0

1)1/(

01)1/( ))((
1

)
2

()( 


 













  

Therefore, as a consequence of (7) we see that 
)(xu  as || x . 

To show our next main result, now we set p  is c - 
positive on   (i.e., for any 0x  satisfying 0=)( 0xp , 
there exists a domain 0  such that  000 ,x , 
and 0>)(xp  for all 0x .) we know that p  is 
c -positive on NR  if and only if there is a sequence 

n  of smooth bounded domains with 1 nn  for 
each n  such that nn

 1=

N R  and p  is c -positive 
on each  . It is easy to see that if   is a non-negative 
and locally H o lder continuous function in NR  that 
satisfies (10), then the following problem admits a 
positive solution.  

2(| | ) = ( ),

( ) 0, | |

m Ndiv w w x x

w x x

   


 

R
    (15) 

In fact  

.)(=)(
1)1/(

*1

0

1

||
dtdssstxv

m
NtN

x









    

is a super-solution of (15) such that 0)( xv  as 
|| x . On the other hand, 0 is a sub-solution of (15), 

(See [31], Lemma 3) the assertion follows. 
Theorem 3.2. Suppose f  and g  satisfy (2). If (1) 

has a solution, f  satisfies (8) and p  is c -positive in 
NR , (3) admits a solution. Conversely, if gf   

satisfies (8), (15) admits a non-negative solution with 
)()(=)( xqxpx  and )}(),({min:=)( xqxpx  

is c -positive, then (1) has a solution. 
Proof. Let }{ n  be a sequence of bounded smooth 

domains in NR  as provided in the definition of the 
c -positivity of p . 

Suppose (1) has a solution, say v  is a solution. For 
each n , the problem  

2(| | ) = ( ) ( ),

( ) = ,

m
n

n

div u u p x f u x

u x x

   


 
     (16) 

has a solution( see [29]). For each positive integer n , let 

nu  be a solution of (16). Then by Lemma 2.1 it follows 
that  

.),()()( 1 nnn xxuxuxv    

A standard procedure (for example, see [30]) can be 
used to show that  

,),(lim:=)( N
n

n
xxuxu R


 

is the desired solution of (3). For the converse, we let nu  
be a solution of the problem  

2(| | ) = ( ) ( ) ( ) ( ),

( ) = ,

m
n

n

div u u p x f u q x g u x

u x x

    


 
 (17) 

The existence of such a solution is demonstrated in 
Lemma 5.3 of Appendix. It easily follows that the 
sequence }{ nu  is a non-increasing sequence. Let 

( ) = ( ), .lim
N

n
n

u x u x x


R  

A standard argument shows that u  is a solution of 
the quasilinear equation in (17). Thus we need only show 
that u  is nontrivial and that )(xu  as || x . 
For this we consider the following function  

1/( 1)

1
( ) = , > 0,

( )mt
t ds t

h s




        (18) 

where )()(:=)( tgtfth  . Obviously, (18) is finite for 
all 0>t . We also notice that  

0>
))(1)((

)(
=)(0,<

)(

1
=)(

1)1/(1)1/( mmm thm

th
t

th
t  


   

Now fix 0> , and let  

nnn xxuxv  ),)((=)(  . Note the sequence nv  is 
nondecreasing. Moreover, a simple computation shows 
that 

2 1 2

2

1

(| | ) =| ( ) | (| | )

( 1) | ( ) | ( ) | |

| ( ) | ( ( ) ( ) ( ) ( ))

( ) ( ) ( ) ( )
= ( ) ( )

( )

m m m
n n n n n

m m
n n n

m
n n n

n n

n

div v v u div u u

m u u u

u p x f u q x g u

p x f u q x g u
p x q x

h u

 

   

 



  





     

     

  


 



 

We can also note that 0=nv  on n . Let w  be a 
solution of (15). Thus by Lemma 2.1 we see that wvn   
on n  for all n , letting n , and then 0  we 
see that wu )(  on NR . Thus 0))(( xu  as 

|| x , that is )(xu  as || x .  
 
4. Consequences and Related Results 
 
We can obtain some consequences of the main theorems, 
and other results that are of independent interest. 

