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ABSTRACT 

In recent times genetic network analysis has been 
found to be useful in the study of gene-gene inter-
actions, and the study of gene-gene correlations is a 
special analysis of the network. There are many 
methods for this goal. Most of the existing methods 
model the relationship between each gene and the 
set of genes under study. These methods work well 
in applications, but there are often issues such as 
non-uniqueness of solution and/or computational 
difficulties, and interpretation of results. Here we 
study this problem from a different point of view: 
given a measure of pair wise gene-gene relationship, 
we use the technique of pattern image restoration to 
infer the optimal network pair wise relationships. 
In this method, the solution always exists and is 
unique, and the results are easy to interpret in the 
global sense and are computationally simple. The 
regulatory relationships among the genes are in-
ferred according to the principle that neighboring 
genes tend to share some common features. The 
network is updated iteratively until convergence, 
each iteration monotonously reduces entropy and 
variance of the network, so the limit network 
represents the clearest picture of the regulatory 
relationships among the genes provided by the data 
and recoverable by the model. The method is illus-
trated with a simulated data and applied to real 
data sets. 

Keywords: Convergence, Gene-Gene relationship, Neigh- 
borhood, Pattern analysis, Relationship measure. 
 
1. INTRODUCTION 

A gene regulatory network (also called a GRN or genetic 
regulatory network) is a collection of DNA segments in 
a cell which interact with each other (indirectly through 
their RNA and protein expression products) and with 
other substances in the cell, thereby governing the rates 
at which genes in the network are transcribed into 

mRNA. From methodology point of view, genetic net-
works are models that, in a simplified way, describe 
some biological phenomenon from interactions between 
the genes. They provide a high-level view and disregard 
most details on how exactly one gene regulates the ac-
tivity of another. The gene-gene pair wise relationships 
provide a special insight of the network and are of inter-
est in the study. 

Our work is closely related to that of genetic network 
analysis, and we first give a brief review of the methods. 
Some methods are deterministic, such as differential 
(difference) equation models [1-3], which may not be 
easy to solve nor have unique solutions. Since the ge-
netic network is a complex system, any artificial model 
can only explain part of its mechanism; the unexplained 
parts are random noises, so we prefer a stochastic model. 
Existing stochastic methods for this problem including 
the linear models [4,5] or generalized linear models [6,7], 
the Bayesian network [8,9] etc. All these methods have 
their pros and cons, but have the common disadvantage 
that the solution may not be unique and the results are 
not easy to interpret. Also, when the network size ex-
ceeds that of the data, these methods break down. In 
genetic work the pair wise regulatory relationships 
among the genes are important. For such data, it is of 
interest to investigate the underlying patterns that may 
have biologic significance, in particular those arising 
from pair wises regulatory relationships among the 
genes. Here we study this problem from a different point 
of view. Given a measure of pair wise gene-gene rela-
tionship, we compute the measures from the data, and 
use the technique of pattern recognition and image res-
toration to infer the underlying network relationships. 
The pair wise regulatory relationships among the genes 
are inferred according to the principle that neighboring 
genes tend to share some common features, as neigh- 
boring genes tend to be co-regulated by some enhancers 
because of their close proximity [10]. In this method, the 
solution is unique and computationally simple, the re-
sults are easy to interpret and the network can be of any 
size. In the following we describe our method, study its 
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basic properties, and illustrate its application. This me-
thod is used to reveal the true relationships of structured 
high dimensional data array [11-14]. 

2. MATERIALS AND METHODS 

The gene expression data are generally time dependent, 
as in Iyer et al. [15]. Let ( )ijX t  ( 1,..., ; 1,i m j   
..., ; 1,... )n t k  be the observed gene expression re-
sponse for subject i, gene j at time t. Denote 

1( ) ( ( ),..., ( )) 'i i inx t x t x t  be the observations across all 
the genes for subject i, and we use ( )x t  to denote a 
general sample of the ( )ix t ’s. Often for this type of data, 
m and k are in the low tens, and n in the tens to thousands. 

