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ABSTRACT

Our aim in the present article is to introduce and study new types of retractions of Lobachevsky space. Types of the
deformation retracts of Lobachevsky space are presented. The relations between the folding and the deformation retract
of Lobachevsky space are deduced .Types of minimal retractions of Lobachevsky space are also presented. Also, the
isometric and topological folding in each case and the relation between the deformation retracts after and before folding
have been obtained. New types of homotopy maps are deduced. Theorems governing this connection are achieved.
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1. Introduction

Lobachevsky space represents one of the most intriguing
and emblematic discoveries in the history of geometry.
Although if it were introduced for a purely geometrical
purpose, they came into prominence in many branches of
mathematics and physics. This association with applied
science and geometry generated synergistic effect: ap-
plied science gave relevance to Lobachevsky space and
Lobachevsky allowed formalizing practical problems El-
Ahmady [1,2].

Most folding problems are attractive from a pure ma-
thematical standpoint, for the beauty of the problems
themselves. The folding problems have close connections
to important industrial applications Linkage folding has
applications in robotics and hydraulic tube bending. Pa-
per folding has application in sheet-metal bending,
packaging, and air-bag folding. Following the great So-
viet geometer, also, used folding to solve difficult prob-
lems related to shell structures in civil engineering and
aero space design, namely buckling instability El-Ahmady
[3,4]. Isometric folding between two Riemannian mani-
fold may be characterized as maps that send piecewise
geodesic segments to a piecewise geodesic segments of
the same length El-Ahmady [5]. For a topological folding
the maps do not preserves lengths El-Ahmady [6,7], i.e.
A map 3:M —> N, where M and N are C” —Rie-
mannian manifolds of dimension m and n respectively is
said to be an isometric folding of M into N, iff for any
piecewise geodesic path y:J — M , the induced path
Joy:J —> N is a piecewise geodesic and of the same
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length as y.If 3 does not preserve length, then J is
a topological folding El-Ahmady [8,9].

A subset 4 of a topological space X is called a retract
of X if there exists a continuous map r:X — 4 such
that r(a)=a,Vae A where 4 is closed and X is open
El-Ahmady [10-20]. Also, let X be a space and 4 a sub-
space. A map r:X —> A such that r(a)=a,Vaed is
called a retraction of X onto 4 and 4 is the called a retract
of X Reid [21]. This can be re stated as follows. If
i:A— X is the inclusion map, then r: X >4 is a
map such that ri =id, . If, in addition, ri=id, , we call
r adeformation retract and A a deformation retract of X
Arkowitz [22], Shick [23] and Storn [24]. The aim of this
paper is to describe and study new types of retraction, de-
formation retract and folding the of Lobachevsky space.

2. Main Results

We start with a metric of the Lobachevsky space L' in
the special spherical Riemann mode S; Kudryashov
[25].

ds*= czdtz—cosz(ijdr2
P
—p2cosz(£]sin2(1jd¢2—dz2 (1)
P P
ze {—gﬁg},r € [—0,+7t],¢ € [0,2n]

And p is a curvature radius. The spherical coordi-
nates are given by
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X, =ct

. z
X, = pcos¢sin [—J cos (—J
P P
X, = psingsin (L] cos [ij
3 p)\p @
r z
X, = pcos [—j cos [—j
P P
! [ Z J
Xy = psin| —
P
Using Lagrangian equations
dfar)_ar
ds\ 0G' ) oG,
To find a geodesic which is a subset of spherical Rie-

mann model S, . Since
T

_l{ 2,2 2{3) 2 2 2{1) . 2(1) "2 ’2}
=—q9ct'""—cos "= pcos sin z' .
2 p p p

Then the Lagrangian equations are expressed as

d 2.0

E[c t']=0 3)

%{/f cos’ [%] sin’ (%j(p} =0 “)

il

—|—cos”| = |r

ds p

+{p cos’ [EJ si (LJ cos {L] go’z}
p p p

+psin’ (1] cos [ij sin (E] Q" } =0
P P P
From Equation (4) we obtain p’ cos’ (ij sin’ (L] o'
P P
= constant say «, if =0, we obtain the following

cases, if ¢'=0 then ¢=constantsay f; if =0,
then from (2) we obtain

i=1,2,3,4

(&)

