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ABSTRACT 

We demonstrate that, when computing the LDU decomposition (a typical example of a direct solution method), it is 
possible to obtain the derivative of a determinant with respect to an eigenvalue of a non-symmetric matrix. Our pro- 
posed method augments an LDU decomposition program with an additional routine to obtain a program for easily 
evaluating the derivative of a determinant with respect to an eigenvalue. The proposed method follows simply from the 
process of solving simultaneous linear equations and is particularly effective for band matrices, for which memory re- 
quirements are significantly reduced compared to those for dense matrices. We discuss the theory underlying our pro- 
posed method and present detailed algorithms for implementing it. 
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1. Introduction 

In previous work, the author used the trace theorem and 
the inverse matrix formula for the coefficient matrix ap- 
pearing in the conjugate gradient method to propose a 
method for derivative a determinant in an eigenvalue 
problem with respect to an eigenvalue [1]. In particular, 
we applied this method to eigenvalue analysis and dem- 
onstrated its effectiveness in that setting [2-4]. However, 
the technique proposed in those studies was intended for 
use with iterative methods such as the conjugate gradient 
method and was not applicable to direct solution methods 
such as the lower-diagonal-upper (LDU) decomposition, 
a typical example. Here, we discuss the derivative of a 
determinant with respect to eigenvalues for problems in- 
volving LDU decomposition, taking as a reference the 
equations associated with the conjugate gradient method 
[1]. Moreover, in the Newton-Raphson method, the solu- 
tion depends on the derivative of a determinant, so the 
result of our proposed computational algorithm may be 
used to determine the step size in that method. Indeed, 
the step size may be set automatically, allowing a reduc- 
tion in the number of basic parameters, which has a sig- 
nificant impact on nonlinear analysis. For both dense ma- 
trices and band matrices, which require significantly less 
memory than dense matrices, our method performs cal- 
culations using only the matrix elements within a certain 
band of the matrix factors arising from the LDU decom- 
position. This ensures that calculations on dense matrices 
proceed just as if they were band matrices. Indeed, 

computations on dense matrices using our method are 
expected to require only slightly more computation time 
than computations on band matrices performed without 
our proposed method. In what follows, we discuss the 
theory of our proposed method and present detailed algo- 
rithms for implementing it. 

2. Derivative of a Determinant with Respect  
to an Eigenvalue Using the LDU  
Decomposition 

The eigenvalue problem may be expressed as follows. If 
A  is a non-symmetric matrix of dimension n n , then 

the usual eigenvalue problem is 

Ax x ,                 (1) 
where   and x  denote respectively an eigenvalue and 
an corresponding eigenvector. In order for Equation (1) 
to have nontrivial solutions, the matrix A I  must be 
singular, i.e., 

det 0A I   
 .             (2) 

We introduce the notation  f   for the left-hand side 
of this equation: 

  detf A I  
  .          (3) 

Applying the trace theorem, we obtain 
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The LDU decomposition decomposes this matrix into 
a product of three factors: 

A LDU ,                 (6) 

where the L, D, and U factors have the forms 
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We write the inverse of the L factor in the form 

211

1 2

1

1

1

ij

n n

g
L g

g g



 
 
      
 
 

  


.       (10) 

Expanding the relation  (where I is the iden- 
tity matrix), we obtain the following expressions for the 
elements of : 
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Next, we write the inverse of the U factor in the form 
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Expanding the relation , we again obtain 
expressions for the elements of : 
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Equations (11) and (13) indicate that ijg  and ij  
must be computed for all matrix elements. However, for 
matrix elements outside the half-band, we have ij

h

0  
and 0iju  , and thus the computation requires only ele- 
ments ij  and iju  within the half-band. Moreover, the 
narrower the half-band, the more the computation time is 
reduced. 



From Equation (4), we see that evaluating the deriva- 
tive of a determinant requires only the diagonal elements 
of the inverse of the matrix A in (6). Using Equations (7)- 
(10), and (12) to evaluate and sum the diagonal elements 
of the product 1 1 1U D L   , we obtain the following rep- 
resentation of Equation (4): 
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This equation demonstrates that the derivative of a de- 
terminant may be computed from the elements of the 
inverses of the , , and matrices obtained from 
the LDU decomposition of the original matrix. As noted 
above, the calculation uses only the elements of the ma- 
trices within a certain band near the diagonal, so compu- 
tations on dense matrices may be handled just as if they 
were band matrices. Thus we expect an insignificant in- 
crease in computation time as compared to that required 
for band matrices without our proposed method. 

L D U

By augmenting an LDU decomposition program with 
an additional routine (which simply appends two vectors), 
we easily obtain a program for evaluating f f . Such 
computations are useful for numerical analysis using 
algorithms such as the Newton-Raphson method or the 
Durand-Kerner method. Moreover, the proposed method 
follows easily from the process of solving simultaneous 
linear equations. 

3. Algorithms for Implementing the 
Proposed Method 

3.1. Algorithm for Dense Matrices 

We first discuss an algorithm for dense matrices. The 
arrays and variables are as follows. 