The commonly used differential equation model for 
genetic network analysis is a set of first order homogeneous 
differential equations with constant coefficients, in the 
simple case, has the form 

( )
( )

dx t
Wx t

dt
 , 

where ( )ijW w  is the n × n matrix of unknown regu-

latory coefficients to be solved. This type of models and 
its more specific and complicated variations characterize 
well the dynamic of the network over time. The base 
solution of the above equation set is the matrix exponen-

tial 1
0

: / !: ( ( ),..., ( )) 'tW r r
n

r

e t W r v t v t




  , and the general 

solution of it has the form 
1

( ) ( )
n

i j j
j

x t c v t


  x_{i} (t), 

(i = 1,...,m), where the jc ’s are constants to be deter- 
mined by initial conditions from the data. So there are in 
total n² + n = n(n + 1) coefficients, n2 of them from W 
and n from the jc ’s, to be determined from a total of 
mnk data points. When mnk < n(n + 1) these coefficients 
can not be determined; when mnk ≥ n(n + 1) they may 
be uniquely or non-uniquely determined, or may still be 
not determined. For differential (difference) equation 
models more complicated than this, solutions are more 
difficult to get. 

The commonly used stochastic model is the multi-
variate linear model 

( 1) ( ) ,i i ix t Wx t     ( ) 0,iE    (i = 1, …, m; t = 1, …, 

k-1) 

where 1( ,..., ) 'i in    is the random deviations unex-
plained by the model. Denote ( ) ( ( ))ijX t x t , if X′(t)X(t) 
is non-singular, the least-squares solution of the above 
model is W = X’(t + 1) X(t) (X’(t) X(t))-¹, and it may have 
multiple solutions for different t. For '( ) ( )r rX t X t  to be 
non-singular, one must have n ≤ m. Even for n < m, 

'( ) ( )r rX t X t  may not necessarily be non-singular. This 
puts an immediate restriction on the size of the network 

to be analyzed. Also, the solution of the above model 
may not be unique due to different time points. 

For these reasons, we study the problem from a dif-
ferent point of view; by analyze the pair wise gene-gene 
relationships in the network. In the following we de-
scribe our model in which there is always an unique so-
lution, the result is easy to interpret, and there is no re-
striction on the size of the network. Since the pattern in 
the genetic network is based on the principle of neigh-
boring similarity, the order of the genes matters in the 
study, and generally we assume the genes are arranged in 
their chromosome order. 

First we need a measurement for the relationship be-
tween any pair of genes, and the network can be repre-
sented by the matrix of the pair wise relationships. For 
large network, linear relationship is not adequate to use, 
as most of the coefficients will be very small. Also, as 
mentioned above, such model in this case has no solu-
tion because of the small sample size. Pearson’s correla-
tion is a good choice for this purpose, other choices in-
cluding Kendal’s tau and Spearman’s rho, etc. Here we 
illustrate the method with Pearson’s correlation, and our 
goal is to infer the triangular correlation matrix 

1( )ij i j nR r     from the observed data, where ijr  is the 
Pearson’s correlation coefficient between genes i and j. 
As usually the number m of individuals is small (some-
times as few as 2), estimate the correlations using the 
data at each time point alone is inadequate. So we use all 
the data to estimate them. An empirical initial version of 
these correlations are 

( )

1 1

( ( ) ( ))( ( ) ( ))1

( ( )) ( ( ))

m k
ri i sj jo

ij
r s i j

x t x t x t x t
r

mk Var x t Var x t 

 
   , 

( (1 )i j n                                  (1) 

where 
1

1
( ) ( ),

n

i ri
r

x t x t
m 

   

2

1

1
( ( )) ( ( ) ( )) ,

n

i ri i
r

Var x t x t x t
m 

   (i = 1,...,n; s=1,...,k). 

here the ( )rix t ’s are not i.i.d. over the time t’s, and the 
sample size mk is often not large, so the above empirical 
correlations are very crude evaluations of the true corre-
lations ijr ’s. The initial table (0) (0)( :1 )ijR r i j n     
is used as the raw data for the next step analysis. For 
each fixed i the observations ( )ix t s at different time 
conditions reduced the common features in the data, this 
table is biased as an estimate of R. We need to restore 
their values according to the basic property of the ge-
netic regulatory system. Many reports have shown that 
nearby genes tend to have similar expression profiles 
[16-19], thus nearby pairs of genes tend to have similar 
relationships, and their correlations tend to be close. This 
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is just the same principle as used in image restoration of 
data arrays of any size. In the following we use this 
technique to reduce the bias and improve the estimate of 
R based on the observation (0)R . 