Il
(e

6

x =ct
. z
X, = psin (—j cos (—]
p P
x=0

O
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which is a Riemann sphere S L' in Lobachevsky
space L' with x, =ct and x,=0, which is a retrac-
tion and geodesic. Specially if £ =30, hence we get the
coordinates are defined by

X, =ct

zou )l
X, =——psin| — |cos| —
2 P P
X —lpsin(LJcosﬂi)
2 P o (®)
(5L
X, = pcos| — |cos| —
P P
[z
X :psm[—j
P

which is a hypersurface L} — L' in Lobachevsky space
L', with x, =ct, which is a retraction and geodesic.
Also if S takes the values 45, 60", 120, 135,
210", 2407, 300" and 330" we get new types of hy-
persurface L/ < L', i =2 - 9 in Lobachevsky space L*
with x; = ct. Specially if = 90° hence we get the coor-
dinates are defined by

X, =ct,

x, =0,

X, = psin (i] cos (ij, )
P P
(3]
X, = psin| —
P

Which is a Riemann sphere S; — L' in Lobachevsky
space, it is a geodesic and retraction. Also, if B =180
we have a Riemann sphere S; — L', it is a geodesic and
retraction. Where

X =ct
. z
X, =—psin [—j cos [—j
P P
x=0

(10)
r z
X, = pcos(—jcos[—j
P P
! (Zj
X; = psin| —
yoj

And also, if f=270", we have a Riemann sphere
S; < S, in Lobachevsky space, it is a geodesic and re-
traction, where
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(7 z
X, =—psin [—j cos (—j
P P
r z
X, = pcos (—) cos (—J
P P
. z
X, = psin (—j
P

Now, if sin’ (L] =0. Then we get the following co-

(11

yo,
ordinates
X, =ct
x,=0
X, =
( z J (12)
X, = pcos| —
el
. z
X, = psin [—]
el

Hence, S| c L' is the great circle, it is a geodesic and
retraction.

Also, if cosz(ijzo, ze[—gﬁg}, then the Rie-
P

mann point S} — L' in Lobachevsky space is repre-
sented by the following coordinates

x =ct

X, =

x =0 (13)
x,=0

x;=0

it is a minimal retraction in Lobachevsky space L'.
Now, if p=0, thenthe retraction is represented by
the following coordinates

X =ct
x,=0
X, = (14)
x, =0
x=0

Which is a Riemann point S; in Lobachevsky space.
L*. From Equation (3) we obtain C’t'=constant say  ,
if y=0, then we get the following coordinates
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x, =0,

X, = pcosg@sin| — |cos| — |,
P P

X, :psin¢sin[1]cos[£j, (15)
P P

z r
X, = pcos (—j cos (—j ,
p p
. z
x5 = psin (—j
P

Hence, S° L' is a Riemann hyper sphere, it is a
geodesic and retraction.

Theorem 1. The retractions of Lobachevsky space L'
are geodesics Riemann hypersphere, great circles, Rie-
mann point and hyper subspace.

In this position, we present some cases of the deforma-
tion retract of Lobachevsky space L'. The retraction of
the open Lobachevsky space L' is given by

R:(L'~{b}) > L,
i=1-9,57,5;,52,8;,8/.5!,8°

The deformation retract of Lobachevsky space is
o:(1={b})<I > (1" ~{k))

where ( Li- {b;}) is the open Lobachevsky space and /
is the closed interval [0,1], be present as

¢(x,h):{[a,pcowsm[ﬂco{%}
SENE IR
g
a{(ct,pcowsm(ﬁjm{%}
SRENERENE!
i) 0]

The deformation retract of the Lobachevsky space
(L4 - {b,.}) into the retraction Riemann sphere S; L'
is
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¢(x,h)

o (l—h){[ct, pcos(ﬂsin(%]cos(%],
piingsin] 2 Jos{ = peos{ o[ - |
)
oo 5Jo3)
Gl

- {[Mo ][;j
o oo 5 oo 2 o 5
(3}

o= {omn{zJof )
vl ol ) )