Theorem 4.1. Let f  and g  be continuous, nonde- 
creasing functions such that gf   satisfies (9), and 
Suppose qp   is nontrivial. If there is a solution to  

2(| | ) ( ) ( ) ( ) ( ), , 3

( ) , | |

m Ndiv u u p x f u q x g u x R N

u x as x

      


 
(19) 

then qp   satisfies (7). 
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Proof. Let u  be a solution of (19). Let v  be a 
solution of the initial value (11) with *)(= qp  , f  
replaced by gf   and 0=   where 0  is chosen 
such that (0)>0 u . Since gf   satisfies (9), we 
recall from Lemma 2.2 that v  is defined on )[0, . 
Then |)(|=)( xvxw  is a solution of  

)))(())((|)((|)(=)|(| *2 xwgxwfxqpwwdiv m   , 

and hence )()()|(| 2 wqgwpfwwdiv m    on NR . 
Since 0>)(rv  we see that Arv )(  as r , for 
some A<0 . Assume that <A  so that Axw )(  
for all NxR . Since )(xu  as || x , we see 
that for some R , we have RxxuAxw  ||),()( . 
Thus )()( xuxw   on Rx |=|  and therefore by Lemma 
2.1 we find that )()( xuxw   on )(0, RB . But this 
contradicts the choice that (0)>(0) uw . So we have 

=A , then  ||,)( xasxw . From Equation (11) 
we find  

 
 

1/( 1)
1 1 *

0

1/( 1)
1 1 *

0

( ) = ( ) ( )( )( ( ))

( )( ( )) ( ) ( )

mrN N

mrN N

v r r t p q t f g v t dt

r f g v r t p q t dt


 


 

  

  




(20) 

Dividing (20) through by ))(()( 1)1/( rvgf m  and 
integrating the resulting inequality on )(0, r  we have  

 
1/( 1)0

1/( 1)
1 1 *

0 0

( )

( ) ( ( ))

( ) ( )

r

m

mr tN N

v t
dt

f g v t

t s p q s ds dt




 




 



 
 

That is  
( )

1/( 1)
0

1/( 1)
* 1/( 1)

0

1

( ) ( )

1
( ( ) ( ))

v r

m

m
r m

dt
f g t

t p q t dt
N

 






   
 




 

Letting r  and recalling that gf   satisfies 
(9), the claim is proved. 

As a consequence of Theorem 3.1 and Theorem 4.1 
we also obtain the following corollaries. 

Corollary 1. Suppose (2) and (9) hold for f . Further, 
let p  satisfy (10). (3) admits a solution if and only if 
p  satisfies (7). 

Proof. If p  satisfies (7) then Theorem 3.1, with 
0=)(xq  shows that (3) has a solution. The converse 

follows from Theorem 4.1 on taking 0)( xq  again. 
The next corollary provides sufficient conditions for 

the existence and nonexistence of solutions to (1) when 
both p  and q  satisfy (7). 

Corollary 2. Suppose f  and g  satisfy (2) and p  
and q  satisfy (7). If gf   satisfies (9), then (1) has 
no solution. On the other hand, (1) admits a solution if 

gf   satisfies (8) and the function  
)}(),({min)( xqxpx   is c -positive on NR . 

Proof. By way of contradiction,we can obtain the first 
statement from Theorem 4.1. Since qp   satisfies (10) 
and the remark noted just before Theorem 3.2 shows that 
(15) admits a solution with qpb = . Thus the second 
part of the corollary is an immediate consequence of 
Theorem 3.2.  
 
5. Appendix 
 
In this appendix we state and prove results that have 
been used in the proofs of the main results of the paper. 

We start by proving the existence of a solution to the 
following Dirichlet problem on a bounded smooth domain 
  in NR .  

2(| | ) = ( ) ( ) ( ) ( ), ,

( ) = ( ), .

mdiv u u p x f u q x g u in

u x x on

    



(21) 

Lemma 5.1. Let  NR  be a smooth bounded 
domain and let f  and g  satisfy (2). Let )(2 C  
be positive. If v  is a positive super-solution of (21), 
then the problem (21) has a solution u  such that 

vu <0  on  . 
Proof. Let )(min:= xx   . Obviously, 0> . 