Meloche and Zammar [14] considered a method for 
image restoration of binary data, here we adopt their idea 
and revise their method to gene expression analysis for 
continuous data. We assume the following model 

(0) ,ij ij ijr r    ij  ~ 2(0, )N  , (1 ≤ i < j ≤ n)     (2) 

for some unknown 2  > 0, where the ij ’s represent 
the part of measurements unexplained by the true reg-
ulatory relationships in the model. Define the neighbor 

(0)
ijR  of (0)

ijr  to be the collection of the nine immedi-
ate members of (0)

ijR  of (0)
ijr  = { (0) :| | 1,abr a i   

| | 1b j  }, which includes (0)
ijr  itself at the center. 

For (0)
ijr ’s on the boundary of (0)R the definition is 

modified accordingly. For example, (0)
1,2R  and 

(0)
1,n nR   has only three members, (0)

1, jR  (3 < j < n-1) 
has six members, etc. Larger neighbors of different 
shapes can also be considered; here we only illustrate 
using the above neighbor systems. We assume the 

(0)
ijr ’s only depend on their neighbors (0)

ijR ’s. The aim 
is to provide estimates ijr


’s for the true ijr ’s based on 

the records (0)R . We assume the estimates have the 
form for some function h(⋅) to be specified. The per-
formance of the estimates will be measured by the aver-
age conditional mean squared error. 

 
(0)( )ij ijr h R , (1≤ i < j ≤ n),           (3) 

2 (0)

1

2
[( ) | ]

( 1) ij ij
i j n

E r r R
n n   


  

        (4) 

The optimal set of estimates is the one which mini-
mizes (4). Although ijr  is deterministic, we may view 
it as a realization of the random variable IJr  with (I, J) 
uniformly distributed over the integer set 
 {( , ) :1 }S i j i j n    . So (4) can be rewritten as 

2 (0) 2 (0)

(0) 2 (0)

[( ) | ] [( ) | ]

[( ( ) ) | ]

IJ IJ IJ IJ IJ

IJ

EE r r R E r r R

E h R r R

  

 

 
 

Thus by (3), the minimizer of (4) is achieved by 
* (0) (0) (0): ( ) ( | ) ( | )IJ IJ IJ IJ IJr h R E r R E r R  

, and so 
* (0) (0)( ) ( | ).ij ij IJr h R E r R 

 

To evaluate the above conditional expectation, we 
need a bit more preparation. Note 2  is estimated by 

2 (0) 2

( , )

2
( )

( 1) ij
i j S

r r
n n




 
 

, (0)

( , )

2

( 1) ij
i j S

r r
n n 


  . 

Denote 2( | )t   the normal density function with 
mean 0 and variance 2 . Denote ijS  as the collection 

of indices for (0)
ijR . Given (0)

ijR , for ( , ) ijI J S , view 
(0)

IJr  as a random vector over indices (I,J). We define 
the conditional distribution of (0)

IJr  as 
(0) (0) (0)

(0) (0)

( | )

{# } 1

| | | |

IJ uv ij

ij uv

ij ij

P r r R

member in R r

S S




 

   

In the above we used the fact that the (0)
uvr are con-

tinuous random variables, so the collection {members in 
(0)

ijR = (0)
uvr }={ (0)

uvr } almost surely. The correspond-
ing conditional probability is defined as 

(0)

(0) (0) 2 (0) (0)

(0) (0) 2 (0) (0)

( , )

(( , ) ( , ) | )

( | ) ( | )

( | ) ( | )
ij

ij

uv ij uv ij

uv ij uv ij
u v S

P I J u v R

r r P r R

r r P r R

 
 



 




, (u,v) ijS  

By (2), we deduce (0) (0)( | , ( , ) ( , ))IJ IJ uvE r R I J u v r  , 
so we have 

(0) (0)

( , )

(0)

( | ) ( | , ( , )

( , )) (( , ) ( , ) | )

ij

ij IJ ij IJ ij
u v S

ij

r E r R E r R I J

u v P I J u v R



 

 



 

(0) (0) (0) 2 (0) (0)

( , )