The deformation retract of the Lobachevsky space
( L“—{b[}) into the retraction hyper surface L} is

¢(x,h)

=(1-h) (ct,pcos¢sin(i]cos(£),
P P

mosn{ e}l 5)

psingsin| — |cos| — |, pcos| — |cos| — |,
P P P P

. z

psin| = | |=(b,)
)
+h (ct,ﬁpsin(ijcos[i],
2 p Iy

nlgols)en kol 5} o3
— psin| — |cos| — |, pcos| — |cos| — |, psin| — | |}.
2 p P P p p
The deformation retract of the Lobachevsky space

( L“—{b[}) into the retraction Riemann sphere S; c L'
is defined as

psin

psin@sin

And
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¢(x,h)

mh ( . (rj (zj
=cos—1| ct, pcos@sin| — [cos| — |,
2 { p p
psingsin| — |cos| — |, pcos| — |cos| — |,
P P P P
. z
psin| — | |=(b,
. Th . [rj (ZJ
+sin—3| ¢t,0, psin| — |cos| — |,
2 { p p
[z [rj ! [Z]J
pcos| — |cos| — |, psin| — | |;.
P P P
The deformation retract of the Lobachevsky space

( Li— {bl.}) into the retraction Riemann sphere S; L'
1S

#(x.h)
(n—nhj [ . (rj (z)
= ct,pcos@sin| — [cos| — |,
n P P
s ool Jool 5o 5
psingsin| — |cos| — |, pcos| — |cos| — |,
P P P P
. z
psin| — | |=(b
o)
(nh] [ . (VJ [zj
+| — |§] ¢t,—psin| — [cos| — |,
n P P
0, pcos(i) cos (ij , psin (ED .
P P P
The deformation retract of the Lobachevsky space

(L*~{b,}) into the retraction Riemann sphere S; c L'
is defined as

¢(x,h)

:<1—h){[a,pcowsm[%]m{%}
o[ 2o ool ).
3]}
wlmaenlZ)(3)

el ot}

The deformation retract of the Lobachevsky space
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(L*~{b}) into the great circle S < L' is defined by

oo o)
ol ool o1
ol 2l

The deformation retract of the Lobachevsky space
( L4—{bl-}) into the retraction Riemann point S’ < L'
is given by

o(x,h) =(:—2’){(Cz, pcoswsin(%)cos[%j,
o Jo( o2}
psin[%D—(bi)}Jrh(ﬂz—1){(ct,0,0,0, o).

The deformation retract of the Lobachevsky space
( L4—{b,.}) into the retraction Riemann point S; c L'
is defined as

o= g o2
oo o2}l
psin{%n ~(b, )} +h{(ct,0,0,0,0)}.

The deformation retract of the Lobachevsky space
( L4—{bl-}) into the geodesic Riemann hyper sphere
S*cL'is

¢(x,h)

=Ine!"™ (ct,pcos @sin (Lj cos [ij,
P P
ool 5 ool o)
psingsin| — |cos| — |, pcos| — |cos| — |,
P P P P
. z
psin| — | |=(b,
e
+Ine” (O,pCOS(psin(L)cos(ij,
P P
o o)
psingsin| — [cos| — |,
P P
(Fel o)
pcos| — |cos| — |, psin| —
P P P
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Now, we are going to discuss the folding J (L4) of
the Lobachevsky space. Let J:L' — L', where

S(xl,x2,x3,x4)=(x1,x2,|x3|,x4,x5) (16)

An isometric folding of the Lobachevsky space
3 (L“) into itself may be defined by

R¥ {ct, £ oS @sin (Lj cos (ij ,
P P
psin @sin (1] cos (ij , P COS [Lj cos (ij ,
P P P P
i)
p
- {ct, P cos@sin [ij cos [ij ,
P P
psingsin {Lj cos {ij , pCOS (L] cos (E] , psin (ij}
P P P P P