Now we set  

,))((=)( 1)1/(

0
dssht mt   

where )()(=)( sgsfsh   for all 0s . An application 
of L'H ô pital’s Rule shows that tt )(  for all 

<<0 t  and some 0> . Without of generality we 
can suppose that  )(<0 . Finally, let z  be a 
solution of the Dirichlet problem  






 

.,=)(

,),()(=)|(| 2

onxz

inxqxpzzdiv m


 

Then the maximum principle shows that )(<0 xz  
on  , we define ))((:=)( xzxw   for all x , we 
note that )()( xzxw  for all x . A simple computation 
shows that  

0>
))(1)((

)(
=)(0,>)(=)(

21)1/(
1)1/(








mm

m

thm

th
ttht   

and  
2

1 2 2

1

(| | )

=| | (| | ) ( 1) | | | |

| | ( ( ) ( )) = ( ( ) ( ))( ( ) ( ))

( ( ) ( ))( ( ) ( )) ( ) ( ) ( ) ( )

m

m m m m

m

div w w

' div z z m ' '' z

' p x q x f z g z p x q x

f w g w p x q x p x f w q x g w

  





  



 

    

   
    

 

and )()()( xxw    for x . Thus w  is a 
sub-solution of (21) and v  is a super-solution of (21) 
such that vw   on  . By the maximum principle 
we note that vw   on  . Thus by lemma 1 in [31] we 
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conclude that (21) has a solution u such that vuw   
which is what we want to show. 

The following lemma was used in the proof of 
Theorem 3.1. 

Lemma 5.2. Let ))[0,),([0,, Cba  and B  be a 
ball in NR  centered at the origin. If f  and g  are 
nondecreasing on )[0, , then given a positive constant 
 , there exists a radial solution to the problem  

2(| | ) = (| |) ( ) (| |) ( ), ,

( ) = , ,

mdiv u u a x f u b x g u in B

u x on B

   



(22) 

Proof. Let }{ ka  and }{ kb  be decreasing sequences 
of H o lder continuous functions which converge uni- 
formly on B  to a  and b  respectively(See [32]). Then 
by Lemma 5.1, for each k  there exists a nonnegative 
solution ku  of  

2(| | )

= (| |) ( ) (| |) ( ), ,

( ) = , .

m
k k

k k k k

k

div u u

a x f u b x g u in B

u x on B

  



 

 

Since the sequence }{ ka  and }{ kb  are decreasing,it 
is easy to show that }{ ku  is increasing. Of course,it is 
also bounded above by  . Thus it converges, and 
assume uuk  . Since ku  satisfies the integral equation  

  1/( 1)
1 1

0 0

( ) = (0)

( ) ( ( ) ( ) ( ( )))

k k

mr tN N
k k k k

u r u

t s a s f u s b s g u s ds dt


 



 
 

the function u  will satisfy the integral equation  

  1/( 1)
1 1

0 0

( ) = (0)

( ) ( ( )) ( ) ( ( )) .
mr tN N

u r u

t s a s f u s b s g u s ds dt


 



 
 

Since =)(Ruk  for each k , where R is the radius of 
the ball B , it is clear that =)(Ru . Thus u is a non- 
negative solution of problem (22) on B as claimed. 

Finally we state and prove a lemma that was used in 
the proof of Theorem 3.2. 

Lemma 5.3. Let  NR  be smooth. Suppose f  
and g satisfy (2). If f satisfies (6) and p  is c -positive 
on  , then the problem  

2(| | ) = ( ) ( ) ( ) ( ), ,

( ) = , ,

mdiv u u p x f u q x g u x

u x x

    


 
(23) 

has a solution. Similarly, if instead of requiring f  to 
satisfy (6), we require only gf   to satisfy (6), and 
require },{min:= qp  to to be c -positive on  , then 
(23) has a solution. 

Proof. Since p  is c -positive and f  satisfies (6), let 
v  be a large solution of )()(=)|(| 2 vfxpvvdiv m    
on   (see [29]). Now for each positive integer k , let 

kw  be a solution (See Lemma 5.1) of  

2(| | )

= ( ( ) ( ))( ( ) ( )), ,

( ) = , ,

mdiv w w

p x q x f w g w x

w x k x

  


  
 

 

By Lemma 2.1 we see that  

  xxvxwxw kk ),()()( 1  

If )(lim=)( xwxw kk  , then by a standard procedure 
we conclude that w  is a solution of  

))()())(()((=)|(| 2 wgwfxqxpwwdiv m    on   
such that vw  . Since w  is a sub-solution, and v  is 
a super-solution of the differential equation in (23), we 
conclude that (23) has a solution u  with vuw   
(See [31]). 

Similarly.We can obtain the second part by defining 
v  in this case as a large solution of  

))()()((=)|(| 2 vgvfxvvdiv m     on   and the 
argument is as the same as the previous process. 
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