(0) (0) 2 (0) (0)

( , )

( | ) ( | )

( | ) ( | )
ij

ij

uv uv ij uv ij
u v S

uv ij uv ij
u v S

r r r P r R

r r P r R

 

 












 

(0) (0) (0) 2 (0) (0) (0) 2

( , ) ( , )

(0) (0) 2 (0) (0) 2

( , ) ( , )

( | ) ( | )

( | ) ( | )
ij ij

ij ij

uv uv ij uv uv ij
u v S u v S

uv ij uv ij
u v S u v S

r r r r r r

r r r r

   

   
 

 

 

 
 

 

 




,      

(i, j) ijS                            (5) 

The matrix ( )ijR r
 

 is our one-step restored esti-
mate of the genetic correlation network R, we also de-
note it by (1) (1)( )ijR R r  . 

Denote F(⋅) the operator given in (5), as 
(1) (1)( )ij ijr F R , and denote (1) (1)( )ij ijr F R   

         (1) (0) (0)( ) ( | )R F R E R R  .  
We view F(⋅) as a filter for the noises, so (1)R  is a 
smoothed version of (0)R . Let IJR r  be the random 
variable of the ijr ’s over the random index (I,J) and the 
variation of possible values of the ijr ’s, with density p(⋅), 
its uncertainty can be characterized by variance and en-
tropy, which is defined as 

H(p) = –E[log p(R)]= –  p(r)log p(r)dr. 

It is maximized or most uncertain when R is uni-
formly distributed, and has smaller value when the dis-
tribution of r is more certain. It has some relationship 
with variance. The former depends on more innate fea-
tures, such as moments, of the distribution than the latter, 
which only measures the disparity from the mean. When 
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p(⋅) is a normal density with variance 2 , then 
2( ) 1 2H p   . For many commonly used parametric 

distributions, entropy and variance agree with each other, 
i.e. an increase in one of them implies so for the other. 
But this is not always true and a general closed form 
relationship between variance and entropy does not exists. 
Variance is more popular in practice because of its sim-
plicity. 

Although generally, in the image restoration context, 
R is estimated by just applying F once, a natural question 
is what will happen if we use the operator F repeatedly? 

i.e. let ( 1) ( 1) ( ) ( )( ) ( ) ( | )k k k k
ijR r F R E R R     for k ≥ 0.        

To investigate this question, we impose the model 
( ) ( ) ,k k

ij ij ijr r    ( )k
ij  ~ ),0( )(2 kN  , (1 ≤ i < j ≤ n)  

(6) 

The estimators ( )k
ijr  ‘s are obtained by minimizing 

2 ( )

1

2
[( ) | ]

( 1)
k

ij ij
i j n

E r r R
n n   


         (7) 

and are given by 
( ) ( )( | )k k

ij IJ ijr E r R . 

similarly 2( )k  is estimated by 

2( ) ( ) ( ) 2

( , )

2
( )

( 1)
k k k

ij
i j S

r r
n n




 
 

,

( ) ( )

( , )

2

( 1)
k k

ij
i j S

r r
n n 


  . 

Since n is usually large, 2( )k  is a good estimator of 
2( )k . Corresponding to (5), we have 
( 1) ( ) ( )( | )k k k

ij IJ ijr E r R    

( ) (0) (0) 2

( , )

(0) (0) 2

( , )

( ) (0) (0) 2( )

( , )

(0) (0) 2( )

( , )

( | )

( | )

( | )

( | )

ij

ij

ij

ij

k
uv uv ij

u v S

uv ij
u v S

k k
uv uv ij

u v S

k
uv ij

u v S

r r r

r r

r r r

r r

 

 

 

 






























, (i,j) ijS  , k 1  (8) 

In the above we do not replace the (0)
ijr ’s by the 

( )k
ijr ’s in ( | )    but with 2(0) replaced by the step k 

estimator 2( )k , only for the reason of simplicity in the 
proof of the Proposition below. Finally, 2( )k  is re-
placed by 2( )k  in actual computation. 

Although few density functions are convex, many of 
them are log-convex. For example, the normal, exponen-
tial (in fact any quadratic exponential families), Gamma, 
Beta, chisquare, triangle, uniform distributions. But 
some are not, such as the T and Cauchy distributions. 