The deformation retract of the folded Lobachevsky
space S(L“) into the folded geodesic S(Sf cL“) is

o5 {ct, L cos@sin [LJ cos (ij s
P P
psin@sin (Lj cos [£] , P COS (Lj cos (ij ,
P P P P
psin (ij} x I
p
- {ct, P Ccos@sin (Lj cos [ij ,
P P
psingsin (L) cos (ij , P COS (Lj cos [ij ,
P P P P
i)
p

With
mh .7 z
@~ (m,h)= cos—{cz,pcosqﬁsm (—] cos (—],
2 p P
. . r z r z
psingsin (—j cos(—j , PCOS (—j cos(—j,
P P P P
. [z]} . nh{ . [rj (ZJ
psin| — |p+sin—-ct, psin| — |cos| — |,0,
P 2 P p
(FJ [ZJ ! [Zj}
pcos| — |cos| — |, psin| —
P P P

The deformation retract of the folded Lobachevsky
space S(L“) into the folded geodesic S(L‘l‘ c L4) is
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1-h .7 z
@ (m,h)= m{ct,pcos%m[;jcos[;j,
psin @sin (L] cos [EJ , P COS [L] cos (3] ,
P P P P
i)
p
+h(2h-1) {ct,? psin [%) cos [%j ,
psin {LJ cos (i} , l,0 sin (ij cos (il ,
p p)2 p p
£ COos [Lj cos (3] , psin [3]}
P P P

The deformation retract of the folded Lobachevsky
space S(L“) into the folded geodesic S(Szz cL“) is

@< (m,h)=1n e {ct, £ COS ¢sin [L] cos (ij ,
P

P

T z r z
psingsin (—] cos (—]‘ , pcos(—j cos (—j,
P P P P
)
psin| —
P
+Ine” {ct, 0, psin (LJ cos (E],
P P
[FlolFhomlz)
pcos| — |cos| — |, psin| —
P P P

Then, the following theorem has been proved.

Theorem 2. Under the defined folding, the deforma-
tion retract of the folded Lobachevsky space i.e. ¢ (L“)
into the folded geodesic is the same as the deformation
retract of the Lobachevsky space into the geodesics.

Now, if the folding is defined by J":L' — L*, where

S(xl,xz,x3,x4)=(x1,|x2|,x3,x4,x5) (17)

The isometric folded Lobachevsky space time J* (L“)
is defined as

B*
. r z . . r z
pcos@sin {—j cos (—j‘ , psin gsin (—j cos (—] ,
P P P P

:{ct,
( ; J [ ; j ! [ ; j}
pcos| — |cos| — |, psin| —
P P P
The deformation retract of the folded Lobachevsky

space " (L“) into the folded geodesic 3 (S32 c L4) is
given by

Copyright © 2013 SciRes.

>

@5 (x,h)=1In e {ct, pCos ¢sin (Lj cos (ij
P P
psing@sin (Lj cos[ij,pcos (Lj cos (ij,
p p P P

psin (ij] - {b,.}} +Ine’ {ct,—p sin [L) cos[ij,o,

P p p
psin [Lj cos {ij , psin (3]}

P P P

Hence, we can formulate the following theorem .

Theorem 3. Under the defined folding, the deforma-
tion retract of the folded Lobachevsky space into the
folded geodesic is different from the deformation retract
of the Lobachevsky space into the geodesics.

Ifwelet [1,:L' — L' be given by

|x2| |x4|
Hm(x19x29x35x4):(x19 ’x33 ,xs (18)
m m

Then, the isometric chain folding of Lobachevsky
space L' into itself may be defined by:

I1, = {ct,pcowﬁsin (L] cos (ij,
P P
psingsin (Lj cos (i} , PCOS (L} cos (ij R
P P P P
psin [3]} - {ct,
P
psin¢sin[£)cos(£],
P P
psin[ij}
P
I, = {ct, pcos¢sin[1jcos(£],
P P
psingsin [Lj cos (ij, pcos (L) cos (ij‘ , psin [ij}
P P P P P
(eapsten o)
—<ct,—|pcos@sin| — |cos| — |,
2 P P
psin¢sin{£jcos(ij,
P P
! pcos(ijcos(E] , psin (ij}
2 p P P

>

[N
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I1, :{ct,; P cos gsin (chos(ij‘,

m—1 p P
psin¢sin(LJcos(£j,
P P

Sl

——|pcos| — |cos| — ||, psin| —

1 Y Y p

pcos¢sin[ jcos[ij

P P

:
i)

\

>

B
el (%J

m

Then we get
lim[],

m—>o

{ct 0, ps1n¢sm[ jcos[ j O,psin(il}
P P P

which is hypersurface L’ in Lobachevsky space.