1) LDU decomposition and calculation of the deriva- 
tive of a determinant with respect to an eigenvalue 

(1) Input data 
A: given coefficient matrix, 

2-dimensional array of the form A(n,n) 
b: work vector, 1-dimensional array of the form b(n) 
c: work vector, 1-dimensional array of the form c(n) 
n: given order of matrix A and vector b 
eps: parameter to check singularity of the matrix 

(2) Output data 
A: L matrix, D matrix and U matrix, 

2-dimensional array of the form A(n,n) 
  fd: derivative of determinant 
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  ierr; error code 
        =0, for normal execution 
        =1, for singularity 

(3) LDU decomposition 
do i=1,n 
<d(i,i)> 

   do k=1,i-1 
       A(i,i)=A(i,i)-A(i,j)*A(j,j)*A(j,i) 
     end do 

 if (abs(A(i,i))<eps) then 
       ierr=1 
       return 
     end if 
   <l(i,j) and u(i,j)> 
     do j=i+1,n 
       do k=1,i-1 
         A(j,i)=A(j,i)-A(j,k)*A(k,k)*A(k,i) 
         A(i,j)=A(i,j)-A(i,k)*A(k,k)*A(k,j) 
       end do 
       A(j,i)=A(j,i)/A(i,i) 

A(i,j)=A(i,j)/A(i,i) 
     end do 
   end do 

 ierr=0 
(4) Derivative of a determinant with respect to an ei-

genvalue 
fd=0 

 <(i,i)>. 
do i=1,n 

     fd=fd-1/A(i,i) 
end do 

   <(i,j)>  
do i=1,n-1 

     do j=i+1,n 
       b(j)=-A(j,i) 

c(j)=-A(i,j) 
       do k=1,j-i-1 
         b(j)=b(j)-A(j,i+k)*b(i+k) 

c(j)=c(j)-A(i+k,j)*c(i+k) 
       end do 
       fd=fd-b(j)*c(j)/A(j,j) 
     end do 
   end do 

2) Calculation of the solution 
(1) Input data 
 A: L matrix, D matrix and U matrix, 

 2-dimensional array of the form A(n,n) 
   b: given right-hand side vector, 

 1-dimensional array of the form b(n) 
n: given order of matrix A and vector b 

(2) Output data 
b: work and solution vector, 1-dimensional array 

(3) Forward substitution 
do i=1,n 

     do j=i+1,n 
       b(j)=b(j)-A(j,i)*b(i) 
     end do 
   end do 
(4) Backward substitution 

do i=1,n 
    b(i)=b(i)/A(i,i) 
  end do 
  do i=1,n 

     ii=n-i+1 
     do j=1,ii-1 
       b(j)=b(j)-A(j,ii)*b(ii) 
     end do 
   end do 

3.2. Algorithm for Band Matrices 

We next discuss an algorithm for band matrices. Figure 
1 depicts a schematic representation of a band matrix. 
Here  denotes the left half-bandwidth, and  de- 
notes the right half-bandwidth. These numbers do not 
include the diagonal element, so the total bandwidth is 

n

1n n

nu

u  . 
1) LDU decomposition and calculation of the deriva- 

tive of a determinant with respect to an eigenvalue 
(1) Input data 
A: given coefficient band matrix,  

2-dimensional array of the form A(n,nl+1+nu) 
   b: work vector, 1-dimensional array of the form b(n) 

c: work vector, 1-dimensional array of the form c(n) 
  n: given order of matrix A 

nl: given left half-band width of matrix A 
  nu: given right half-band width of matrix A 
  eps: parameter to check singularity of the matrix 

(2) Output data 
A: L matrix, D matrix and U matrix,  

2-dimensional array of the form A(n,nl+1+nu) 
   fd: derivative of determinant 
   ierr: error code 
        =0, for normal execution 
        =1, for singularity 

(3) LDU decomposition 
do i=1,n 

   <d(i,i)> 
 

  

n  

nun 1  nun 1

n

 

Figure 1. Band matrix. 
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     do j=max(1,i-min(nl,nu)),i-1 
       A(i,nl+1)=A(i,nl+1) 

-A(i,nl+1-(i-j))*A(j,nl+1)*A(j,nl+1+(i-j)) 
     end do 
     if (abs(A(i,nl+1))<eps) then 
       ierr=1 
       return 
     end if 

<l(i,j)> 
     do j=i+1,min(i+nl,n) 
       sl=A(j,nl+1-(j-i)) 
       do k=max(1,j-nl),i-1 
         sl=sl- 

A(j,nl+1-(j-k))*A(k,nl+1)*A(k,nl+1+(i-k)) 
       end do 
       A(j,nl+1-(j-i))=sl/A(i,nl+1) 
     end do 
     <u(i,j)> 

do j=i+1,min(i+nu,n) 
       su=A(i,nl+1+(j-i)) 
       do k=max(1,j-nu),i-1 
     su=su-A(i,nl+1-(i-k))*A(k,nl+1)*A(k,nl+1+(j-k)) 
       end do 
       A(i,nl+1+(j-i))=su/A(i,nl+1) 
     end do 
   end do 
   ierr=0 