Condition A) does not require all the ( ) ( )kp  ’s to belong 

to the same parametric family, nor even to be parametric. 
Condition B) is satisfied for almost all parametric fami-
lies as few parametric families require more than the 
first two moments to determine. The only restriction we 

make is that all the ( ) ( )kp  ’s belong to the same para-

metric family. 
View ( )kr  as a random realization of the ( )k

ijr ’s and 
as of (0)R , let ( ) ( )kp  be the density function of ( )kr . 
To study the property of the algorithm, we say a 
non-negative function f(⋅) is log-convex if log f(⋅) is 
convex, and assume the following conditions 

A) ( ) ( )kp   is log-convex for all k. 
B) All the ( ) ( )kp  ’s belong to a parametric family 

which is determined by the fist two moments. 
Our algorithm has the following desirable property 

(see Appendix for the proof) 
 
Proposition. 1) Assume either A) or B), then 

( 1) ( )( ) ( ),k kH p H p   k ≥0. 

2) 2( 1) 2( )k k   , k ≥0. 

3) As k →∞, the table ( )kR  converges in 
the component wise sense: 

( ) *kR R  

for some stationary array * * (0)( , )R R R F . 
This Proposition tells us that, if the assumption of 

neighboring similarity is valid for (0)R , then the esti-
mates ( )kR  become more and more clear (less entropy), 
and more and more accurate as an estimator of R (less 
variance). So (*)R  is the sharpest picture the data (0)R  
provide and can be restored by the filter F, the innate 
regulatory relationships among the genes can be recov-
ered by filter F and provided by the data (0)R  under the 
ideal situation of no noise. Intuitively, this picture has 
some close relationship with the haplotype block struc-
tures. 

As of small sample size (mk) and large number (n(n – 
1)/2) of parameters, there is no way of talking about the 
consistency of R to R. So in general (*)R  and R may not 
equal, however our algorithm enable us to do the best 
effort we can. Convergence of ( )kR  can be accessed by 
the distance criteria: for a given > 0 (usually =1/100 or 
1/1000) 

( 1)( 1) ( ) ( )
1

2
( , ) | |

( 1)
kk k k

ij ii
i j

d R R r r
n n





  
   

 or 

( 1)( 1) ( ) ( ) 1/2
2

2
( , ) ( ( ))

( 1)
kk k k

ij ii
i j

d R R r r
n n





  
  . 
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Network at each time. We may also investigate the 
problem at each different time point t. In this case (1) 
is replaced by 

( )

1

( ( ) ( ))( ( ) ( ))1

( ( )) ( ( ))

m
ri i rj jo

ij
r i j

x t x t x t x t
r

m Var x t Var x t

 
  , (1 )i j n    

where, 
1

1
( ) ( ),

m

i ri
r

x t x t
m 

   

2

1

1
( ( )) ( ( ) ( )) ,

m

i ri i
r

Var x t x t x t
m 

   (i = 1,...,n; t = 

1,...,k) 

and (0)R (t) = ( (0) ( )ijr t : 1 ≤ i < j ≤n) be the corre-

sponding initial table at each t, and the neighborhood 
for (0) ( )ijr t  is (0) ( )ijR t  = { (0)

abr : |a – i| ≤ 1, |b – j| ≤ 

1}. In this case (6) is 
( ) ( )( ) ( ) ( ),k k

ij ij ijr t r t t   ( ) ( )k
ij t  ~ 2( )(0, ( ))kN t ,  

(1 ≤ i < j ≤ n) 

and ( ) ( ) ( )( ) ( ( ) | ( )).k k k
ij IJ ijr t E r t R t  

let 2( ) ( ) ( ) 2

( , )

2
( ) ( ( ) ( ))

( 1)
k k k

ij
i j S

t r t r t
n n




 
  , 

( ) ( )

( , )

2
( ) ( )

( 1)
k k

ij
i j S

r t r t
n n 


  . 