From the above discussion we will arrive to the fol-
lowing theorem.

Theorem 4. The limit folding of the Lobachevsky
space L' into itself, under Condition (18), is different
from the retraction of the Lobachevsky space L'.

If the folding is defined by 7, :L' — L' such that

Va (xl,xz,x3,x ) (M’M’M’M’MJ (19)

Then, the isometric chain folding of Lobachevsky
space L' into itself may be defined by:

|2 {ct, P cos @sin (Lj cos (ij,
P P
psin@sin [L) cos (ij ,
P P
pcos(i) cos (ij , psin (ij}
P P P
{ pcos¢sm[ jcos(zj‘
P P
psin@sin [L] cos[ij ,
P P
Sl
pcos| — [cos| — |,|psin| — | ¢,
P P P
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. r z
Yy s pcos¢sm(—jcos(—},
{ P P
N 4 z r z
psin gsin (—j COS{_j ,|pcos (—j COS{_j
P Y P P
psin| — ||y > pcos¢sm cos| — |,
p 272 p p
—|psingsin| — |cos| — ||,—|pcos| — |cos| — |,
2 p P2 p p
lpsin[ij‘
2 p

|Ct| 1 [ z
¥, 1—,——|pcos@sin| — |cos| — ||,
n—1 n-1 el Vel
1 . . [rj (zj‘
——|psingsin| — |cos| —
-1 p p
——|pcos| — [cos| — |, psin| —
-1 p p) n-1 p
—<+—,—|pcosg@sin| — |cos| — |,
non P P
| . . (FJ (zj
—|psingsin| — |cos| —
n P P
—|pcos| — |cos| — ||,
n P P

{0,0,0,0,0}, which a zero-di-

B

1 . (zj
psin| —
P

n

Then we get limy, =

mensional hypersphere in Lobachevsky space L'.

Thus the following theorem is obtained.

Theorem 5. The limit folding of the Lobachevsky
space L' into itself, under Condition (19), is equivalent
to the zero-dimensional sphere in Lobachevsky space.

Theorem 6. The end of the limits of the foldings of
Lobachevsky space L' of dimension n is a 0-dimen-
sional Lobachevsky space.

Proof: If we let

n:L'—>L,n, :771(L”)—>771 (L"),
i (1 (1)) > ma o (2))-
7, :,7'171(,7”72 ...(,71 (Lﬂ))...) N ,7'171(,7”72 ...(;71 (L"))...)

then lim 7, (77,,71(77,172 . (771<L”)) ) L"", which is the

Lobachevsky space of dimensional n—1.
Also, if we consider
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7 AR | 2852 (L”" ) -7 (L"'l ),
73 :72(71(Ln_l))_)72(71(Ln_1))»"'a

Vo :7m,1(7m,2 (yl(Ll)))
= Vi (7,,1_2 '-‘(71 (L"‘] )))

Then
lim 7, (7m71 (7»172‘“(71 (L”’l))---)) = L', which is the
Lobachevsky space of dimensional n — 2. Consequently,
lim lim lim~--(zS (ym (nn (L4 )))):LO, which is a zero-

dimensional space.

Proposition 1. Under Condition (19) the retraction of
0-dimensional Lobachevsky space is a 0-dimensional
space.

Theorem 7. Under Condition (19) the limit of foldings
of Lobachevsky space L' into itself coincide with mini-
mal retraction.

3. Conclusion

In this paper we achieved the approval of the important
of the geodesic retractions of the Lobachevsky space.
The relations between folding, retractions, deformation
retract, limits of folding and limits of retractions of Lo-
bachevsky space are discussed. Theorems which governs
these relations are presented.
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