(4) Derivative of a determinant with respect to an ei-
genvalue 

fd=0 
   <(i,i)> 

do i=1,n 
     fd=fd-1/A(i,nq) 
   end do 

<(i,j)>  
do i=1,n-1 

   do j=i+1,min(i+nl,n) 
     b(j)=-a(j,nl+1-(j-i)) 
     do k=1,j-i-1 
       b(j)=b(j)-a(j,nl+1-(j-i)+k)*b(i+k) 
     end do 
   end do 
   do j=i+nl+1,n 
     b(j)=0.d0 
     do k=1,nl 
       b(j)=b(j)-a(j,k)*b(j-nl-1+k) 
     end do 
   end do 
   do j=i+1,min(i+nu,n) 
     c(j)=-a(i,nl+1+(j-i)) 
     do k=1,j-i-1 
       c(j)=c(j)-a(i+k,nl+1+(j-i)-k)*c(i+k) 
     end do 

end do 

do j=i+nu+1,n 
 c(j)=0.d0 

     do k=1,nu 
       c(j)=c(j)-a(i,nl+1+k)*c(j-nl-1+k) 
     end do 

end do 
do j=i+1,n 

    fd=fd-b(j)*c(j)/a(j,nl+1) 
end do 

2) Calculation of the solution 
(1) Input data 
A: given decomposed coefficient band matrix, 

2-dimensional array of the form A(n,nl+1+nu) 
   b: given right-hand side vector, 

 1-dimensional array of the form b(n) 
   n: given order of matrix A and vector b 

nl: given left half-band width of matrix A 
   nu: given right half-band width of matrix A 

(2) Output data 
b: solution vector, 1-dimensional array 

(3) Forward substitution 
do i=1,n 

     do j=max(1,i-nl),i-1 
       b(i)=b(i)-A(i,n+1-(i-j))*b(j) 
     end do 
   end do 

(4) Backward substitution 
do i=1,n 

     ii=n-i+1 
     b(ii)=b(ii)/a(ii,nl+1) 
     do j=ii+1,min(n,ii+nu) 
       b(ii)=b(ii)-a(ii,nl+1+(j-ii))*b(j) 
     end do 
   end do 

4. Conclusion 

We have demonstrated that, when computing the LDU 
decomposition (a typical example of a direct solution 
method), it is possible simultaneously to obtain the de- 
rivative of a determinant with respect to an eigenvalue. 
In addition, in the Newton-Raphson method, the solution 
depends on the derivative of a determinant, so the result 
of our proposed computational algorithm may be used to 
determine the step size in that method. Indeed, the step 
size may be set automatically, allowing a reduction in the 
number of basic parameters, which has a significant im- 
pact on nonlinear analysis. Our proposed method is based 
on the LDU decomposition, and for band matrices the 
memory required to store the LDU factors is significantly 
reduced compared to the case of dense matrices. By aug- 
menting an LDU decomposition program with an addi- 
tional routine (which simply appends two vectors), we 
easily obtain a program for evaluating the derivative of a 
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determinant with respect to an eigenvalue. The result of 
this computation is useful for numerical analysis using 
such algorithms as those of the Newton-Raphson method 
and the Durand-Kerner method. Moreover, the proposed 
method follows easily from the process of solving simul- 
taneous linear equations and should prove an effective 
technique for eigenvalue problems and nonlinear prob- 
lems. 

REFERENCES 
[1] M. Kashiwagi, “An Eigensolution Method for Solving the 

Largest or Smallest Eigenpair by the Conjugate Gradient 
Method,” Transactions of the Japan Society for Aeronau- 
tical and Space Sciences, Vol. 1, 1999, pp. 1-5.  

[2] M. Kashiwagi, “A Method for Determining Intermediate 
Eigensolution of Sparse and Symmetric Matrices by the 
Double Shifted Inverse Power Method,” Transactions of 
JSIAM, Vol. 19, No. 3, 2009, pp. 23-38.  

[3] M. Kashiwagi, “A Method for Determining Eigensolu- 
tions of Large, Sparse, Symmetric Matrices by the Pre- 
conditioned Conjugate Gradient Method in the General- 
ized Eigenvalue Problem,” Journal of Structural Engi- 
neering, Vol. 73, No. 629, 2008, pp. 1209-1217.  

[4] M. Kashiwagi, “A Method for Determining Intermediate 
Eigenpairs of Sparse Symmetric Matrices by Lanczos and 
Shifted Inverse Power Method in Generalized Eigenvalue 
Problems,” Journal of Structural and Construction Engi- 
neering, Vol. 76, No. 664, 2011, pp. 1181-1188.  
doi:10.3130/aijs.76.1181 

 

http://dx.doi.org/10.3130/aijs.76.1181