(8) is now ( 1) ( ) ( )( ) ( ( ) | )k k k
ij IJ ijr t E r t R    

( ) (0) (0) 2

( , )

(0) (0) 2

( , )

( ) (0) (0) 2( )

( , )

(0) (0) 2( )

( , )

( ) ( ( ) ( ) | )

( ( ) ( ) | )

( ) ( ( ) ( ) | ( ))

( ( ) ( ) | ( ))

ij

ij

ij

ij

k
uv uv ij

u v S

uv ij
u v S

k k
uv uv ij

u v S

k
uv ij

u v S

r t r t r t

r t r t

r t r t r t t

r t r t t

 

 

 

 






























, (i,j) ijS  , 

k 1  

The matrix ( ) ( )( ) ( ( ))k k
ijR t r t  is the k-step re-

stored estimate of the genetic correlation network 
( ) ( ( ))ijR t r t  at time t. The proposition is then hold 

for each fixed t. 

3. SIMULATION STUDY 

We simulate 40 genes over 12 time conditions at time 
(hour) points 1 12( ,..., )t t  = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 
12) for 6 individuals by mimicking the setting of the data 
analyzed in Iyer et al. [15]. We simulate the genes from 
6 clusters, the numbers of genes in each cluster are given 
by the vector 1 6( ,..., )n n  = (8, 6, 4, 4, 6, 12). The base-
line values of the gene expressions over time t ∈ [0,12] 

in cluster k are generated by functions of the form 

     1 2 3sin sin / 2 sin( / 3)k k k kh t a t a t a t   , (k = 

1,....,6). 

Let h(t) be the vector of length 40, with first n₁ com-
ponents given by h1(t), second n2 components by h2(t),...., 
last n6 components by h6(t). Denote 1 2 3( , , )k k k ka a a a . 

We arbitrarily choose the ka ’s as a1 = (0.54, –0.18, 

1.23), a2 = (–0.12, –0.25, 0.45), a3 = (1.0, –0.55, –0.15), 
a4 = (–0.32, –0.15, –0.65), a5 = (0.15, 0.25, 0.35) and a6 
= (–0.52, –0.45, –0.55). First we need to simulate the ijr ’s 

with coordinated patterns. We divide the 40 genes into the 
6 clusters, and assume independence among the clusters. 

Then for given a covariance matrix 1 6     
we generate the data using this  and the time condi-
tions, where k  is the covariance matrix for the genes 
in cluster k. Directly specifying a high dimensional posi-
tive matrix is not easy, we let each k  has the structure 

'k k kQ Q  , for some kQ  non-singular, so that k  
is positive definite. Note that the 'k kQ Q ’s may not be 
correlation matrices, but they are covariance matrices, so 
is  . Let kQ  be upper diagonal with dimension kn . 
The non-zero elements of Q1 are drawn from U(0.5,0.8); 
those for Q2 from U(0.2,0.4); those for Q3 from 
U(0.2,0.6), those for Q4 from U(–0.3, –0.1); those for Q5 
from U(0.6,0.9); and those for Q6 from U(–0.8, –0.6). 
Then let 1/2

1 6Q Q   . The 6 individuals are i.i.d, 
so we only need to describe the simulation of observa-
tion 1 1{ ( ) : 1,..., 40; 1,...,12}jx x t j t   of the first indi-
vidual. Note for each fixed t, 1 11 1,40( ) ( ( ),..., ( ))x t x t x t has 
covariance matrix  . We first generate 1 40( ,... )y y y  
with the components i.i.d. N(0,1), then 
          1/2

1( ) ( ) ( )x t h t y t     
is the desired sample, where for each fixed t, 

1 40( ) ( ( ),..., ( ))t t t   is the noise, with the ( )i t ’s i.i.d 
N(0,1) and independent over t. Convert the covariance 
matrix ( )ij  to a correlation matrix ( )ijR r as 

/ij ij ii jjr    only for i < j. Using the data 
( ( ))ijX x t , we compute the ( )kR ’s from (8) then use 

perspective plots to compare the restored correlations 
after convergence at step k, ( )kR , the one-step restored 

(1)R , the initial estimated (0)R  and the true simulated 
correlations R. 

After computation, the algorithm meets the conver-
gence criterion at iteration 14 with = 10–4. The distances 
between the observed, first step estimate and last step 
estimate are: d1(

(0)R , R) = 0.125, d1(
(1)R ,R) = 0.108 and 

d1(
(14)R , R) = 0.094. We see that the estimate after con-

vergence is closest to the true correlations. The results 
are displayed in Figure 1. We only display the correla-
tions ijr  for j > i. Those values for ijr  is 1’s, and those 
for ijr  (i > j) are set to zero’s, which can be obtained by 
symmetry. 
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From this figure we see that the correlations computed 
from the raw data, panel (b), are very noisy, the true pat-
tern, panel (a), in the network is messed up. The 
one-step estimate, panel (c), gives some limited sense, 
while the final estimates, panel (d), recover the true pic-
ture with reasonably well. Considering the large number 
of 40(40+1)/2 = 820 parameters and the small number of 
15 individuals on 40 genes, the last step estimates are 
quite a success. Large number of simulations yield simi-
lar results, the convergence criterion is met with 10 to 15 
iterations. 

Note we only used networks of 40 genes, as large 
networks are not easy to display graphically. The com-
putations of a network with n genes is in the order 
n(n-1)/2, so there should be no computational problem 
for ordinary computer using this method to restore even 
the whole genome. 

4. RESULTS 

We use the proposed method to analyze the data with 30 
microarray chips from the Stanford microarray database: 

http:// smd.stanford.edu/cgi-bin/search/QuerySetup.pl. 
The Category is Normal tissue and the subcategory is 
PBMC, the following 30 files are the Raw data in the 
database: 19430.xls, 19438.xls, 19439.xls, 19446.xls, 
19447.xls, 19448.xls, 19449.xls, 19450.xls, 19451.xls, 
19500.xls, 19505.xls, 19506.xls, 19507.xls, 21407.xls, 
21408.xls, 21409.xls, 21410.xls, 21411.xls, 21412.xls, 
21413.xls, 21414.xls, 21415.xls, 21416.xls, 21424.xls, 
21425.xls, 21426.xls, 21427.xls, 21428.xls, 21429.xls, 
21430.xls. The data we used are the overall intensity 
(mean), the 67th column in the 30 excel files. We choose 
three subsets of genes on the 30 arrays: set I is genes 
0-49, set II is genes 1000-1049 and set III is genes 
5000-5049 from the original data set. There are 80 variable 
for each array. We choose the intensity from normal 
people for our analysis. The initial correlation coeffi-
cients among the genes computed from the raw data in 
each set, and those estimated after convergence by our 
algorithm are shown in Figures 2-4. Clearly the initial 
correlations are noisy and difficult to see any patterned 

 

 

Figure 1. Network Correlations: (a). Simulated R , (b) Initial (0)R , (c) One-step Restored (1)R , (d) k-step 

Converged ( )kR  
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relationships among the genes. In contrast, the restored 
pictures are quite clear. For set I, the coefficients are 
rather homogeneous with values around 0.5, but there is 
a clear boundary around gene 43, which suggests that 
most of the genes in this set have similar relationships, 
or functions. But gene 43 seems to have its own separate 
mechanism. Genes 38 and 29 also have weak relation-
ships with the other genes. For set II, the relationships 
among the genes are not so homogeneous. The genes are 
moderately correlated with coefficients around 0.5, some 
genes around positions 10, 16, 24, 30, and 38 have weak 
interactions with the other genes. For set III, there is 
moderate coordinating pattern among the genes, but 
three genes, around positions 15, 29, and 40, appears to 
have relatively independent patterns of regulatory func-
tioning. 

5. CONCLUDING REMARKS 

We considered a image restoration method for genetic 
network analysis. This method gives unique solution, the 

results are easy to interpret and computationally simple. 
We may implement the genetic distances among the 
genes into the updating system given in (8). The method 
is not confined to correlation coefficients among genes, 
other measures of gene-gene relationships can be con-
sidered analogously. Very large networks can be ana-
lyzed in principle, the only challenge is how to display 
the results. We found when the number of genes exceeds 
50, the figure is difficult to distinguish visually. The 
computation for a network of size 40 takes about a cou-
ple of minutes using the Splus software. It will be much 
faster using the C program, and there should be no prob-
lem to analyze the whole genome by this method. The 
only requirement is that the data be arranged in their 
chromosomal order, otherwise the results may not easy 
to interpret. 

The method can also be used for other analysis purposes 
and data types, such as cluster analysis. Cluster objects 
by pattern similarities, etc. It can be used to analyze qua-
litative data type such as haplotype analysis. 

 
Figure 2. Real data I: initial (left panel) and restored (right panel) correlations. 

 

 
Figure 3. Real data II: initial (left panel) and restored (right panel) correlations. 
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Figure 4. Real data III: initial (left panel) and restored (right panel) correlations. 
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Appendix 

Proof of the Proposition. Recall  
( 1) ( 1) ( 1) ( )( )k k k k

IJ IJr r r R     is random in (I,J) and 
( )kR ; for fixed (I,J)=(i,j), ( 1) ( 1) ( )( )k k k

ij jir r R   is ran-
dom in ( )kR ; ( 1) ( 1) ( ) (0)( | )k k k

IJ IJr r R R   is random in 
(I,J) (discrete); also  

( 1) ( ) ( ) ( ) ( )( | ) [ | ]k k k k k
IJ UV IJr E r R E r R    for random 

index (I,J)∈S and random index ( , ) IJU V S . 
1) We first prove the result under condition A). We 

have 
( 1) ( 1) ( ) ( 1)

( 1)
( 1) ( 1) ( )

( )

log ( ) log ( )

( )
( ) log ( || ) 0,

( )

k k k k

k
k k k

k

E p r E p r

p r
p r dr D p p

p r

  


 



  
 

which is the relative entropy between ( 1) ( )kp    and 
( ) ( )kp  . It is known that ( 1) ( )( || ) 0k kD p p  with “=” 

if and only if ( 1) ( )( ) ( )k kp p    . Note log-convexity of 
( ) ( )kp   imply, for each given ( )k

IJR , 
( ) ( ) ( ) ( ) ( ) ( )log ( [ | ]) [log ( ) | ]k k k k k k

IJ IJp E r R E p r R . 

Thus by the above two inequalities we get 

( 1) ( 1) ( 1) ( ) ( 1)

( ) ( ) ( ) ( ) ( ) ( )

( ) log ( ) log ( )

log ( [ | ]) ( [log ( | ])

k k k k k

k k k k k k
IJ IJ

H p E p r E p r

E p E r R E E p r R

      

  
( 1) ( ) ( )log ( ) ( ).k k kE p r H p     

Under condition B), the result in Ebrahimi et al. [20] 
states that entropy and variance agree each other. i.e. one 
increase/decrease implies the other. Now the conclusion 
is immediate from 2). 

2) By the total variance formula, we have 

( ) ( )

( ) ( ) ( ) ( )

( )

[ ( | )] ( [ | ])

k k
UV

k k k k
UV IJ UV IJ

Var r

E Var r R Var E r R

 
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( ) ( ) ( )

( ) ( ) ( 1) ( 1)

[ ( | )] ( )

[ ( | )]

k k k
UV IJ IJ

k k k k
UV IJ

E Var r R Var r

E Var r R   

 

  
, 

( 0,1, 2,...).k    

3) We only need to prove the convergence of the 

component ( )k
ijr  for any fixed (i,j). In fact from (8), for 

any integer m and k we have 

( 1 ) (0) (0) 2( 1 )

( , )( )
(0) (0) 2( 1 )

( , )

( 1 )
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
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
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



 , 

(i,j) ∈ S, k,m = 0,1,2... 

Since (0)   and ( ) 0k  , by ii), we have 
( ) *k   for some 0 ≤ * < ∞. So if we let 

( 1 ) (0) (0) 2*

( , )( )
(0) (0) 2*
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(i,j) ∈ S, k,m = 0,1,2... 

then ( ) ( ) (1)k m k m
ij ijr r o    as k →∞, thus we only need 

to prove the convergence of  
{ ( )k m

ijr  }. 
Note 
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We have 0 1ijC  , and for all m, 
( 1) ( ) ( 1 ) ( 1) ( ) (0)| | | | | |l l k m k k m

ij ij ij ij ij ij ij ijr r C r r C r r              
1 1

( 1) ( ) (1) (0)

0 0
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| | | |

| |,
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m m
k l l k l

ij ij ij ij ij ij ij
l l
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ij ij
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C

 


 

   
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thus ( )
1,2,...{ }k m

ij kr 
 is a Cauchy sequence, and the con-

vergence follows. 

 

 

 

 

 

 

 

 


